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ABSTRACT: Molecular dynamics simulation using enhanced sampling methods
is one of the powerful computational tools used to explore protein conformations
and free energy landscapes. Enhanced sampling methods often employ either an
increase in temperature or a flattening of the potential energy surface to rapidly
sample phase space, and a corresponding reweighting algorithm is used to recover
the Boltzmann statistics. However, potential energies of complex biomolecules
usually involve large fluctuations on a magnitude of hundreds of kcal/mol despite
minimal structural changes during simulation. This leads to noisy reweighting
statistics and complicates the obtainment of accurate final results. To overcome
this common issue in enhanced conformational sampling, we propose a scaled
molecular dynamics method, which modifies the biomolecular potential energy
surface and employs a reweighting scheme based on configurational populations.
Statistical mechanical theory is applied to derive the reweighting formula, and the
canonical ensemble of simulated structures is recovered accordingly. Test simulations on alanine dipeptide and the fast folding
polypeptide Chignolin exhibit sufficiently enhanced conformational sampling and accurate recovery of free energy surfaces and
thermodynamic properties. The results are comparable to long conventional molecular dynamics simulations and exhibit better
recovery of canonical statistics over methods which employ a potential energy term in reweighting.

■ INTRODUCTION
The simulation of biomolecules in an aqueous environment is
an important tool in computational chemistry.1,2 Often
conventional molecular dynamics (cMD) simulation is used
to create a trajectory of biomolecular motion.1 If a simulation is
run for an infinite amount of time, the ergodic hypothesis states
that equilibrium properties may be extracted from the
simulation. With modern computers, it is typically impossible
to run simulations of complex biomolecules for a long enough
period that the results converge to those of an infinite
simulation or equilibrium. This problem is related to the
observation that the time scales of interesting biomolecular
motions are often milliseconds to seconds or even longer,3 but
all-atom molecular dynamics simulations must be performed
with a time step of femtoseconds. The difference in orders of
maginitude between an individual time step and the time scales
for many equilibrium properties of interest is usually too great
for modern computers to perform the calculations. Therefore,
equilibrium properties calculated from these simulations are
subject to stochastic variations and starting structure bias in
most cMD simulations of most biomolecular systems.
To combat this issue, many have proposed methods to

enhance sampling,4−7 in addition to the ever increasing
computational power which has pushed protein simulations
toward longer time scales.8 The methodological advances in
enhanced sampling often rely on two steps: (1) the
modification to the potential energy surface (PES) to flatten

it and speed transitions between the states, or increasing the
simulation temperature, and (2) a reweighting scheme to
recover the canonical ensemble at a given temperature.9

The potential energy functions in classical simulations of
biomolecules usually contain a large number of individual
terms, e.g., bonds, angles, dihedrals, electrostatics, and van der
Waals. The fluctuations in each term are additive, which creates
higher fluctuations in the total potential energy ⇀V r( ) for any
given state. Reweighting of enhanced sampling simulations is
often based on the value of the potential energy of each
configuration of the trajectory which can exhibit large
fluctuations in the potential energy of the system.7,10−12 This
can create inaccuracies in the final ensemble generated in
complex simulations. Although more conformations are
sampled, the reweighted ensemble may be a poor representa-
tion of the canonical distribution.12 Rather, what is needed is a
converged average of the potential energy for each microstate,
⟨ ⇀ ⟩V r( ) . In most cases, obtaining an accurate estimate of the
energy is extremely time-consuming and may also require the
definition of collective variables a priori. It would be
advantageous to avoid using individual calculations of ⇀V r( )
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or computationally expensive calculations of ⟨ ⇀ ⟩V r( ) in the
reweighting procedure. Ytreberg and Zuckerman pointed out
that, as long as the important degrees of configurational
freedom are accounted for, grouping similar configurations
together can be accomplished in numerous ways during
reweighting protocols.13

Here, we propose a scaled molecular dynamics (scaled MD)
method that enhances biomolecular conformational sampling
by scaling the PES and a reweighting protocol that is not biased
by the fluctuations of energy but instead relies solely on the
populations of conformations to reweight and recover the
canonical ensemble. Scaled MD is based on earlier work of
potential-scaled molecular dynamics and potential anneal-
ing,14,15 but the energy independent reweighting approach is
novel to the best of our knowledge. Furthermore, we
demonstrate the effectiveness of scaled MD in two well-studied
systems, alanine dipeptide and a fast-folding protein chignolin.

■ THEORY

In a classical system, the probability ⇀P r( ) of any configuration
is given by
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( ),
can rarely be solved analytically or easily by computation, which
presents a grand challenge in calculating the probability of any
microstate ⇀r( ). The non-normalized probability of microstates

⇀p r( ) can be directly extracted from a cMD simulation of any
length as

⇀ = β− ⇀
p r( ) e V r( )

(2)

To accurately estimate Z, the probability of different states
must be similar to those that would occur in an infinite
simulation to fulfill the ergodic hypothesis. For complex
biomolecules of interest including proteins, DNA, and
membranes, estimating Z generally requires computationally
expensive calculations and it is less reliable because the ergodic
hypothesis is rarely fulfilled. There are high energy transition
states and local roughness along the energy landscape of
biomolecules, and sampling all the possible configurations has
proven difficult in most cases. Many modifications can be made
to the potential energy ⇀V r( ) to flatten and smooth the
biomolecular PES for sampling a greater amount of conforma-
tional space in shorter simulations. However, the canonical
distribution can only be recovered after a reweighting scheme is
applied; i.e., a redistribution of the probability * ⇀p r( ) obtained
from enhanced sampling simulations is required to calculate

⇀P r( ). Most enhanced sampling methods which modify the
PES use a reweighting scheme based on the amount of energy
change from ⇀V r( ) at any given point. One could simply derive
an enhanced sampling scheme from eq 2 such as eq 3 as
Hamelberg et al. did in accelerated MD (aMD) simulations,7

where the modified probability is

* ⇀ = β− ⇀ +Δ ⇀
p r( ) e V r V r( ( ) ( ))

(3)

and Δ ⇀V r( ) is the change in energy from ⇀V r( ) or boost
potential applied to the system. With this, the reweighting
scheme can be derived as

⇀ = = * ⃗β β− ⇀ Δ ⇀
p r p r( ) e ( )eV r V r( ) ( )

(4)

In aMD simulations of complex biomolecules, Δ ⇀V r( ) usually
undergoes large fluctuations and the reweighted probability

⇀p r( ) can be greatly skewed toward a few microstates, leading
to the “high energetic noise” problem. Additionally, the true
exponential is rarely used in aMD.12,16 Although the true
exponential is rarely used and the Boltzmann ensemble is rarely
recovered, aMD has still been useful in conformational
exploration; Wereszynski et al. provide a nice example of
conformational exploration by employing aMD.17

To address this issue, we propose the use of a reweighting
procedure that does not contain terms from the noisy energetic
function but employs only the distribution of system
configurations ⇀r( ) from the enhanced sampling simulation.
Rather than adding a boost potential in aMD, we modify the
biomolecular PES by scaling ⇀V r( ) by a factor of λ that ranges
from 0 to 1: λ* ⇀ = ⇀V r V r( ) ( ). This generates the modified
population distribution p* ⇀r( ) as

* ⇀ = βλ− ⇀
p r( ) e V r( )

(5)

With this, we can derive the corresponding reweighting
equations to recover the canonical distribution of populations
p ⇀r( ) as

⇀ = * ⇀ λp r p r( ) ( )1/
(6)

We can also derive a more traditional method by which an
energetic term is used as a weighting factor:

⇀ = * ⇀ β λ− ⇀
p r p r( ) ( )e V r( 1) ( )

(7)

When no configurational assumptions are made here and if all
values of ⇀V r( ) and ⇀p r( ) are converged, these two equations
yield equivalent results. However, as demonstrated in the
following Results and Discussion section, population-based
reweighting using eq 6 may be more accurate than energetic
reweighting using eq 7 in practice. Often, it is of great interest
to know the free energy difference between states, for example,
the folded versus unfolded state of a protein. Both eqs 6 and 7
provide theoretically sound methods to recover the canonical
distribution, from which the free energy difference of states can
be calculated, but the reweighting in eq 6 is practically more
accurate because it is independent of the potential energy term
that is subject to large fluctuations. We can substitute

* ⇀ λp r( )1/ from eq 6 into eq 1 and recover the canonical
ensemble from a scaled MD simulation. Formally, the scaling
factor can be applied to the temperature as well as the PES, and
the reweighting eqs 6 and 7 may be applied in the same
manner. There are practical considerations to using PES scaling
rather than temperature though because the time steps may
need to be shortened with high temperature runs, reducing
efficiency. Others have used simulated annealing18 and
temperature-based replica exchange19 to perform high temper-
ature simulations. What is novel about this work is the
reweighting method that depends only on populations and not
energies.
To reweight using eq 6, we must bin the simulation-derived

configurations ⇀r( ) and make a multidimensional histogram of
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all possible configurations. When binning data, there is an
approximation made that all data within a bin is in the same
microstate, while truly there may be different but conforma-
tionally related microstates contained within a bin. Equation 6
becomes exact as the bin size goes to zero, assuming a perfect
description of microstates and infinite sampling. Our analysis of
alanine dipeptide simulations did not show a significant change
in the accuracy of the PMF from using bins of 1−12° (Figure
S2, Supporting Information). Ytreberg and Zuckerman
described a generalized black box weight that could be applied
to any non-Boltzmann set of configurations. However, their
method relies on an accurate estimation of the energy term

⇀V r( ) and thus was subject to the energetic noise problem
already discussed.13 Since configurational space is often
described by Cartesian coordinates of hundreds to millions of
atoms or more, it is not feasible to describe the configurations
without reducing the system dimensionality to the essential
components that describe biomolecular motion. Principal
component analysis (PCA) has proven useful for such
dimensionality reduction. Additionally, it has been suggested
that essential dynamics of proteins can be described by a few
PCA modes with large eigenvalues.20 Many of the other modes
are considered as fast fluctuations of the protein.21 By reducing
the dimensionality of the system, it is easier to group similar
configurations and understand the protein dynamics.22

Although we employ PCA and dihedral coordinates in this
work, any method that reduces the dimensionality of
configurational space while preserving the essential dynamics
should suffice for the reweighting procedure. Methods like
Markov state models have gained popularity in biomolecular
simulation analysis23 and may be useful in the description of
⇀r( ) in future work with scaled MD. The accuracy of the
reweighting procedure is dependent upon a good description of
⇀r( ), reduction in dimensionality of ⇀r( ), and complete
sampling of ⇀r( ). To the best of our knowledge, this is the
first description of solely using populations of microstates to
reweight an enhanced sampling simulation. This represents an
entirely unexplored methodology that inherently bypasses a
major challenge in enhanced sampling simulations, the need to
calculate converged and accurate energy values to reweight.

■ RESULTS AND DISCUSSION

The principle of scaled MD and its reweighting scheme is
illustrated in Figure 1. The original biomolecular PES ⇀V r( ) is
modified by varying a scaling factor λ to produce flatter free
energy surfaces, as shown in Figure 1A. These flatter energy

surfaces should facilitate enhanced conformational sampling in
any given amount of simulation steps (Figure 1A). When the
enhanced sampling simulation is converged, we can calculate
the corresponding modified population density * ⇀p r( ) and
then ⇀p r( ) of the canonical ensemble of ⇀p r( ) using eq 6
(Figure 1B). In this one-dimensional case, the values of the
energy function are accurately converged and the results of
reweighting based on configuration populations (eq 6) and
energy (eq 7) are equivalent.

■ TEST SYSTEM 1: ALANINE DIPEPTIDE

Alanine dipeptide is a common test system for molecular
simulations24−30 because its energy surface can be well
described by the Ramachandran plot31 and a long cMD
simulation can give reasonable accuracy to search the phi (ϕ)
and psi (ψ) angles. Therefore, we first tested scaled MD on
alanine dipeptide in explicit solvent. The dipeptide conforma-
tions were described by phi−psi angles mapped on a free
energy plot. Thus, we reduced the system dimensions to a 2D
representation that is a histogram of phi and psi. We used a bin
size of 12° in Figures 2 and S1 (Supporting Information) and
3° in Figures 3 and 4 for increased resolution of the free energy
surface. As shown in Figure 2, conformational searching and
mapping of the phi−psi free energy plot is enhanced by scaling
the dipeptide PES during scaled MD simulations. The free
energy plots generated by scaled MD were also compared with
that of a 1000 ns cMD simulation (Figure 2A). In Figure 2B, 20
ns cMD simulation was not enough to reproduce the free
energy surface of the long 1000 ns cMD simulation. This
suggested that the free energy surface obtained from 20 ns
cMD simulation was not converged and the dipeptide
conformations were not sufficiently sampled with visible gaps
in the sampling of phi−psi angles. In comparison, the free
energy surface calculated from 20 ns scaled MD simulations
with the scaling factor λ = 0.7, 0.5, and 0.3 is similar to that of
the 1000 ns cMD simulation after applying population-based
reweighting using eq 6 (Figure 2C−E). Scaled MD is capable of
sampling a greater phi−psi conformational space than a cMD
simulation of a similar length, and the canonical ensemble can
be recovered remarkably accurately as compared with a much
longer cMD simulation after reweighting.
To quantitatively characterize the similarity of the free energy

surfaces computed from the above 20 ns scaled MD simulations
to that of the 1000 ns cMD simulation, we compared the
difference between the computed free energy surfaces as
plotted in Figure S1 (Supporting Information). As a reference,

Figure 1. Schematic illustration of scaled MD: (A) Biomolecular PES ⇀V r( ) can be scaled by a factor of λ to produce * ⇀V r( ) (black is the original
PES or λ = 1, red λ = 0.75, blue λ = 0.5, green λ = 0.25, as shown in the legend). (B) The corresponding probability distribution functions. The
probability functions for all values of λ obtained using either population-based (eq 6) or energetic (eq 7) reweighting are equivalent to populations
derived from the original PES (λ = 1 or the black line).
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20 ns cMD was not enough to sample the left-handed α-helix
region (ϕ ∼ 50 and ψ ∼ 50), as shown in Figure S1A
(Supporting Information). There was a major difference in the
free energy plots associated with this lack of sampling at a
maximum difference of 6 ± 0 kcal/mol and a mean average
difference of 0.59 ±0.014 kcal/mol in all bins (error is reported
as standard deviation). In contrast, the maximum and average
differences were greatly reduced in 20 ns scaled MD
simulations (see Figures S1B−D, Supporting Information).
With a scaling factor of λ = 0.7, we obtained a maximum
difference of 1.75 ± 0.34 kcal/mol and an average of 0.24 ±0.07
kcal/mol (Figure S1B, Supporting Information). The differ-
ences decreased as we flattened the energy surface more using λ
= 0.5, where we obtained a maximum difference of 1.31 ± 0.58
kcal/mol and an average of 0.2 ± 0.04 kcal/mol (Figure S1C,

Supporting Information). This reduction in the differences was
associated with an increase in dipeptide conformational
sampling due to the application of scaled MD. When we
flattened the energy surface more using a scaling factor of λ =
0.3, we saw a modest increase in both the average difference to
0.29 ± 0.02 and a 1.71 ±0.18 kcal/mol maximum difference.
Among the scaled MD simulations there is little difference in
the error reported from λ = 0.3−0.7 despite the significant
increases in sampling associated with low λ values. At λ = 0.3,
omega angle rotations were observed, indicating greatly
enhanced sampling of even very high energy states; however,
the free energy plot could still be recovered remarkably well.
Importantly, the difference between free energy plots generated
via short scaled MD simulations (20 ns) and long cMD
simulations (1000 ns) was greatly reduced using the scaled MD

Figure 2. Comparison of scaled MD and cMD simulations on alanine dipeptide: Ramachandran plots of (A) 1000 ns cMD simulation, (B) 20 ns
cMD simulation, (C) 20 ns reweighted scaled MD with λ = 0.7, (D) 20 ns reweighted scaled MD with λ = 0.5, and (E) 20 ns reweighted scaled MD
with λ = 0.3.
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protocol in all cases as compared to short cMD (20 ns)
simulations.

■ A COMPARISON OF POPULATION-BASED VS
ENERGETIC REWEIGHTING

To demonstrate the distinct advantage of reweighting using
population statistics (eq 6) versus energetic terms (eq 7), we
directly compared reweighting of scaled MD simulation at λ =
0.7 using eqs 6 and 7. At λ = 0.7, the simulation explores
roughly the same conformational space as the 1000 ns cMD
simulation as described above. As shown in Figure 3B,
population reweighting of the scaled MD simulation using eq
6 recovers a good approximation of the 1000 ns cMD
simulation. However, eq 7 poorly reconstructs the Ramachan-
dran plot due to large fluctuations in the ⇀V r( ) (Figure 3C).
Since the high fluctuations in ⇀V r( ) were so problematic, we
tried to bin all phi−psi angles and use a bin average of ⇀V r( )
for reweighting. Bins that had less than 10 data points were
removed to further reduce noise. The Ramachandran plot was
improved, as shown in Figure 3D, but there was still a poor
reproduction of the 1000 ns cMD simulation. Additionally,
more than 95% of the reweighted statistics arose from only
0.001% snapshots of the scaled MD simulation using energetic
reweighting of eq 7. In contrast, using population-based
reweighting (eq 6), an excellent representation of the
Ramachandran plot was recovered (Figure 3B) and 85% of
the snapshots of the scaled MD simulation were incorporated

into 95% of the reweighted configurations. This demonstrates
the value of eliminating energetic noise from reweighting
methods in practice.
To further demonstrate the advantage of using scaled MD

and population-based reweighting, we compared scaled MD
simulations of alanine dipeptide with aMD simulations that
implement energetic reweighting using eq 4. To minimize the
energetic noise, we applied boost potential to only the torsional
terms in the aMD simulations (i.e., dihedral aMD). Nonethe-
less, the energetic noise was not eliminated effectively even in
this small system. During reweighting of the aMD simulations
to recover the canonical ensemble, we found that 95% of the
reweighted configurations originate from only 5% of the
snapshots from the original simulation. In comparison, 95% of
the reweighted configurations from scaled MD originate from
85% of the original simulation at λ = 0.7 as described above.
Even when λ is extremely aggressive at λ = 0.3, 55% of the
scaled MD simulation snapshots contribute to 95% of the
reweighted configurations, with much greater sampling
enhancement as well. The lack of configurations contributing
to the reweighting statistics of aMD is evident in the
Ramachandran plot, especially when the bin size is small
(3°). As shown in Figure 4A,B, the free energy wells computed
from the 20 ns aMD simulation were not adequately populated
to create a smooth energy surface and the free energy values
were not accurately estimated either. With scaled MD at λ =
0.7, the energy wells were excellently reproduced with accurate
energy values (Figure 4C). Note that the aMD simulation

Figure 3. Comparison of population-based and energetic reweighting methods for scaled MD: Ramachandran plots of (A) 1000 ns cMD simulation,
(B) scaled MD at λ = 0.7 reweighted using population-based eq 6, and (C) reweighted using energetic eq 7 frame by frame or (D) with an average

⇀V r( ) per bin (bins with less than 10 frames were removed).
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parameters were tuned to achieve roughly the same number of
dihedral transitions in phi during 20 ns (across 0°) as the least-
aggressive scaled MD simulation at λ = 0.7 (Figure 4D).
Accelerated MD simulations have been used to reproduce the
phi−psi free energy surface of long cMD simulations for alanine
dipeptide, but these simulations tended to have more
simulation steps with larger bins.7 It may be possible to
achieve somewhat smoother energy surfaces with other
parameter sets, as this was not tested exhaustively. Here we
chose a difficult level of enhanced sampling to achieve and to
build a PMF along a fine grid to test the limits of each method
in the recovery of an accurate free energy surface.
Furthermore, we extracted a one-dimensional free energy

profile with psi along the white dashed line shown in Figure 4A.

The aMD simulations yielded a poor estimation of this free
energy profile as compared to the long cMD simulation (Figure
4E). In contrast, the scaled MD simulation excellently
reproduced the path with moderate fluctuations around the
peak of the free energy barrier (Figure 4F). When comparing
Figures 3C,D and 4B, we found that aMD outperformed scaled
MD using energetic reweighting of eq 7. We hypothesize that
scaled MD modified the entire PES, while this aMD simulation
modified only the torsional term, reducing PES noise by only
utilizing a subset of the PES terms. Additionally, using the
Δ ⇀V r( ) term may reduce noise in the reweighting factor over
the ⇀V r( ) term used in eq 7. Nonetheless, the above results
suggested that population-based reweighting using eq 6 of
scaled MD simulations reproduces the PMF with less noise

Figure 4. Comparison of scaled MD and aMD simulations on alanine dipeptide: Ramachandran plots: (A) 1000 ns cMD simulation using 3 degree
bins for phi and psi (the white dashed line indicates the free energy path shown in parts E and F), (B) 20 ns aMD simulation, and (C) 20 ns scaled
MD simulation with λ = 0.7. (D) Time courses of phi of scaled MD with λ = 0.7 (top) and aMD (bottom) simulations show roughly equivalent
sampling. Free energy profiles of phi obtained from (E) aMD and (F) scaled MD simulations with the black line representing the result from 1000
ns cMD simulation.
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than energy based reweighting methods when achieving
roughly equivalent levels of enhanced sampling.

■ TEST SYSTEM 2: CHIGNOLIN

To further demonstrate the capability of scaled MD on more
complex systems, we simulated a fast-folding protein Chignolin
with a sequence of 10 residues (GYDPETGTWG).32 This
protein folds into a β-hairpin on an estimated sub-microsecond
time scale, so it should not be uncommon that with 1 μs
simulations using standard MD we may see at least one folding
event.33 During 500 ns scaled MD simulation, we observed
many folding and unfolding events, as shown in Figure 5A,
where the RMSD of Cα atoms was calculated between the
simulation snapshots and the NMR structure of the folded state
(PDB ID: 1UAO).32 In comparison, we also performed three
1000 ns cMD simulations (Figure 5B−D) and chignolin was
observed to fold into the NMR structure in two of the three
simulations. In one of the three simulations, chignolin was
caught in a partially folded state for the majority of the 1000 ns
simulation time and never reached the fully folded state (Figure
5C). During the three cMD simulations, we did not witness any
unfolding events.
Next, we performed PCA to use as an estimation of our

various microstates ⇀r( ). PCA allowed us to reduce the system
dimensionality and characterize the conformational space
sampled by Chignolin in the simulations. Using the first 6
PCs to reduce the dimensionality of the system, we describe, in
the case of Chignolin, 71% of the molecular motion of the Cα
atoms. As shown in Figure 6, three cMD simulations identified
the NMR structure as the free energy minimum of Chignolin
(Figure 6A). It was not certain if the partially folded
intermediate state with PC1 ≈ 4 and PC2 ≈ −7 is accurately
represented because no multiple folding and unfolding events
were observed in the cMD simulation of Figure 5C. Using one

500 ns scaled MD simulation and population-based reweight-
ing, we were able to accurately reproduce the free energy
surface obtained from three cMD simulations of longer
simulation times (1000 ns each), notably surrounding the
free energy minimum region (Figure 6B and C). Moreover,
scaled MD sampled the protein conformations rapidly between
folded and unfolded states during only a 500 ns simulation
length (Figure 5A). As shown in Figure 6C, the bulk of the free
energy surface computed from scaled MD simulation was
similar to that of 1000 ns cMD simulations. A ring of large
difference (white regions in Figure 6C) was observed, largely
due to the enhanced sampling at the edges of PC1 and PC2 by
scaled MD that was absent in cMD simulations. It is important
to note that the time scale for multiple folding events in
Chignolin is likely more than 1000 ns, as no multiple folding
events were observed in the three independent 1000 ns cMD
simulations and one of the simulations failed to reach the fully
folded state entirely (Figure 5B−D).

■ CONCLUSIONS

We have demonstrated that it is possible to apply scaled MD to
achieve accurate reweighting results based on populations in
simple to moderately complex systems in explicit solvent while
substantially enhancing sampling, over cMD. By completely
eliminating the noisy energetic term from reweighting, we can
significantly improve the quality of the recovered canonical
ensemble. Population-based reweighting is shown to be
significantly advantageous when compared to methods cleverly
designed to minimize the noise in the energetic term like aMD
using only torsional terms. In addition, population-based
reweighting is straightforward to use as a postprocessing step
on a single scaled MD simulation that has had the potential
energy scaled. We employ various postprocessing analyses,
which describe the largest motions of the system as a critical

Figure 5. Comparison of scaled MD and MD simulations on Chignolin started from an extended form: RMSD between simulation snapshots and
the folded NMR structure from (A) 500 ns scaled MD simulation with λ = 0.6 and (B−D) three 1000 ns MD simulations with different randomized
atomic velocities.
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step in the reweighting process. In the first example of alanine
dipeptide, we employ simple analysis of the backbone dihedrals
to reweight the simulation. When analyzing the simulations of a
more complex system, the fast-folding polypeptide Chignolin,
we applied PCA to describe the collective motions of the
protein. We reduced the system’s dimensions to six principal
components because this covered the majority of the protein
motions. It is important to note that this reweighting method
ignores the conformational changes of the explicit water in the
reweighting method. However, in these systems, this
assumption was not a large issue because the results we
obtained matched the MD simulation results very well. The
calculation of water structure is challenging to quantify,
although it may be useful to incorporate this into the
reweighting scheme, or simulate with implicit solvation in
future work.
Additionally, we have discussed important issues for potential

energy modification and enhanced sampling methods, which

rely on reweighting schemes based on energetic values
extracted from individual points of the simulations. Primarily,
though, we have proposed a method by which potential energy
modified MD simulations can be reweighted independently of
the energetic function to recover the canonical distribution. We
demonstrated the effectiveness of scaled MD on two test
systems, alanine dipeptide and the fast-folding protein
Chignolin. We have reproduced free energy plots with minimal
error for both systems. We used widely varying scaling factors
for alanine dipeptide to demonstrate that scaled MD may not
be highly dependent on parametrization of the scaling factor λ,
at least in these test systems. This method has so far proven
robust, and the main limitations are the description of the
microstates ⇀r( ) and limited sampling time (as with any MD
simulation). PCA significantly reduces the dimensionality of the
description of microstates ⇀r( ) and is widely used to describe
complex simulations, and scaled MD can significantly speed
phase space sampling and movement over energetic barriers
which enhances conformational sampling. The reduction of
dimensionality has long been used as a means to understand
complex protein motions. Here, we have employed dimension-
ality reduction as a critical component of a reweighting scheme.
We anticipate that scaled MD and the proposed population-
based reweighting method may be applicable to a wide variety
of biomolecular simulations to enhance conformational
sampling and recover the canonical ensemble.

■ COMPUTATIONAL METHODS

All cMD, aMD, and scaled MD simulations were run using a
modified version of AMBER 1134 on Nvidia GTX580 graphics
processing units. Scaled MD will be released in the next release
of AMBER (http://ambermd.org/). The simulated systems
were built using the Xleap module of the AMBER package. All
simulations used the AMBER99SB force field for solute
molecules and the explicit TIP3P water model35 with a buffer
region of 8−10 Å. The alanine dipeptide simulation contained
630 waters, and the chignolin simulation contained 2211
waters. A 2 fs time step was used in the simulations. The
systems were initially minimized for 2000 steps using the
conjugate gradient minimization algorithm, and then, the
solvent was equilibrated for 50 ps in the isothermal−isobaric
(NPT) ensemble with the solute atoms fixed. Another
minimization was performed with all atoms free, and the
systems were slowly heated to 300 K over 500 ps. Final system
equilibration was achieved by a 200 ps isothermal−isovolu-
metric (NVT) and 400 ps isothermal−isobarometric (NPT)
run to ensure that the simulation had reached the appropriate
density. Then, production simulations were performed in the
NVT ensemble.
Bonds containing hydrogen atoms were restrained with the

SHAKE algorithm.36 Weak coupling to an external temperature
and pressure bath was used to control both temperature and
pressure.37 The electrostatic interactions were calculated using
the PME (particle mesh Ewald summation), and the cutoff was
8.0 Å for long-range interactions. In scaled MD simulations, the
forces on any atom were calculated and then scaled by λ at each
time step, which is equivalent to scaling the PES, since force is
equal to the derivative of potential with respect to position. For
aMD simulations of alanine dipeptide, the Amber11 CUDA
code38 was used and acceleration parameters for torsional
angles were applied as α = 5 and E = 21.6 kcal/mol. The
average dihedral energy calculated from cMD simulation of

Figure 6. Comparison of free energy profiles of Chignolin obtained
from scaled MD and MD simulations: (A) three 1000 ns MD
simulations combined, (B) one 500 ns scaled MD simulation with λ =
0.6, and (C) the difference between A and B. The white circles
represent the NMR structures of Chignolin (PDB ID: 1UAO).
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alanine dipeptide was 9.1 kcal/mol. These parameters roughly
reproduced the same number of phi transitions, which was used
as a metric for the level of enhanced sampling, as a scaled
simulation with λ = 0.7. λ values were tested from the range
0.9−0.1 for alanine dipeptide. Optimal values when balancing
enhanced sampling and minimal error in the Ramachandran
plot compared to a long cMD simulation occurred between 0.5
and 0.7. Thus, a λ value of 0.6 was chosen for scaled MD
simulations of Chignolin. It is not recommended to use λ close
to 0, as this may explore very high energy states. Balance must
be maintained between enhanced sampling and staying within a
limited, physically relevant conformational ensemble, so we
recommend using λ > 0.5 for typical biomolecular simulations.
Post-simulation analyses, including RMSD calculations and

PCA, were performed using ptraj in the AMBER11 package,
and then custom Matlab scripts and Python code were used to
calculate free energy plots. Python code for general population
based reweighting as well as an example scaled MD trajectory
of alanine dipeptide with analysis scripts is available through the
scaled MD Web site (http://scaledmd.ucsd.edu/) or by
contacting the authors. PCA of scaled MD simulations was
used to calculate the principal components (PCs), and the
cMD simulations were projected upon the corresponding PC
space. Structures of scaled MD simulations were aligned to the
average structure by minimizing their RMSD, and then the
covariance matrix was diagonalized to obtain the eigenvectors
and eigenvalues. All PCA calculations were performed on the
Cα atoms only. Using six principal components to describe
⇀r( ) in the six-dimensional histogram, we achieved a tractable
number of possibilities in our histogram, and eliminated
motions that do not provide insight into the essential dynamics
of the simulation. We were able to calculate the reweighted free
energy plot of these simulations in minutes on a desktop
computer, a trivial computational cost in MD simulation and
analysis. The PCA modes contained 38, 38, 19, 19, 16, and 14
bins per mode from PC1 to PC6, respectively, which allowed
for approximately 117 million possible microstates ⃗r( ). All bin
sizes were uniform at 1 Å spacing. Plotting was performed with
xmgrace, matlab, and python. The reference configuration for
trajectory analysis of Chignolin was the NMR structure (PDB
ID: 1UAO),32 although all simulations were started from a fully
extended configuration built using xleap and the protein
sequence.
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