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Abstract

Background

Multiple Myeloma (MM) is a heterogeneous, hematological neoplasm that accounts 2% of

all cancers. Although, autologous stem cell transplantation and chemotherapy are currently

the most effective therapy, it carries a notable hazards, in addition for being non curative.

Recently, the Clustered Regular Interspaced Short Palindromic Repeats (CRISPR-cas9)

has been successfully tried at the experimental level, for the treatment of several hemato-

logical malignancies.

Objectives

We aimed to investigate the in-vitro effect of CRISPR-cas9-mediated knock-out of V-set pre

B-cell surrogate light chain 1”VPREB1” gene on the malignant proliferation of primary cul-

tured myeloma cells.

Methods

Bioinformatics’ analysis was performed to explore the gene expression profile of MM, and

the VPREB1 gene was selected as a target gene for this study. We knocked-out the

VPREB1 gene in primary cultured myeloma cells using CRISPR-cas9, the VPREB1 gene

editing efficacy was verified by determining VPREB1 gene expression at both the mRNA

and protein levels by qPCR and immunofluorescence, respectively. Furthermore, the cyto-

toxic effect on primary myeloma cells proliferation was evaluated using cytotoxicity assay.

Results

There was a statistically significant reduction of both VPREB1 mRNA and protein expres-

sion levels (p<0.01). knock-out of VPREB1 gene in myeloma cell line resulted in a statisti-

cally significant reduction of myeloma cell proliferation.
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Conclusion

CRISPR-cas9-mediated knock-out of VPREB1 gene is effective for inhibiting the prolifera-

tion of primary myeloma cells. This would provide a basis for a promising therapeutic strat-

egy for patients with multiple myeloma.

Introduction

In the past decade, the treatment of MM has been changed due to development of new thera-

peutic strategies which could be used either in frontline or relapse stages [1]. Currently, six dif-

ferent agents, namely alkylators, steroids, proteasome inhibitors, immunomodulatory agents,

histone deacetylase inhibitors, and monoclonal antibodies are used in different therapeutic

protocols either doublet, triplet or can be combined to autologous stem cell transplantation

(ASCT) [2]. In spite of the availability of different therapeutic regimens, patients showed a het-

erogonous response with some cases demonstrating relapse. A better survival outcome was

observed in patients who undergo hematopoietic stem cell transplantation than those who

received chemotherapeutic agents [3]. The development of new therapeutic approaches for

patients with MM is strongly required to improve the treatment outcome. Gene editing is

recently tried at the experimental level for treatment of malignant diseases including hemato-

logical malignancies [4].

The Clustered Regular Interspaced Short Palindromic Repeats (CRISPR-cas9) is an adap-

tive immune system in bacteria and related organisms. CRISPR-cas9 consists of programmed

single-stranded guide RNA “sgRNA” and a Cas9 endonuclease that generates double-strands

DNA breaks (DSB) at a sequence-specific site [5]. The genome modification has been made by

different approaches such as: insertion or deletions of small sequences “indels” that was medi-

ated through non-homologous end joining (NHEJ) or homology directed repair (HDR) path-

ways [5–7]. At 2016, the first clinical trial using CRISPR-cas9-mediated gene editing was

launched in China. The programmed cell death protein-1 (PD-1) gene knockout engineered T

cells was evaluated for the management of metastatic non-small cell lung cancer [8–10].

CRISPR/Cas9 has been tested as potential therapy in multiple hematological diseases,

including editing the β-globin (HBB) gene mutations in β-thalassemia [11] and efficient cor-

rection of Glu6Val mutation in sickle-cell disease [12, 13]. Furthermore, this technology was

applied for treatment of Fanconi anemia through editing a point mutation in patient’s derived

fibroblasts [14] and bleeding disorders such as neonatal autoimmune thrombocytopenia and

post-transfusion purpura [15], hemophilia [16], and von-Willebrand disease [17].

The V-set pre B-cell surrogate light chain 1”VPREB1”, also named as CD179a, protein

belongs to the immunoglobulin (Ig) superfamily and has a molecular weight of 16–18 KDa

that consists of 126 amino acids. It is expressed on the surface of early pre-B cells, namely proB

and early preB cells [18]. The protein is encoded by VPREB1 gene that is located on chr22:22.

This gene encodes the iota polypeptide chain that is associated with the Ig-mu chain to form a

molecular complex on the surface of pre-B cells [19]. The VPREB1/Ig-mu chain complex regu-

lates Ig gene rearrangements in the early steps of B-cell differentiation [20].

The structure of the CD179A includes an IgV domain-like structure that lacks the beta

(beta 7) of the normal V domain, but has carboxyl terminals that do not show any sequential

continuity with other proteins [20]. The CD179b is combined with the "Lambda 5" which car-

ries the IgC domain-like structure, called an easy light chain-like structure called an alternative

light chain or pseudo light chain [21]. In this complex, the incomplete V-domain of CD179A
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is complemented by the additional beta7 strand of CD179B. At the level of early B cells, the

CD179A / CD179B light replacement chain is disulfide, which is attached to the CD79A /

CD79B signal transduction heterodimer from the membrane-bound Ig Mu heavy chain. This

type is called pre-B cell receptor (pre-BCR) [22]. The pre-BCR IG-M acts as a checkpoint in

the early development of B cells to monitor the production of the heavy chain and combines

the Ig-M heavy chain capacity with the Ig light chain [18]. This function is triggered by signals:

B cell proliferation, differentiation of B before pro-B, promoting the restoration of IG light

chain genes, and the release of elk in the IG heavy chain. Deficiency of pre-B cell receptors,

such as CD179a or C-179b and Ig-Mu heavy chain, has caused severe impairment in human

development, maturity, differentiation and B-cell agammaglobulinemia [23]. We aimed to

knock-out the human VPREB1 gene in primary myeloma cell line using CRISPR/Cas9 gene

editing technology. To the best of our knowledge, this is the first in-vitro experimental study

that describes the CRISPR/Cas9 mediated editing of the VPREB1 gene in primary cultured

myeloma cells. The application of this approach would provide a promising novel therapeutic

target for MM patients.

Materials and methods

A. Bioinformatics analysis

In the present study, a biological bioinformatics approach was applied in order to analyze the

gene expression profiles in MM patients [DisGeNET “http://www.disgenet.org/search”,

Human Gene Mutation Database “http://www.hgmd.cf.ac.uk/ac/index.php”, and the Gene

Expression Omnibus database “http://amp.pharm.mssm.edu/Harmonizome/resource/Gene

+Expression+Omnibus”]. A functional analysis of differentially-expressed genes (DEGs) was

performed between MM patients and healthy control group. In addition, in order to analyze

the DEGs at functional level, we performed a [gene ontology (GO) “https://www.uniprot.org/

help/gene_ontology”, Kyoto Encyclopedia of Genes and Genomes (KEGG) “https://www.

genome.jp/kegg” and REACTOME pathway enriched analyses” https://reactome.org”] using

the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool

https://david.ncifcrf.gov/. We identified the target gene for this study to be the “V-set pre B-

cell surrogate light chain 1”VPREB1” gene. More details about the conducted bioinformatics

analysis regarding gene expression pattern and its relation to pathogenesis of MM are provided

in S1 File

B. Sample collection and preparation

All the requirements of the Declaration of Helsinki for research on human subjects were ful-

filled and the approval of Ain Shams University Ethical Committee was granted with an autho-

rization number: FWA 000017585. Accordingly; a written informed consent was signed from

each participant. Five bone marrow (BM) samples were collected from multiple myeloma

patients at Ain Shams University hospitals, Cairo, Egypt. The -diagnosis of MM was confirmed

according to the International Myeloma Working Group (IMWG) guidelines updated at

(2018) [24]. Three samples out of five were selected and pooled. The selection was based on

detection of> 5% myeloma cells in BM samples. Then, we isolated the VPREB1 “CD179a”

positive cells from freshly pooled BM sample. The isolation procedure was done using mag-

netic microbeads cell isolation technology (MACS) (Miltanie, Biotech) according to the manu-

facturer’s instruction. Briefly, two sequential steps were performed. Firstly, a primary isolates

of CD19 positive cells was separated using human CD19 Microbeads (CD19, human #130-

050-301). Secondly, the negative cells were further used for separation of CD179a positive cells
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using (VpreB)-PE, human (clone: HSL96, cat no: 130-110-136) microbeads and Anti-PE
MicroBeads UltraPure, (cat no:130-105-639).

C. Culture of primary myeloma cells

Isolated CD179a positive cells were cultured using a double layer agar technique for growing

of myeloma colonies forming units (MY-CFUc) from human bone marrow aspirates [25].

Cells were over-layered in HL60-conditioned medium (HL60-CM) and incubated at 37˚C in

an atmosphere of 5% CO2. The cell growth was observed for three weeks. Colonies (> 50 cells)

was observed at two weeks and examined by inverted microscope. The cells have two different

sizes, large cells represent plasmacytoid cells and the smaller are lymphoid phenotype.

D. Gene editing in primary myeloma cells

The CD179a gene editing was performed on cultured CD179a positive cells using CRISPR-cas9

gene editing technology. A guide RNA of the CRISPR/Cas9 nuclease was constructed of crRNA/

tracr RNA duplex using the True-Guide Synthetic gRNAs (cat no. A35509) for VPREB1 gene

(Thermo Fischer Scientific) and the tracrRNA (TrueGuide) cat no: A35506 (thermo fischer sci-
entific), the target DNA primer sequence is “TCGGTGTGTACACGGTCTAC”. Two editing

approaches were employed, direct and vector-mediated. For the second approach, the ssDNA

was cloned into a pGCS plasmid vector using the GeneArt™ Genomic Cleavage Selection Kit

(Cat no: A27663 Thermo Fischer Scientific, USA). The cloning procedure was conducted

according to the manufacturer’s protocol. The resulted plasmid was transformed into One
Shot1 TOP10 chemically competent E. coli. Finally, cultured myeloma cells were transfected

with CRISPR/Cas9 plasmid using a Lipofectamine CRISPRMAX Cas9 (Thermo Fisher Scien-
tific, USA) and harvested 72 hours later. To discriminate between on-targets site from off-tar-

gets sites, DNA was isolated from CD179a edited myeloma cells using QIAQuick PCR

purification kit (Qiagen, Germany), the specific locus cleavage site on DNA was generated by

PCR amplification with specific primer sequences that covers the CRISPR/Cas9 cut site. Then,

the nuclease assay was carried out to detect and validate the CRISPR/Cas9 specificity [26].

Nuclease assay was conducted by GeneArt Genomic Cleavage Detection Kit (Thermo Fisher
Scientific, USA) as per the manufacturer’s guidelines and CRISPR/Cas9 cut specificity was

checked by agarose gel electrophoresis (S1 Fig).

E. Verification of VPREB1 gene editing in myeloma cells

E.1. The VPREB1 gene expression was measured by quantitative real time PCR (qPCR) using

SYBR-Green fluorescent-based primer assay [Hs_VPREB1_1_SG QuantiTect Primer Assay,

cat no: 249900, ID: QT00214466], (Qiagen; Germany).

E.2. Detection of target protein by immunofluorescence technique using rabbit anti-human

VPREB1 monoclonal antibody (Thermo Fisher Scientific, USA).

F. Assessment of VPREB1 gene editing by CRISPR/Cas9 on the growth and

viability of primary cultured myeloma cells

F.1. The total cell count was estimated in edited myeloma cells by Trypan blue staining using

hemocytometer.

F.2. The cell viability was assessed by MTT CellTiter 96 assay (Promega, Germany), accord-

ing to the manufacturer’s instructions.
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Results

Two CRISPR/Cas9 mediated approaches for the knock-out of VPREB1 gene in primary

human myeloma cells were used in this study. The two approaches were direct and pGCS vec-

tor-mediated. Seventy two hours post transfection, cultured cells were harvested and

examined.

Verification of the knock out efficiency of VPREB1 gene in myeloma cells:

Evaluation of VPREB1 mRNA expression in human myeloma cell line by

qPCR

The VPREB1 gene expression (Fig 1) was decreased in edited myeloma cells as compared to

un-edited cells (p<0.01), indicating that transfection and editing were successful. The

VPREB1 gene expression level was significantly lower in cells edited by approach 1 as com-

pared to approach 2 (p<0.05), The mean expression level of VPREB1 gene was 1.012, 0.12 and

0.419 in un-edited cells, cells edited by 1st approach and 2nd approach; respectively.

Verification of the knock out efficiency of VPREB1 gene in myeloma cells:

Evaluation of VPREB1 protein expression by immunofluorescence

An immunofluorescent staining was performed on cultured myeloma cells to detect the

VPREB1 protein expression in edited vs un-edited cells. The results (Fig 2) showed that the

expression of VPREB1 protein was significantly lower in VPREB1knocked-out cells than in

un-edited cells (p<0.01). Although, lower expression level of the VPREB1 protein was

observed in myeloma cells that were edited by the 1st approach as compared to that of 2nd

approach, this was statistically insignificant (p>0.05).

Fig 1. Verification of the knock out efficiency of VPREB1 gene in myeloma cells by qPCR. Evaluation of VPREB1
mRNA expression in human myeloma cells was determined by qPCR using SYBR-Green fluorescent-based primer

assay [Hs_VPREB1_1_SG QuantiTect Primer Assay, cat no: 249900, ID: QT00214466], (Qiagen; Germany). A highly

significant decrease (p<0.01) in VPREB1 gene expression was demonstrated in CRISPR-treated cells as compared to

untreated myeloma cells. There was also a significant decrease (p<0.05) in VPREB1 gene expression level using the

direct transfection (the 1st approach), as compared to the vector-mediated (the 2nd approach).

https://doi.org/10.1371/journal.pone.0245349.g001
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The effect of CRISPR-mediated knock-out of VPREB1 gene on the count of

human myeloma cells

Our results revealed that VPREB1 edited myeloma cells showed lower cell count compared to

the untreated myeloma cells. The mean cell count of mock cells in the 1st approach-treated

cells and the 2nd approach-treated cells were (7.3E+06), (3.2E+05), and (4.8E+05); respectively.

A significant difference was detected in total cell count between the two edited approaches as

well as between edited and un-edited cells.

The effect of CRISPR-mediated knock-out of VPREB1 gene mediates on

human myeloma cell line: Cell viability and cytotoxic effect

To investigate the impact of VPREB1 gene editing on myeloma cell line, the 4,5-dimethylthia-
zol -2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was conducted on treated and

untreated cells in order to assess the effect of inhibition on cell proliferation and growth. The

percent of cell proliferation inhibition was calculated based on the proliferation of untreated

cells. The VPREB1 gene knock-out by both approaches were more powerful to suppress cell

proliferation and impair viability when compared to the untreated myeloma cells. The

observed percentage of cell viability in the 1st and 2nd approaches—are 61.3% and 72.0%;

respectively with a statistical significant difference (p<0.01) as compared to the untreated

Fig 2. Verification of the knock out efficiency of VPREB1 gene in myeloma cells by immunofluorescence. Evaluation of VPREB1 protein expression in

treated and untreated myeloma cells by immunofluorescence using VPREB1 monoclonal antibody as the primary antibody and the anti-rabbit IgG Alexa Fluor

488 F(ab)’2 fragments as the secondary antibody (Thermo Fisher Scientific, USA). There was a significant decrease (p<0.01) in VPREB1 protein expression in

treated myeloma cells (the 1st transfection approach “b & e” and the 2nd transfection approach “c & f”) as compared to the untreated cells (a & d). There was no

significant difference (p>0.05) in VPREB1 protein expression between the 1st and the 2nd transfection approaches. The (a, b and c) are 100X magnification and

the (d, e and f) are 400X magnification. The scale bar of the image is 100μm.

https://doi.org/10.1371/journal.pone.0245349.g002
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cells, however, no significant difference was observed in the cell viability between the two

edited approaches (p>0.05) (Fig 3).

Discussion

In the last decade, a major advance in genome editing has been observed, particularly with the

development of engineered nucleases [27]. The CRISPR-cas9 system is the most novel, easy to

handle, and precise tool among genome editing nucleases. It can efficiently edit genomes in

different cell types regardless their complexity [28], and therefore, it has a broad application in

therapeutic medicine [7, 9]. Although, MM is uncommon cancer, the disease heterogeneity

and high mortality rate have forced the researchers to look for an effective, better tolerated

therapy [29].

Based on bioinformatics analysis, we identified that VPREB1 protein is overexpressed in

multiple myeloma as well as other B cell malignancies. Moreover, we illustrated the vital role

of VPREB1 gene in differentiation and maturation at early stages of B cell development.

Accordingly, we hypothesized that if we are able to in-vitro knock-out the VPREB1 gene in

myeloma cells using specific guide RNA sequence linked to CRISPR/Cas9 nuclease, the

VPREB1 protein expression is reduced and therefore we can inhibit the proliferation of

human myeloma cells.

Based on our results, knock-out of VPREB1 gene showed significant reduction at both

VPREB1 mRNA and protein expression levels in treated human myeloma cells, verifying the

efficiency of knock out procedure. In addition, VPREB1 gene editing had a proliferation inhi-

bition effect on myeloma cells. This cytotoxic effect was more prominent with the direct trans-

fection approach as compared to the vector-based approach.

Recently, CRISPR/Cas9 gene editing technology becomes a milestone in medical research.

Several experimental models had been tested in malignant and inherited hematological dis-

eases [5, 30]. For example, the implication of in vivo CRISPR/Cas9 gene editing in myeloid

Fig 3. The effect of CRISPR-mediated knock out of VPREB1 gene on human myeloma cell viability. Myeloma cell viability was

assessed for treated as compared to untreated cells by MTT CellTiter 96 assay (Promega, Germany). There was a high significant decrease

(p<0.01) in the percentage of cell proliferation inhibition that was observed by both the 1st and the 2nd transfection approaches, as

compared to the untreated myeloma cells.

https://doi.org/10.1371/journal.pone.0245349.g003

PLOS ONE Gene editing in multiple myeloma

PLOS ONE | https://doi.org/10.1371/journal.pone.0245349 January 8, 2021 7 / 11

https://doi.org/10.1371/journal.pone.0245349.g003
https://doi.org/10.1371/journal.pone.0245349


malignancies, including acute myeloid leukemia [30] and myelodysplastic syndrome [31] has

been investigated. Gundry et al 2017 constructed an ideal, customizable, transplantable and

pharmacologically tested model that targets the hematopoietic stem cells in vivo to introduce

insertions and deletions in multiple alleles using CRISPR/Cas9 system [30].

In addition, Liu et al [32] investigated the therapeutic potential of CRISPR/Cas9 in HIV.

They constructed a novel guided RNA to enhance the efficiency of a co-receptor of HIV

(CCR5) knock out in peripheral blood. The study demonstrated a homozygous bi-allelic edit-

ing with 40–50% efficiency. In addition, the study conducted a comparative analysis between

the two methods of gene editing which includes: CRISPR/Cas9 “an RNA-guided endonucle-

ase” and transcription activator-like effector nuclease “TALEN, a DNA-binding, motif-based
endonuclease”. The study demonstrated a higher overall efficiency (50–60%) of CRISPR/Cas9

in gene editing compared to TALEN with no off target events [32].

Considering the pathophysiology of plasma cell neoplasms, it has been evident that during

differentiation and maturation of B cells, early B cell precursors express TdT, CD34 and

HLA-DR. The heavy chain (H) undergoes rearrangements followed by addition of CD19 and

CD10, then the IgM heavy and light chains are added and finally a surface immunoglobulin is

added in addition to CD21 and CD22. At this moment; the B cell become mature [23, 33]. Inter-

action between Ig variable regions of B cells with a foreign antigen resulted in development of

plasma cells. It has been demonstrated that the B cells precursor expresses CD179a and CD179b

“precursors of light chains” which are an immunoglobulin related components “pseudo-immu-

noglobulins”. They represents a part of pre-B cell receptor which further replaced with conven-

tional light chains [23]. Based on the above mentioned facts, it could be reasonable to conclude

that the persistence of CD179a during B cell differentiation may result in freezing of B cells in

its premature stage with blockage of maturation and increase clonal proliferation of B cells.

When CD179a was knocked out using CRISPR/Cas9, the expression of CD179a gene is

decreased together with the level of its protein expression which finally resulted in decrease

myeloma cell proliferation and viability. Moreover, researchers had highlighted on the diagnos-

tic and prognostic value of CD179a in precursor B acute lymphoblastic leukemia [34, 35]. They

demonstrated that CD179a was exclusively expressed in precursor B-cell lymphoblastic lym-

phoma (B-ALL), but it is not expressed in mature B cell lymphomas. On the contrary, other

pediatric tumors such as: precursor T-cell lymphoblastic lymphoma, extramedullary myeloid

tumors and Ewing sarcoma are negative for both CD179a and CD179b [34]. In addition, the

prognostic values of CD179a protein expression and copy number variation patterns of the pre-

BCR components were investigated in pediatric precursor B-ALL. The study demonstrated that

high expression levels of VPREB1 gene was associated with arrest of B cell at pre-B stage and

correlate with good prognosis irrespective to ALL subtype. Therefore, CD179a could serve as

prognostic marker for high risk pediatric B-ALL patients [35].

In the current study, an efficient gene knock-out was achieved with direct delivery of

CRISPR/cas9-gRNA complex into the cells compared to indirect delivery via cloned pGCS
plasmid vector. The exact reason for this difference between the two approaches may be con-

tributed to the efficacy of CRISPR-cas9 mediated knock out including the delivery method. In

consistent to our results, it was reported that the best gene editing results was obtained from

direct delivery of RNA as opposed to indirect delivery through plasmid DNA [36]. In addition,

minimal off-target effects have been observed in direct delivery approach [36, 37].

Conclusion

In conclusion, we are successful to validate our hypothesis that CRISPR/Cas9-mediated

knock- out of VPREB1 gene in myeloma cells efficiently inhibits their proliferation. This

PLOS ONE Gene editing in multiple myeloma

PLOS ONE | https://doi.org/10.1371/journal.pone.0245349 January 8, 2021 8 / 11

https://doi.org/10.1371/journal.pone.0245349


would provide a promising therapeutic target for the management of MM patients in the near

future. In addition, large-scale study should be designed to address different pathways that are

involved in the proliferation inhibition of myeloma cells by VPREB1 gene knock-out. This

would enhance the therapeutic potential of VPREB1 gene knock out and highlight also its diag-

nostic and/or prognostic values in MM and possibly other related hematologic malignancies.
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