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For decades, aging was considered the inevitable result of the accumulation of damaged
macromolecules due to environmental factors and intrinsic processes. Our current knowl-
edge clearly supports that aging is a complex biological process influenced by multiple
evolutionary conserved molecular pathways. With the advanced age, loss of cellular home-
ostasis severely affects the structure and function of various tissues, especially those
highly sensitive to stressful conditions like the central nervous system. In this regard, the
age-related regression of neural circuits and the consequent poor neuronal plasticity have
been associated with metabolic dysfunctions, in which the decline of mitochondrial activity
significantly contributes. Interestingly, while mitochondrial lesions promote the onset of
degenerative disorders, mild mitochondrial manipulations delay some of the age-related
phenotypes and, more importantly, increase the lifespan of organisms ranging from inver-
tebrates to mammals. Here, we survey the insulin/IGF-1 and the TOR signaling pathways
and review how these two important longevity determinants regulate mitochondrial activity.
Furthermore, we discuss the contribution of slight mitochondrial dysfunction in the engage-
ment of pro-longevity processes and the opposite role of strong mitochondrial dysfunction
in neurodegeneration.
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INTRODUCTION
Eukaryotic cells have adopted an elaborated set of molecular mech-
anisms that prevent the accumulation of aberrant macromolecules
(Kirkwood, 2005; Douglas and Dillin, 2010; Kourtis and Tav-
ernarakis, 2011). Over time, these protective responses decline
and make cells more vulnerable to stressful conditions. The con-
sequent dysfunction of tissues and organs can prompt to the
development of pathologies that compromise survival. For many
years, the age-related decline was considered simply a passive and
inevitable process. Conversely, it is now clear that aging is a biolog-
ical process, which like many others is subjected to the regulation
of well-defined signaling pathways (Kenyon, 2010; Bano et al.,
2011; Martin, 2011). Most of these molecular cascades control
metabolism, proliferation, stress resistance, and cell maintenance.
Although their contribution to longevity was firstly described in
simple model organisms with a relatively short lifespan, like yeast
and invertebrates, a large number of findings in mammals support
that they are evolutionary conserved and likely relevant in humans
(Fontana et al., 2010).

Aging has a significant impact in our modern human society,
as it is associated with the increased susceptibility to patholo-
gies. Intensive studies in the last years have shown that most of
the mechanisms involved in longevity influence also the onset of
sporadic forms of brain disorders (Mattson, 2006; Mattson and
Magnus, 2006; Bishop et al., 2010). The complex network of inter-
actions intimately links various signaling pathways and molecular
players that, together, contribute to such neurological conditions.
Among them, mitochondria have a fundamental role in neu-
ronal function and decline in their activity accelerates the onset

and progression of age-related dysfunction (Nunnari and Suo-
malainen, 2012; Rugarli and Langer, 2012). Interestingly, while
mild mitochondrial impairment extends the lifespan in various
organisms as different as yeast, invertebrates and mice, signifi-
cant suppression of mitochondrial activity compromises animal
survival. Similarly, whilst mitochondrial deficiency or uncou-
pling can partially delay neuronal degeneration as a result of
excitotoxic injury or toxins, loss-of-function mutations in genes
encoding certain mitochondrial proteins can negatively disturb
neural circuits and ultimately lead to cell death. Here, we review
the advances in understanding some of the molecular mechanisms
that regulate certain aspects of aging, such as age-related mortal-
ity. We also dedicate particular attention to the contribution of
mitochondria to the signaling pathways involved in this impor-
tant biological process. Moreover, we address the controversial
opposite role of mitochondrial dysfunction in the onset of brain
pathologies.

LONGEVITY PATHWAYS
THE INSULIN/IGF-1 SIGNALING PATHWAY
The insulin/IGF-1 signaling pathway is one of the main path-
ways regulating aging in organisms ranging from invertebrates,
like Drosophila melanogaster and Caenorhabditis elegans, to mam-
mals. The role of this pathway in longevity was initially identified
in the nematode C. elegans through the discovery of mutants
that decrease the activity of the pathway and extend the lifes-
pan of the organism (Kenyon et al., 1993). The existence of such
mutations supported the concept of molecular factors underly-
ing aging. Among them, mutations in the gene age-1 extend the
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chronological lifespan of the nematode (Friedman and Johnson,
1988). This gene encodes the C. elegans ortholog of the class I
phosphoinositide 3-kinase (PI3K) and is a key enzyme in the
Insulin/IGF-1 signaling pathway. It catalyzes the production of
phosphatidylinositol-3,4,5-trisphosphate (Morris et al., 1996) that
serves as a second messenger for the activation of downstream
kinases. AGE-1/PI3K is activated by the sole insulin/IGF-1 recep-
tor DAF-2, which belongs to the tyrosine kinase receptor family
and is a master regulator of metabolism. Mutations in the daf-2
gene almost double the lifespan of nematodes (Kenyon et al., 1993),
mainly through the activation of the transcription factors DAF-
16/FOXO, SKN-1/Nrf, and HSF-1 (Hsu et al., 2003; Tullet et al.,
2008; Figure 1). In animals with reduced insulin/IGF-1 signal-
ing, the nuclear translocation of DAF-16/FOXO, SKN-1/Nrf, and
HSF-1 promotes the expression of various target genes involved
in stress resistance, proteostasis, defense reaction and metabolism
(Narasimhan et al., 2009). Interestingly, enhanced transcription
in certain tissues contributes differently to the aging of somatic
tissues. For example, specific expression of daf-16 in the intes-
tine – the main adipose tissue in nematodes – extends the lifespan
of daf-16; daf-2 double mutants, although it is not sufficient
to completely restore the same survival as in the daf-2 mutant
animals (Libina et al., 2003). Notably, the activity in one tissue,
like in the case of the intestine, can regulate DAF-16-mediated
longevity pathways in others in a feedback loop that controls
post-mitotic cell senescence (Murphy et al., 2007). In this con-
text, the intestinal DAF-16/FOXO coordinates the rate of aging
of the whole organism in response to signals from the repro-
ductive and nervous systems. Block of germ cell proliferation in
animals lacking functional gonad increases the lifespan through
the DAF-16/FOXO accumulation in the intestinal nuclei and the
consequent gene transcription (Lin et al., 2001; Arantes-Oliveira
et al., 2002). Remarkably, loss-of-function of the microRNA mir-
71 in the nervous system suppresses intestinal DAF-16-dependent
gene expression and therefore germline-mediated longevity (Bou-
lias and Horvitz, 2012), further underlying the complexity of the
signals that dictate how long an organism is going to live.

The prominent role of the insulin/IGF-1 signaling pathway
in longevity is evolutionary conserved across species. In D.
melanogaster, mutations in the sole insulin/IGF-1 receptor (dINS)
or the insulin receptor substrate chico extend the lifespan through
the activation of the FOXO transcription factor (Clancy et al.,
2001; Tatar et al., 2001; Slack et al., 2011). Similarly to nematodes,
FOXO overexpression in the fat body is sufficient to increase the
lifespan of flies (Giannakou et al., 2004; Hwangbo et al., 2004).
In mice, haploinsufficiency of the insulin-like growth factor type
1 receptor (Igf1r) significantly increases the lifespan compared
with wild-type littermates (Holzenberger et al., 2003). Although
the recent findings argue the increased longevity of Igf1r-deficient
mice (Bokov et al., 2011), it is accepted that mild reduction of the
insulin/IGF-1 signaling throughout the body or even restricted
at the central nervous system can increase the lifespan of mice
(Taguchi et al., 2007). Even in humans, accumulating evidence
suggests that lower insulin/IGF-1 signaling is beneficial for longer
survival (van Heemst et al., 2005). It is noteworthy to mention that
single nucleotide polymorphisms in FOXO3A gene are strongly
associated with human longevity (Willcox et al., 2008). Likewise, a

study on centenarians demonstrated that heterozygous mutations
in the highly polymorphic Igf1r are correlated with longevity in
humans (Suh et al., 2008).

Decreased activity of the insulin/IGF-1 signaling pathway
enhances the resistance to exogenous and endogenous oxida-
tive stress in nematodes as well as in mice (Holzenberger et al.,
2003; Hsu et al., 2003). This is the result of the DAF-16/FOXO
reprogramming process and the consequent synthesis of chap-
erones and other anti-oxidant factors. Recent evidence suggests
that mitochondria are also important for the resistance of daf-
2 mutant nematodes through the production of reactive oxygen
species (ROS). ROS are a by-product of oxidative phosphory-
lation but apart from their toxic effect in high concentrations,
they can also act as signaling molecules. At least in nematodes,
impairment of the insulin/IGF-1 pathway increases mitochondrial
activity and, as a consequence, ROS production. ROS mediate a
retrograde response resulting to up-regulation of genes encoding
antioxidant enzymes. Importantly, AMP-activated protein kinase
(AMPK) is required to sense the intracellular energetic status
associated with enhanced oxidative stress. As a result, AMPK
up-regulates L-proline mitochondrial catabolism while reduces
glucose metabolism, further contributing to the ROS genera-
tion (Ristow and Zarse, 2010; Zarse et al., 2012). In parallel,
while AMPK controls mitochondrial respiration in impaired glu-
cose conditions, SKN-1(Nrf) and PMK-1(p38) up-regulate the
transcription of specific genes and induce the protective stress
resistance response. Clearly, AMPK is a fundamental intracellular
checkpoint as it adapts intracellular metabolism and catabolism
to the energetic needs of the organism. In C. elegans, AMPK is
required for the extension of lifespan in mutants with reduced
insulin/ IGF-1 signaling, as it controls the lipid storage and the fat
metabolism according to the energetic stress (Apfeld et al., 2004;
Curtis et al., 2006; Narbonne and Roy, 2009). Overexpression of
the AMP-activated protein kinase subunit AAK-2 prolongs the
lifespan of the organism, whereas its loss-of-function reduces it
(Apfeld et al., 2004). Notably, AMPK deficiency compromises the
rapid mobilization of fat reservoirs, leading to premature lethal-
ity of dauer larvae. Recently, it was revealed that AMPK acts
on catalases and regulates the levels of H2O2 into the cell (Xie
and Roy, 2012). Similarly to ROS, sub-lethal doses of H2O2 sig-
nal to the nucleus through the HIF-1 transcription factor and
modulate the physiology of the cell enabling the survival under
stress. Some of the genes that are up-regulated favor the biosyn-
thesis of fatty acids. In parallel, H2O2 blocks lipases and protects
lipid stores. Moreover, AMPK modulates autophagy through the
direct phosphorylation of ULK1, the mammalian ortholog of
Atg1, as a required step for survival when nutrients are insufficient
(see next paragraph and Lee et al., 2010a; Egan et al., 2011; Kim
et al., 2011).

Although it is currently unknown whether other mitochondria-
to-nucleus signals are engaged in insulin/IGF-1 deficient organ-
isms, the regulation of mitochondrial respiration is clearly a
key component of lifespan extension and can further influence
survival. As an example, increased mitochondrial fusion, by sup-
pressing dynamin-related protein DRP-1 expression does not alter
the lifespan of wild-type animals, whereas it further prolongs the
survival of daf-2 mutant nematodes (Yang et al., 2011). Similarly,
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FIGURE 1 | Longevity pathways. The insulin/IGF-1 signaling, the TOR
signaling and the molecular cascade that is activated by mild mitochondrial
dysfunction are three important pathways that interact with each other and
modulate aging in various organisms. The crosstalk between these pathways
is represented in the figure. Arrows indicate positive regulatory events and
red bars indicate inhibitory interactions. Dotted arrows or bars represent
interactions between the different pathways, whereas dashed arrows or
double bars indicate possible indirect interactions. AGE-1/PI3K,
phospatidylinositol-3-kinase; DAF-16/FOXO, forkhead box O (FOXO)

transcription factor; HSF-1, heat shock response transcription factor-1;
SKN-1/Nrf, skin in excess transcription factor 1/NF-E2-related factor; TSC1/2,
tuberous sclerosis complexes 1 and 2; RHEB, Ras homolog enriched in brain;
TOR, target of rapamycin kinase; S6K, S6 kinase; 4E-BP1, eukaryotic initiation
factor 4E-binding protein; PHA-4/FOXA, forkhead box A (FOXA) transcription
factor; ROS, reactive oxygen species; ATP, adenosine-5′-triphosphate;
CEH-23, homeobox transcription factor; HIF-1, hypoxia-inducible transcription
factor 1; AMPK, adenosine monophosphate-activated protein kinase; ULK-1/
Atg1, serine-threonine kinase ortholog of the autophagy related kinase 1 (Atg1).

increased mitochondrial proliferation in insulin/IGF-1 deficient
animals as a result of some genetic lesions, like prohibitins, causes
a twist in cellular metabolism and further extends the lifespan of
nematodes (Artal-Sanz and Tavernarakis, 2009).

THE TOR SIGNALING PATHWAY
The serine/threonine kinase “target of rapamycin” TOR (mTOR
in mammals) has drawn large attention for its pleiotropic effects
on aging through the control of multiple downstream pathways
(Ravikumar et al., 2010; Figure 1). TOR senses the availability of
amino acids and nutrients into the cell and regulates cell growth,
proliferation, and metabolism accordingly. In the presence of
growth factors, like insulin and IGF-1, Akt kinase is activated
and controls the function of the TSC1/TSC2 complex, a neg-
ative regulator of mTOR. Post developmental TOR inhibition
extends the lifespan of many different organisms, ranging from

yeast to mammals (Vellai et al., 2003; Jia et al., 2004; Kapahi
et al., 2004; Kaeberlein et al., 2005; Harrison et al., 2009). More-
over, TOR mediates gene transcription that, at least in yeast
and in C. elegans, is necessary for the effect on chronological
lifespan (Medvedik et al., 2007; Sheaffer et al., 2008). In yeast,
TOR increases the expression of the nicotinamidase gene PNC1,
an important regulator of the NAD-dependent deacetylase Sir2,
through the transcription factors Msn2p and Msn4p (Medvedik
et al., 2007). In C. elegans, reduced TOR signaling enables the
forkhead transcription factor PHA-4 to induce the expression
of pro-survival factors that contribute to lifespan extension of
animals under nutrient restriction (Sheaffer et al., 2008). In a
variety of conditions, TOR signaling controls the expression of
stress-resistance genes through the SKN-1/Nrf transcription fac-
tor and prevents the ROS formation beyond a fatal threshold due
to the increased mitochondrial metabolism (Robida-Stubbs et al.,
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2012; Zarse et al., 2012). In mammals, decreased mTOR activity,
due to rapamycin, prevents the direct binding and coactivation
of the transcription factor ying-yang 1 (YY1) with the peroxi-
some proliferator-activated receptor gamma coactivator 1-alpha
(PGC-1α). At the molecular level, disruption of this complex
and reduced recruitment to the promoters of genes encod-
ing mitochondrial proteins diminishes mitochondrial biogenes-
is and consequently oxidative phosphorylation (Cunningham
et al., 2007).

Beside the regulation of gene expression, TOR pathway con-
tributes to aging through its role in protein synthesis: TOR
activates the ribosomal subunit S6 kinase (RS6K) and in parallel
inhibits the 4E-BP1, which is a negative regulator of transla-
tion, resulting in increased protein synthesis. Block of protein
synthesis through inhibition of RS6K or the initiation of trans-
lation 4E protein (eIF4E), which is the target of 4E-BP inhibitor,
leads to lifespan extension in various organisms (Kapahi et al.,
2004; Kaeberlein et al., 2005; Hansen et al., 2007; Pan et al.,
2007; Syntichaki et al., 2007; Selman et al., 2009). In S6K knock-
out mice they have found activation of pathways regulated by
PGC-1α and AMPK in some tissues, like the liver, adipose tis-
sue, or muscles (Selman et al., 2009). These pathways modulate
mitochondrial biogenesis. In yeast, Sch9/S6K regulates mitochon-
drial oxygen consumption and mutant strains, either for TOR
or Sch9/S6K, up-regulate both nuclear and mitochondrial genes
encoding proteins of oxidative phosphorylation (OXPHOS; Pan
and Shadel, 2009). In flies kept under dietary restriction (DR),
the 4E-BP boosts mitochondrial activity due to enhanced transla-
tion of nuclear-encoded mitochondrial genes, whereas inhibition
of the electron transport chain prevents the lifespan extension
(Zid et al., 2009).

By all means, the integration of the cellular status depends on
the crosstalk between the different pathways and intracellular sen-
sors. Nutrient or growth factor deprivation promotes the catabolic
process autophagy through TOR. Autophagy is a homeostatic
process likely developed in unicellular organisms as an adaptive
survival response to harsh conditions (Yorimitsu and Klionsky,
2005; Singh and Cuervo, 2011). It is important for the turnover
of intracellular macromolecules and damaged organelles and, it
is widely considered as a potential anti-aging mechanism. Thus,
in the case of mitochondria, TOR not only regulates mitochon-
drial biogenesis but also regulates mitochondrial turnover though
macroautophagy (mitophagy). During this process the cytosolic
material is engulfed by double-membrane vesicles and targeted to
the lysosome for degradation. This quality control mechanism
protects from the intracellular accumulation of dysfunctional
organelles and, therefore, from eventual oxidative stress as a
result of inefficient oxidative phosphorylation. TOR modulates
autophagy through a cascade of events that alters the phospho-
rylation status of the serine/threonine kinases ULK-1/ULK-2,
the mammalian orthologs of Atg1, and the association between
Ambra1 and Beclin-1, favoring the recruitment of autophagy-
related proteins to the nascent phagophore (Rubinsztein et al.,
2011). Notably, reduction of TOR activity increases autophagy,
which is required for the lifespan extension in TOR-deficient
animals and insulin/IGF-1 defective mutants (Vellai et al., 2003;
Hansen et al., 2008; Toth et al., 2008; Bjedov et al., 2010). According

to this view, block of autophagy abolishes the extension of lifes-
pan in the daf-2 mutants independently of the DAF-16/FOXO
transcription factor, although with a less pronounced effect com-
pared to daf-16 loss-of-function (Melendez et al., 2003; Hansen
et al., 2008). Possibly, enhanced autophagy promotes longevity
only in those conditions in which the engagement of the nuclear
expression machinery directs raw material deriving from catabolic
processes to newly synthesized biomolecules. The role of TOR
pathway in aging is further supported by studies showing that
the TOR inhibitor rapamycin prolongs the lifespan of different
organisms through changes in the protein synthesis and autophagy
(Kapahi et al., 2004; Kaeberlein et al., 2005; Hansen et al., 2008;
Toth et al., 2008; Harrison et al., 2009; Bjedov et al., 2010). Inter-
estingly, rapamycin treatment protects from some age-related
pathologies, such as cancer, and extends the lifespan of mice,
even when the feeding begins during adulthood. This might lead
to the development of pharmacological interventions targeting
mTOR signaling, which could theoretically delay some of the age-
related phenotypes and prevent age-related disorders (Harrison
et al., 2009).

MITOCHONDRIAL DEFICIENCY AND OXIDATIVE STRESS
One of the first and most accepted aging theories, called the “free
radical theory of aging,” proposes that loss of protective mech-
anisms and enhanced ROS-dependent macromolecule’s damage
create a vicious cycle that leads to progressive deterioration of
the intracellular systems (Harman, 1956). At the cellular level,
insufficient handling of oxidative stress induces senescence and
ultimately death. According to this theory, mitochondria con-
tribute as the main source of intracellular ROS, which then cause
age-related decline of respiration through damage of the ETC
subunits (Kirkwood, 2005). The gradual leakage of the mitochon-
drial electron transport system is the main endogenous source
of reactive radicals that sustains this deleterious feedback loop.
In addition, as a consequence of uncontrolled oxidative stress,
mitochondrial DNA (mtDNA) accumulates many mutations or
deletions. Interestingly, studies in cell lines have revealed that mito-
chondria with impaired ETC or mtDNA mutations can produce
even more ROS further increasing the ROS overload of the cell
(Indo et al., 2007). Other studies have shown that mutations in
the mtDNA accumulate during aging and, at least in mice, can
accelerate certain age-related phenotypes (Melov et al., 1995a,b;
Welle et al., 2003). However, whether mtDNA mutations are the
cause or the consequence of aging is still a matter of debate. In
a mouse model expressing an error-prone version of the cat-
alytic subunit of the mtDNA polymerase, accumulation of mtDNA
mutations leads to respiratory dysfunction and premature aging
(Trifunovic et al., 2004). Interestingly, these animals do not show
increased ROS production indicating that their accelerated aging
might be linked to respiratory deficiency rather than oxidative
stress (Trifunovic et al., 2005). In line with these observations, the
use of vitamins, natural antioxidants, does not have any effect in
the life expectancy in humans (Bjelakovic et al., 2008; Chong-Han,
2010). Even more intriguing is the fact that nematode mutants
for the superoxide dismutase (SOD) genes show prolonged rather
than decreased lifespan, despite the significant oxidative damage
(Van Raamsdonk and Hekimi, 2009). All these indications raise
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questions whether oxidative stress is the main cause of aging or it is
simply the result of extended mitochondrial dysfunction (Hekimi
et al., 2011).

MITOCHONDRIAL FUNCTION AND AGING:
HOW TO LIVE LONGER
Efficient oxidative phosphorylation is critical for the normal cel-
lular function as it provides most of the intracellular energy.
Paradoxically, slight mitochondrial dysfunction exerts a beneficial
effect on the lifespan in many organisms. Indeed, RNA interference
(RNAi) or mutations in genes encoding certain subunits of the
electron transport chain (ETC) cause mild mitochondrial defect
and promote longevity. One example is the clk-1 gene encod-
ing a mitochondrial hydroxylase necessary for the ubiquinone
biosynthesis and therefore important for an effective ETC. Both
in C. elegans and in mice, mutation or haploinsufficiency of clk-1
decreases the oxidative phosphorylation rate and prolongs sig-
nificantly the lifespan (Lakowski and Hekimi, 1996; Felkai et al.,
1999; Liu et al., 2005). In nematodes, mitochondrial deficiency
is associated with a delayed developmental rate, reduced adult
size, and lower fecundity. The lifespan extension requires AMPK
activity and the engagement of autophagy, whereas it is indepen-
dent of the insulin/IGF-1 signaling pathway (Curtis et al., 2006;
Toth et al., 2008; Figure 1). Longevity is also increased by alter-
ing mitochondrial function through silencing of genes encoding
other mitochondrial proteins beside the ETC, as long as the treat-
ments occur during development (Felkai et al., 1999; Dillin et al.,
2002; Lee et al., 2003). However, null mutations in genes encoding
ETC components severely compromise survival. Taken together,
mitochondrial dysfunction can improve the fitness and survival
of an organism up to a certain threshold beyond which toxicity
is reached and viability is compromised (Figure 2). Even when
restricted to a single tissue, like the intestine or the nervous sys-
tem, mitochondrial dysfunction can extend the lifespan of the
whole organism (Durieux et al., 2011). According to this model,
mitochondrial stress in a limited number of cells is sufficiently
sensed by surrounding tissues and modulates aging in a cell-non-
autonomous manner. Although the pro-longevity signals remain
to be identified, it is not excluded that ROS take part in the process,
as antioxidants can limit this phenotype. Mitochondrial deficiency
can engage protective pathways through gene transcription. In the
case of long-lived animals, increased levels of ROS, along with
decreased mitochondrial respiration, is sufficient to activate tran-
scription factors, such as SKN-1 (An and Blackwell, 2003), CEH-23
(Walter et al., 2011), and HIF-1 (Lee et al., 2010b), that mediate the
transcription of antioxidant enzymes like SOD, catalase, and glu-
tathione transferase (Figure 1). These detoxifying enzymes can
maintain the ROS levels below a certain threshold, protecting the
cellular structures from extensive damage. This type of retrograde
signaling is called mitochondrial hormesis (Ristow and Zarse,
2010) and is in accordance with the basic concept that the exposure
of an organism to mild stress results in an adaptive or hormetic
response (Calabrese and Baldwin, 2002). Beside the increased
resistance to stress, another possible scenario might include the
engagement of alternative metabolic pathways that sustain cellular
functions (Liu and Butow, 2006). In support of this hypothesis, it
has been found that activated AMPK induces the phosphorylation

FIGURE 2 | Mitochondrial dysfunction in aging and

neurodegeneration. Mitochondrial dysfunction can have either a positive
or a negative effect on the normal function of the cell; mild mitochondrial
dysfunction stimulates retrograde signaling, increasing – among others –
the production of antioxidant enzymes and inducing metabolic changes.
This adaptive response leads to the extension of the lifespan of the
organism. On the contrary, severe disturbance of the mitochondrial activity
may become detrimental for the survival of the cell, as it compromises
energy production, induces oxidative stress and disturbs calcium
homeostasis. Under these conditions, neurons undergo rapid changes of
the dendritic structures and, according to the damage, can engage
detrimental programs that cause cell death. Thus, strong mitochondrial
inefficiency may lead to the development of neurodegenerative diseases.

of DAF-16/FOXO and CHR-1/CREB in nematodes, mediating the
expression of genes involved in metabolism and energy home-
ostasis (Greer et al., 2007b; Mair et al., 2011). In conclusion,
similarly to other pro-longevity signaling pathways, mitochon-
drial deficiency could stimulate gene expression and change the
consequent transcriptional profiles in response to altered ETC
efficiency.

MITOCHONDRIAL FUNCTION AND NEURODEGENERATION:
A DELICATE BALANCE THAT CAN KILL
Mitochondria take part in a variety of heterogeneous intracellu-
lar processes. Specifically, they provide most of the cellular ATP
through oxidative phosphorylation, produce ROS as side prod-
ucts, contribute to intracellular calcium homeostasis and under
certain conditions, they can activate specific cell death programs.
In neuronal cells, the abundance of mitochondria in subdomains
critically regulates the density of dendritic structures, contribut-
ing to synaptic plasticity. Impairment of mitochondrial dynamics
at the dendrites negatively affects the formation of new spines
and leads to loss of synapses (Li et al., 2004). As it is expected,
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decline of the mitochondrial activity over time can progressively
perturb the intracellular environment and affect the maintenance
of the surrounding tissues. Thus, it is not surprising that aging
and neurodegeneration are strongly linked with mitochondrial
defects. However, at which rate mitochondrial activity enables
survival and, conversely, at which degree compromised organelles
cause irreversible damage remain two fascinating open questions.
This possible double-edged sword aspect is of particular interest
as mitochondria have apparently an opposite role in these two
biological processes: while their severe dysfunction provokes neu-
rodegeneration, a slight decrease in respiration extends the lifespan
in a range of organisms as diverse as yeast, invertebrates, and
mammals (Figure 2). Whether the engagement of pro-survival
programs, including those activated by slight mitochondrial defi-
ciency, can have any protective effect in brain disorders remains
still unclear.

As previously shown in animals models, the use of inhibitors of
the mitochondrial respiratory complexes induces neuronal degen-
eration in certain brain regions and therefore resembles certain
types of pathologies. For example, the use of the neurotoxins
rotenone and MPTP, which mainly act at the level of the Com-
plex I, triggers the loss of dopaminergic neurons and causes
symptoms similar to the sporadic forms of Parkinson’s disease
(Gerlach et al., 1991; Panov et al., 2005). Similarly, the succinate
dehydrogenase inhibitor 3-nitropropionic acid triggers extensive
neurodegeneration in the striatum and has been used to model
Huntington’s disease (Brouillet et al., 1999). In support of the
mitochondrial role in brain disorders, a large number of studies
have demonstrated a significant association between familial forms
of neurodegenerative diseases and rare mutations in genes encod-
ing proteins related to mitochondria. Interestingly, almost one
third of the mutations that are linked to brain pathologies affect
proteins required for the normal mitochondrial functions (Schon
and Przedborski, 2011; Exner et al., 2012). Although Alzheimer’s,
Parkinson’s and other neurodegenerative diseases are frequently
described as age-related pathologies without any genetic linkage
and with distinct clinical symptoms, they all share common degen-
erative mechanisms that converge on mitochondria. Most of these
diseases exhibit metabolic defects and increased oxidative stress.
For example, in Alzheimer’s disease (AD) there are significant
changes in mitochondrial morphology and number (Hirai et al.,
2001; Baloyannis, 2006), which are associated with reduced levels
of some of the ETC subunits. Besides providing ATP, mitochon-
dria sense localized Ca2+ changes and prevent the build-up of
excessive intracellular Ca2+ that can trigger death programs. In a
variety of neurodegenerative disorders, accumulation of glutamate
at the synaptic cleft leads to prolonged neuronal depolarization
and, through intracellular and plasma membrane Ca2+ permeable
channels, large Ca2+ influx (Bano and Nicotera, 2007; Moskowitz
et al., 2010). The sustained mitochondrial Ca2+ uptake leads to
extensive mitochondrial depolarization and release of pro-death
factors, which then promote caspase-dependent and independent
cell death according to the intensity of the stimulus (Ankarcrona
et al., 1995; Orrenius et al., 2003). Notably, at least in vitro, uncou-
pling of the mitochondrial ETC significantly reduces cell death as a
result of the excitotoxic Ca2+ overload (Budd and Nicholls, 1996).
Thus, at least for a limited period of time, mild mitochondrial

dysfunction and time-limited collapse of the membrane poten-
tial can be protective against neurotoxins and favor neuronal
survival.

CAN LONGEVITY PATHWAYS CONFER NEUROPROTECTION?
Despite the large number of studies on aging in model organ-
isms, especially invertebrates, there is still an open question: can
pro-longevity pathways prevent brain disorders? Although more
work is required to prove the relevance in humans, new evidence
suggests that low insulin/IGF-1 signaling or decreased TOR sig-
naling has a beneficial effect in aggregate-prone animal models
of neurodegenerative diseases. More specifically, Igf1r haploin-
sufficiency can reduce inflammatory response, neuronal loss and
cognitive impairment associated with toxic Aβ aggregates in mouse
models of AD (Cohen and Dillin, 2008; Cohen et al., 2009; Freude
et al., 2009; Killick et al., 2009). Over time, decreased IGF-1 lev-
els promote the assembly of densely packed fibrils that are less
toxic compared with Aβ oligomers. In line with this, activation
of the DAF-16/FOXO3a, one of the main downstream targets
of the insulin/IGF-1 signaling, either genetically – encoding a
nuclear targeted FOXO3a – or pharmacologically – using a spe-
cific compound called Psammaplysene A (PA) – protects both in
vitro and in vivo against insults causing motor neuron disease
(Mojsilovic-Petrovic et al., 2009). Similarly to the insulin/IGF-1
signaling pathway, long-term rapamycin treatment prevents cog-
nitive deficits throughout the lifespan in mice (Ehninger et al.,
2009; Halloran et al., 2012). In an AD mouse model, rapamycin
improves learning and memory, ameliorates cognitive defects,
and slows or blocks the progression of the disease (Caccamo
et al., 2010; Spilman et al., 2010). However, even in wild type
mice, rapamycin seems to have a beneficial effect in cognition,
since it can ameliorate learning and memory deficits (Majumder
et al., 2012). In another interesting study, it was found that
the oral administration of the natural polyphenol resveratrol in
mice was enough to activate the metabolic sensor AMPK and
reduce the cerebral Abeta levels and their deposition in the cortex
(Vingtdeux et al., 2010).

Downregulation of the insulin/IGF-1 signaling pathway, in a
C. elegans model for Huntington’s disease delays dramatically the
polyQ toxicity and the protein aggregates and protects from neu-
rodegeneration (Morley et al., 2002). In accordance with this, mice
for Huntington’s disease harboring only one copy of the IRS2 – the
insulin receptor substrate that control the phosphorylation of the
downstream PI3K – have improved motor performance and live
longer compared with their littermates (Sadagurski et al., 2011).
Importantly, some of the ameliorated phenotypes are the result of
improved mitochondrial activity and decreased levels of oxidative
stress. Clioquinol is a metal chelator that has been extensively used
as a neuroprotective drug in Alzheimer’s, Parkinson’s, and Hunt-
ington’s models or even as a drug in patients, where it reduces the
accumulation or the expression of the toxic proteins (Cherny et al.,
2001; Kaur et al., 2003; Nguyen et al., 2005). This drug inhibits the
activity of CLK-1, a mitochondrial protein, and mimics many of
the phenotypes produced by reduction of its activity in nematodes
and mice. This might indicate that clioquinol acts, at least partially,
through the mitochondrial pathway that affects longevity (Wang
et al., 2009).
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Table 1 | Molecular pathways affecting aging and neurodegeneration.

Aging Neuro-

degeneration

Can the longevity

pathway confer

Neuroprotection?

Insulin/IGF-1 signaling + ? YES

TOR pathway + ? YES

Mitochondria + + ?

Insulin/IGF-1 andTOR signaling pathways are two of the main longevity determi-
nants, whose downregulation not only increases the lifespan but also protects
from neurodegenerative insults. Mitochondrial function is critical both for aging
and neurodegeneration: mild dysfunction is beneficial and increases the lifespan
of the organism, whereas a sustained deregulation leads to cell death.

Taken together, these findings demonstrate that genetic and
pharmacological interventions that diminish the PI3K/Akt or TOR
signaling cascade can attenuate some of the damaging effects
associated with the expression of aggregate-prone peptides. As
part of the mechanism, the maintenance of mitochondrial activ-
ity and resistance to oxidative stress can delay neuronal loss in
animal models of human brain disorders. In principle, we can
predict the delay of at least some aspects of neurodegenerative
disorders by altering those signaling cascades that directly or indi-
rectly control mitochondrial activity and therefore regulate the
progression of aging in an organism. However, more studies
are required to prove the relevance of these findings in human
pathology (see Table 1).

CONCLUDING REMARKS
Over the last years, significant progress was achieved in the field
of aging and led to the identification of molecular pathways

underlying this important biological process. Most of these molec-
ular pathways are evolutionarily conserved and affect various
tissues, including the central nervous system. This is reflected by
changes both in the morphology and the function of the neurons,
which can promote cognitive decline and the onset of neurode-
generative diseases. Interestingly, some of the mechanisms that
regulate aging are linked to neurodegeneration.

Mitochondrial activity significantly contributes to aging and
plays a major role in neurodegeneration. However, these organelles
influence in an opposite way these processes: severe mitochondrial
dysfunction triggers neurodegeneration and affects animal sur-
vival (Gerlach et al., 1991; Kong and Xu, 1998; Panov et al., 2005;
Keeney et al., 2006), whereas mild mitochondrial dysfunction pro-
longs the lifespan of various organisms through broad metabolic
changes and the build-up of protective defenses against stress-
ful conditions (Wong et al., 1995; Feng et al., 2001; Dillin et al.,
2002; Lee et al., 2003; Liu et al., 2005; Dell’agnello et al., 2007;
Copeland et al., 2009). Nevertheless, there are still many open
questions that must be addressed. For example, what is the limit
beyond which mitochondrial deficiency causes cell death? Is mito-
chondrial activity a good anti-aging target? Can modulation of
mitochondrial function prolong life expectancy without causing
neurodegeneration? The better understanding of the molecu-
lar mechanisms underlying aging might offer opportunities to
improve healthy human lifespan and in parallel to provide new
therapeutic strategies for brain disorders.

ACKNOWLEDGMENTS
The authors apologize to all colleagues whose works they could not
cite owing to space constraints. The authors would like to thank
Professor Donato di Monte and Dr. Dan Ehninger for their useful
comments.

REFERENCES
An, J. H., and Blackwell, T. K. (2003).

SKN-1 links C. elegans mesendo-
dermal specification to a conserved
oxidative stress response. Genes Dev.
17, 1882–1893.

Ankarcrona, M., Dypbukt, J. M., Bon-
foco, E., Zhivotovsky, B., Orre-
nius, S., Lipton, S. A., et al. (1995).
Glutamate-induced neuronal death:
a succession of necrosis or apoptosis
depending on mitochondrial func-
tion. Neuron 15, 961–973.

Apfeld, J., O’Connor, G., Mcdonagh,
T., Distefano, P. S., and Curtis, R.
(2004). The AMP-activated protein
kinase AAK-2 links energy levels and
insulin-like signals to lifespan in C.
elegans. Genes Dev. 18, 3004–3009.

Arantes-Oliveira, N., Apfeld, J., Dillin,
A., and Kenyon, C. (2002). Regula-
tion of life-span by germ-line stem
cells in Caenorhabditis elegans. Sci-
ence 295, 502–505.

Artal-Sanz, M., and Tavernarakis,
N. (2009). Prohibitin couples dia-
pause signalling to mitochondrial
metabolism during ageing in C. ele-
gans. Nature 461, 793–797.

Baloyannis, S. J. (2006). Mitochondrial
alterations in Alzheimer’s disease. J.
Alzheimers Dis. 9, 119–126.

Bano, D., Agostini, M., Melino,
G., and Nicotera, P. (2011). Age-
ing, neuronal connectivity and
brain disorders: an unsolved rip-
ple effect. Mol. Neurobiol. 43, 124–
130.

Bano, D., and Nicotera, P. (2007). Ca2+
signals and neuronal death in brain
ischemia. Stroke 38, 674–676.

Bishop, N. A., Lu, T., and Yankner, B. A.
(2010). Neural mechanisms of age-
ing and cognitive decline. Nature 464,
529–535.

Bjedov, I., Toivonen, J. M., Kerr, F.,
Slack, C., Jacobson, J., Foley, A.,
et al. (2010). Mechanisms of life span
extension by rapamycin in the fruit fly
Drosophila melanogaster. Cell Metab.
11, 35–46.

Bjelakovic, G., Nikolova, D., Gluud,
L. L., Simonetti, R. G., and Gluud,
C. (2008). Antioxidant supplements
for prevention of mortality in healthy
participants and patients with vari-
ous diseases. Cochrane Database Syst.
Rev.CD007176.

Bokov, A. F., Garg, N., Ikeno, Y.,
Thakur, S., Musi, N., Defronzo,
R. A., et al. (2011). Does reduced
IGF-1R signaling in Igf1r+/- mice
alter aging? PLoS ONE 6, e26891. doi:
10.1371/journal.pone.0026891

Boulias, K., and Horvitz, H. R. (2012).
The C. elegans microRNA mir-71
acts in neurons to promote germline-
mediated longevity through regula-
tion of DAF-16/FOXO. Cell Metab.
15, 439–450.

Brouillet, E., Conde, F., Beal, M. F.,
and Hantraye, P. (1999). Replicat-
ing Huntington’s disease phenotype
in experimental animals. Prog. Neu-
robiol. 59, 427–468.

Budd, S. L., and Nicholls, D. G. (1996).
Mitochondria, calcium regulation,
and acute glutamate excitotoxicity in
cultured cerebellar granule cells. J.
Neurochem. 67, 2282–2291.

Caccamo, A., Majumder, S., Richardson,
A., Strong, R., and Oddo, S. (2010).
Molecular interplay between mam-
malian target of rapamycin (mTOR),
amyloid-beta, and Tau: effects on
cognitive impairments. J. Biol. Chem.
285, 13107–13120.

Calabrese, E. J., and Baldwin, L. A.
(2002). Defining hormesis. Hum.
Exp. Toxicol. 21, 91–97.

Cherny, R. A., Atwood, C. S., Xilinas,
M. E., Gray, D. N., Jones, W. D.,
Mclean, C. A., et al. (2001). Treat-
ment with a copper-zinc chelator
markedly and rapidly inhibits beta-
amyloid accumulation in Alzheimer’s
disease transgenic mice. Neuron 30,
665–676.

Chong-Han, K. (2010). Dietary
lipophilic antioxidants: implica-
tions and significance in the aging
process. Crit. Rev. Food Sci. Nutr. 50,
931–937.

Clancy, D. J., Gems, D., Harshman, L.
G., Oldham, S., Stocker, H., Hafen, E.,
et al. (2001). Extension of life-span by
loss of CHICO, a Drosophila insulin
receptor substrate protein. Science
292, 104–106.

Cohen, E., and Dillin, A. (2008). The
insulin paradox: aging, proteotoxic-
ity and neurodegeneration. Nat. Rev.
Neurosci. 9, 759–767.

Cohen, E., Paulsson, J. F., Blinder, P.,
Burstyn-Cohen, T., Du, D., Estepa,
G., et al. (2009). Reduced IGF-1

www.frontiersin.org November 2012 | Volume 3 | Article 244 | 7

http://www.frontiersin.org/
http://www.frontiersin.org/Genetics_of_Aging/archive


“fgene-03-00244” — 2012/11/23 — 19:21 — page 8 — #8

Troulinaki and Bano Mitochondria in aging and neurodegeneration

signaling delays age-associated pro-
teotoxicity in mice. Cell 139, 1157–
1169.

Copeland, J. M., Cho, J., Lo, T. Jr., Hur, J.
H., Bahadorani, S., Arabyan, T., et al.
(2009). Extension of Drosophila life
span by RNAi of the mitochondrial
respiratory chain. Curr. Biol. 19,
1591–1598.

Cunningham, J. T., Rodgers, J. T., Arlow,
D. H., Vazquez, F., Mootha, V. K., and
Puigserver, P. (2007). mTOR con-
trols mitochondrial oxidative func-
tion through a YY1-PGC-1alpha
transcriptional complex. Nature 450,
736–740.

Curtis, R., O’Connor, G., and Diste-
fano, P. S. (2006). Aging networks
in Caenorhabditis elegans: AMP-
activated protein kinase (aak-2) links
multiple aging and metabolism path-
ways. Aging Cell 5, 119–126.

Dell’agnello, C., Leo, S., Agostino, A.,
Szabadkai, G., Tiveron, C., Zulian, A.,
et al. (2007). Increased longevity and
refractoriness to Ca(2(+)-dependent
neurodegeneration in Surf1 knock-
out mice. Hum. Mol. Genet. 16,
431–444.

Dillin, A., Hsu, A. L., Arantes-Oliveira,
N., Lehrer-Graiwer, J., Hsin, H.,
Fraser, A. G., et al. (2002). Rates of
behavior and aging specified by mito-
chondrial function during develop-
ment. Science 298, 2398–2401.

Douglas, P. M., and Dillin, A. (2010).
Protein homeostasis and aging in
neurodegeneration. J. Cell Biol. 190,
719–729.

Durieux, J., Wolff, S., and Dillin,
A. (2011). The cell-non-autonomous
nature of electron transport chain-
mediated longevity. Cell 144, 79–91.

Egan, D. F., Shackelford, D. B.,
Mihaylova, M. M., Gelino, S., Kohnz,
R. A., Mair, W., et al. (2011). Phos-
phorylation of ULK1 (hATG1) by
AMP-activated protein kinase con-
nects energy sensing to mitophagy.
Science 331, 456–461.

Ehninger, D., De Vries, P. J., and Silva, A.
J. (2009). From mTOR to cognition:
molecular and cellular mechanisms
of cognitive impairments in tuberous
sclerosis. J. Intellect. Disabil. Res. 53,
838–851.

Exner, N., Lutz, A. K., Haass, C.,
and Winklhofer, K. F. (2012). Mito-
chondrial dysfunction in Parkin-
son’s disease: molecular mecha-
nisms and pathophysiological conse-
quences. EMBO J. 31, 3038–3062.

Felkai, S., Ewbank, J. J., Lemieux, J.,
Labbe, J. C., Brown, G. G., and
Hekimi, S. (1999). CLK-1 controls
respiration, behavior and aging in
the nematode Caenorhabditis elegans.
EMBO J. 18, 1783–1792.

Feng, J., Bussiere, F., and Hekimi,
S. (2001). Mitochondrial electron
transport is a key determinant of life
span in Caenorhabditis elegans. Dev.
Cell 1, 633–644.

Fontana, L., Partridge, L., and Longo, V.
D. (2010). Extending healthy life span
– from yeast to humans. Science 328,
321–326.

Freude, S., Hettich, M. M., Schumann,
C., Stohr, O., Koch, L., Kohler, C.,
et al. (2009). Neuronal IGF-1 resis-
tance reduces Abeta accumulation
and protects against premature death
in a model of Alzheimer’s disease.
FASEB J. 23, 3315–3324.

Friedman, D. B., and Johnson, T. E.
(1988). A mutation in the age-1 gene
in Caenorhabditis elegans lengthens
life and reduces hermaphrodite fer-
tility. Genetics 118, 75–86.

Gerlach, M., Riederer, P., Przuntek,
H., and Youdim, M. B. (1991).
MPTP mechanisms of neurotoxicity
and their implications for Parkin-
son’s disease. Eur. J. Pharmacol. 208,
273–286.

Giannakou, M. E., Goss, M., Junger,
M. A., Hafen, E., Leevers, S. J.,
and Partridge, L. (2004). Long-
lived Drosophila with overexpressed
dFOXO in adult fat body. Science 305,
361.

Greer, E. L., Dowlatshahi, D., Banko, M.
R., Villen, J., Hoang, K., Blanchard,
D., et al. (2007a). An AMPK-FOXO
pathway mediates longevity induced
by a novel method of dietary restric-
tion in C. elegans. Curr. Biol. 17,
1646–1656.

Greer, E. L., Oskoui, P. R., Banko,
M. R., Maniar, J. M., Gygi, M.
P., Gygi, S. P., et al. (2007b). The
energy sensor AMP-activated protein
kinase directly regulates the mam-
malian FOXO3 transcription fac-
tor. J. Biol. Chem. 282, 30107–
30119.

Halloran, J., Hussong, S. A., Burbank,
R., Podlutskaya, N., Fischer, K. E.,
Sloane, L. B., et al. (2012). Chronic
inhibition of mammalian target of
rapamycin by rapamycin modulates
cognitive and non-cognitive compo-
nents of behavior throughout lifes-
pan in mice. Neuroscience 223, 102–
113.

Hansen, M., Chandra, A., Mitic, L.
L., Onken, B., Driscoll, M., and
Kenyon, C. (2008). A role for
autophagy in the extension of lifespan
by dietary restriction in C. elegans.
PLoS Genet. 4, e24. doi: 10.1371/jour-
nal.pgen.0040024

Hansen, M., Taubert, S., Crawford, D.,
Libina, N., Lee, S. J., and Kenyon, C.
(2007). Lifespan extension by con-
ditions that inhibit translation in

Caenorhabditis elegans. Aging Cell 6,
95–110.

Harman, D. (1956). Aging: a theory
based on free radical and radiation
chemistry. J. Gerontol. 11, 298–300.

Harrison, D. E., Strong, R., Sharp, Z.
D., Nelson, J. F., Astle, C. M., Flurkey,
K., et al. (2009). Rapamycin fed late in
life extends lifespan in genetically het-
erogeneous mice. Nature 460, 392–
395.

Hekimi, S., Lapointe, J., and Wen, Y.
(2011). Taking a “good” look at free
radicals in the aging process. Trends
Cell Biol. 21, 569–576.

Hirai, K., Aliev, G., Nunomura, A.,
Fujioka, H., Russell, R. L., Atwood,
C. S., et al. (2001). Mitochondrial
abnormalities in Alzheimer’s disease.
J. Neurosci. 21, 3017–3023.

Holzenberger, M., Dupont, J., Ducos, B.,
Leneuve, P., Geloen, A., Even, P. C.,
et al. (2003). IGF-1 receptor regulates
lifespan and resistance to oxidative
stress in mice. Nature 421, 182–187.

Hsu, A. L., Murphy, C. T., and Kenyon,
C. (2003). Regulation of aging and
age-related disease by DAF-16 and
heat-shock factor. Science 300, 1142–
1145.

Hwangbo, D. S., Gershman, B., Tu,
M. P., Palmer, M., and Tatar, M.
(2004). Drosophila dFOXO controls
lifespan and regulates insulin sig-
nalling in brain and fat body. Nature
429, 562–566.

Indo, H. P., Davidson, M., Yen, H. C.,
Suenaga, S., Tomita, K., Nishii, T.,
et al. (2007). Evidence of ROS gen-
eration by mitochondria in cells with
impaired electron transport chain
and mitochondrial DNA damage.
Mitochondrion 7, 106–118.

Jia, K., Chen, D., and Riddle, D. L.
(2004). The TOR pathway interacts
with the insulin signaling pathway
to regulate C. elegans larval devel-
opment, metabolism and life span.
Development 131, 3897–3906.

Kaeberlein, M., Powers, R. W. III, Stef-
fen, K. K., Westman, E. A., Hu, D.,
Dang, N., et al. (2005). Regulation of
yeast replicative life span by TOR and
Sch9 in response to nutrients. Science
310, 1193–1196.

Kapahi, P., Zid, B. M., Harper, T.,
Koslover, D., Sapin, V., and Benzer,
S. (2004). Regulation of lifespan in
Drosophila by modulation of genes
in the TOR signaling pathway. Curr.
Biol. 14, 885–890.

Kaur, D., Yantiri, F., Rajagopalan, S.,
Kumar, J., Mo, J. Q., Boonplueang,
R., et al. (2003). Genetic or phar-
macological iron chelation prevents
MPTP-induced neurotoxicity in vivo:
a novel therapy for Parkinson’s dis-
ease. Neuron 37, 899–909.

Keeney, P. M., Xie, J., Capaldi, R. A., and
Bennett, J. P. Jr. (2006). Parkinson’s
disease brain mitochondrial complex
I has oxidatively damaged subunits
and is functionally impaired and mis-
assembled. J. Neurosci. 26, 5256-
5264.

Kenyon, C., Chang, J., Gensch, E., Rud-
ner, A., and Tabtiang, R. (1993). A C.
elegans mutant that lives twice as long
as wild type. Nature 366, 461–464.

Kenyon, C. J. (2010). The genetics of
ageing. Nature 464, 504–512.

Killick, R., Scales, G., Leroy, K., Cau-
sevic, M., Hooper, C., Irvine, E.
E., et al. (2009). Deletion of Irs2
reduces amyloid deposition and res-
cues behavioural deficits in APP
transgenic mice. Biochem. Biophys.
Res. Commun. 386, 257–262.

Kim, J., Kundu, M., Viollet, B., and
Guan, K. L. (2011). AMPK and
mTOR regulate autophagy through
direct phosphorylation of Ulk1. Nat.
Cell Biol. 13, 132–141.

Kirkwood, T. B. (2005). Understanding
the odd science of aging. Cell 120,
437–447.

Kong, J., and Xu, Z. (1998). Mas-
sive mitochondrial degeneration in
motor neurons triggers the onset of
amyotrophic lateral sclerosis in mice
expressing a mutant SOD1. J. Neu-
rosci. 18, 3241–3250.

Kourtis, N., and Tavernarakis, N.
(2011). Cellular stress response path-
ways and ageing: intricate molecular
relationships. EMBO J. 30, 2520–
2531.

Lakowski, B., and Hekimi, S. (1996).
Determination of life-span in
Caenorhabditis elegans by four clock
genes. Science 272, 1010–1013.

Lee, J. W., Park, S., Takahashi, Y., and
Wang, H. G. (2010a). The associa-
tion of AMPK with ULK1 regulates
autophagy. PLoS ONE 5, e15394. doi:
10.1371/journal.pone.0015394

Lee, S. J., Hwang, A. B., and Kenyon,
C. (2010b). Inhibition of respira-
tion extends C. elegans life span via
reactive oxygen species that increase
HIF-1 activity. Curr. Biol. 20, 2131–
2136.

Lee, S. S., Lee, R. Y., Fraser, A.
G., Kamath, R. S., Ahringer, J.,
and Ruvkun, G. (2003). A system-
atic RNAi screen identifies a critical
role for mitochondria in C. elegans
longevity. Nat. Genet. 33, 40–48.

Li, Z., Okamoto, K., Hayashi, Y.,
and Sheng, M. (2004). The impor-
tance of dendritic mitochondria in
the morphogenesis and plasticity
of spines and synapses. Cell 119,
873–887.

Libina, N., Berman, J. R., and Kenyon,
C. (2003). Tissue-specific activities of

Frontiers in Genetics | Genetics of Aging November 2012 | Volume 3 | Article 244 | 8

http://www.frontiersin.org/Genetics_of_Aging/
http://www.frontiersin.org/Genetics_of_Aging/archive


“fgene-03-00244” — 2012/11/23 — 19:21 — page 9 — #9

Troulinaki and Bano Mitochondria in aging and neurodegeneration

C. elegans DAF-16 in the regulation of
lifespan. Cell 115, 489–502.

Lin, K., Hsin, H., Libina, N., and
Kenyon, C. (2001). Regulation of the
Caenorhabditis elegans longevity pro-
tein DAF-16 by insulin/IGF-1 and
germline signaling. Nat. Genet. 28,
139–145.

Liu, X., Jiang, N., Hughes, B., Bigras,
E., Shoubridge, E., and Hekimi, S.
(2005). Evolutionary conservation of
the clk-1-dependent mechanism of
longevity: loss of mclk1 increases cel-
lular fitness and lifespan in mice.
Genes Dev. 19, 2424–2434.

Liu, Z., and Butow, R. A. (2006). Mito-
chondrial retrograde signaling. Annu.
Rev. Genet. 40, 159–185.

Mair, W., Morantte, I., Rodrigues, A. P.,
Manning, G., Montminy, M., Shaw,
R. J., et al. (2011). Lifespan extension
induced by AMPK and calcineurin
is mediated by CRTC-1 and CREB.
Nature 470, 404–408.

Majumder, S., Caccamo, A., Medina,
D. X., Benavides, A. D., Javors, M.
A., Kraig, E., et al. (2012). Lifelong
rapamycin administration amelio-
rates age-dependent cognitive deficits
by reducing IL-1beta and enhanc-
ing NMDA signaling. Aging Cell 11,
326–335.

Martin, G. M. (2011). The biology
of aging: 1985–2010 and beyond.
FASEB J. 25, 3756–3762.

Mattson, M. P. (2006). Neuronal
life-and-death signaling, apopto-
sis, and neurodegenerative disorders.
Antioxid. Redox. Signal. 8, 1997–
2006.

Mattson, M. P., and Magnus, T. (2006).
Ageing and neuronal vulnerability.
Nat. Rev. Neurosci. 7, 278–294.

Medvedik, O., Lamming, D. W., Kim,
K. D., and Sinclair, D. A. (2007).
MSN2 and MSN4 link calorie restric-
tion and TOR to sirtuin-mediated
lifespan extension in Saccharomyces
cerevisiae. PLoS Biol. 5, e261. doi:
10.1371/journal.pbio.0050261

Melendez, A., Talloczy, Z., Seaman, M.,
Eskelinen, E. L., Hall, D. H., and
Levine, B. (2003). Autophagy genes
are essential for dauer development
and life-span extension in C. elegans.
Science 301, 1387–1391.

Melov, S., Lithgow, G. J., Fischer, D. R.,
Tedesco, P. M., and Johnson, T. E.
(1995a). Increased frequency of dele-
tions in the mitochondrial genome
with age of Caenorhabditis elegans.
Nucleic Acids Res. 23, 1419–1425.

Melov, S., Shoffner, J. M., Kaufman,
A., and Wallace, D. C. (1995b).
Marked increase in the number and
variety of mitochondrial DNA rear-
rangements in aging human skeletal

muscle. Nucleic Acids Res. 23, 4122–
4126.

Mojsilovic-Petrovic, J., Nedelsky, N.,
Boccitto, M., Mano, I., Georgiades, S.
N., Zhou, W., et al. (2009). FOXO3a is
broadly neuroprotective in vitro and
in vivo against insults implicated in
motor neuron diseases. J. Neurosci.
29, 8236–8247.

Morley, J. F., Brignull, H. R., Weyers,
J. J., and Morimoto, R. I. (2002).
The threshold for polyglutamine-
expansion protein aggregation and
cellular toxicity is dynamic and influ-
enced by aging in Caenorhabditis ele-
gans. Proc. Natl. Acad. Sci. U.S.A. 99,
10417–10422.

Morris, J. Z., Tissenbaum, H.
A., and Ruvkun, G. (1996). A
phosphatidylinositol-3-OH kinase
family member regulating longevity
and diapause in Caenorhabditis
elegans. Nature 382, 536–539.

Moskowitz, M. A., Lo, E. H., and
Iadecola, C. (2010). The science of
stroke: mechanisms in search of treat-
ments. Neuron 67, 181–198.

Murphy, C. T., Lee, S. J., and Kenyon,
C. (2007). Tissue entrainment by
feedback regulation of insulin gene
expression in the endoderm of
Caenorhabditis elegans. Proc. Natl.
Acad. Sci. U.S.A. 104, 19046–19050.

Narasimhan, S. D., Yen, K., and Tis-
senbaum, H. A. (2009). Converging
pathways in lifespan regulation. Curr.
Biol. 19, R657–R666.

Narbonne, P., and Roy, R. (2009).
Caenorhabditis elegans dauers need
LKB1/AMPK to ration lipid reserves
and ensure long-term survival.
Nature 457, 210–214.

Nguyen, T., Hamby, A., and Massa, S. M.
(2005). Clioquinol down-regulates
mutant huntingtin expression in vitro
and mitigates pathology in a Hunt-
ington’s disease mouse model. Proc.
Natl. Acad. Sci. U.S.A. 102, 11840–
11845.

Nunnari, J., and Suomalainen, A.
(2012). Mitochondria: in sickness
and in health. Cell 148, 1145–1159.

Orrenius, S., Zhivotovsky, B., and
Nicotera, P. (2003). Regulation of cell
death: the calcium-apoptosis link.
Nat. Rev. Mol. Cell Biol. 4, 552–565.

Pan, K. Z., Palter, J. E., Rogers, A.
N., Olsen, A., Chen, D., Lithgow,
G. J., et al. (2007). Inhibition of
mRNA translation extends lifespan in
Caenorhabditis elegans. Aging Cell 6,
111–119.

Pan, Y., and Shadel, G. S. (2009).
Extension of chronological life span
by reduced TOR signaling requires
down-regulation of Sch9p and
involves increased mitochondrial

OXPHOS complex density. Aging
(Albany NY ) 1, 131–145.

Panov, A., Dikalov, S., Shalbuyeva,
N., Taylor, G., Sherer, T., and
Greenamyre, J. T. (2005). Rotenone
model of Parkinson disease: multi-
ple brain mitochondria dysfunctions
after short term systemic rotenone
intoxication. J. Biol. Chem. 280,
42026–42035.

Ravikumar, B., Sarkar, S., Davies,
J. E., Futter, M., Garcia-Arencibia,
M., Green-Thompson, Z. W., et al.
(2010). Regulation of mammalian
autophagy in physiology and patho-
physiology. Physiol. Rev. 90, 1383–
1435.

Ristow, M., and Zarse, K. (2010). How
increased oxidative stress promotes
longevity and metabolic health: the
concept of mitochondrial hormesis
(mitohormesis). Exp. Gerontol. 45,
410–418.

Robida-Stubbs, S., Glover-Cutter, K.,
Lamming, D. W., Mizunuma, M.,
Narasimhan, S. D., et al. (2012). TOR
signaling and rapamycin influence
longevity by regulating SKN-1/Nrf
and DAF-16/FoxO. Cell Metab. 15,
713–724.

Rubinsztein, D. C., Marino, G., and
Kroemer, G. (2011). Autophagy and
aging. Cell 146, 682–695.

Rugarli, E. I., and Langer, T. (2012).
Mitochondrial quality control: a mat-
ter of life and death for neurons.
EMBO J. 31, 1336–1349.

Sadagurski, M., Cheng, Z., Rozzo, A.,
Palazzolo, I., Kelley, G. R., Dong,
X., et al. (2011). IRS2 increases mito-
chondrial dysfunction and oxidative
stress in a mouse model of Hunt-
ington disease. J. Clin. Invest. 121,
4070–4081.

Schon, E. A., and Przedborski, S.
(2011). Mitochondria: the next (neu-
rode)generation. Neuron 70, 1033–
1053.

Selman, C., Tullet, J. M., Wieser, D.,
Irvine, E., Lingard, S. J., Choudhury,
A. I., et al. (2009). Ribosomal pro-
tein S6 kinase 1 signaling regulates
mammalian life span. Science 326,
140–144.

Sheaffer, K. L., Updike, D. L., and
Mango, S. E. (2008). The target of
rapamycin pathway antagonizes pha-
4/FoxA to control development and
aging. Curr. Biol. 18, 1355–1364.

Singh, R., and Cuervo, A. M. (2011).
Autophagy in the cellular energetic
balance. Cell Metab. 13, 495–504.

Slack, C., Giannakou, M. E., Foley,
A., Goss, M., and Partridge, L.
(2011). dFOXO-independent effects
of reduced insulin-like signaling in
Drosophila. Aging Cell 10, 735–748.

Spilman, P., Podlutskaya, N., Hart, M. J.,
Debnath, J., Gorostiza, O., Bredesen,
D., et al. (2010). Inhibition of mTOR
by rapamycin abolishes cognitive
deficits and reduces amyloid-beta lev-
els in a mouse model of Alzheimer’s
disease. PLoS ONE 5, e9979. doi:
10.1371/journal.pone.0009979

Suh, Y., Atzmon, G., Cho, M. O., Hwang,
D., Liu, B., Leahy, D. J., et al. (2008).
Functionally significant insulin-like
growth factor I receptor mutations in
centenarians. Proc. Natl. Acad. Sci.
U.S.A. 105, 3438–3442.

Syntichaki, P., Troulinaki, K., and Tav-
ernarakis, N. (2007). eIF4E function
in somatic cells modulates ageing in
Caenorhabditis elegans. Nature 445,
922–926.

Taguchi, A., Wartschow, L. M., and
White, M. F. (2007). Brain IRS2
signaling coordinates life span and
nutrient homeostasis. Science 317,
369–372.

Tatar, M., Kopelman, A., Epstein, D., Tu,
M. P., Yin, C. M., and Garofalo, R. S.
(2001). A mutant Drosophila insulin
receptor homolog that extends life-
span and impairs neuroendocrine
function. Science 292, 107–110.

Toth, M. L., Sigmond, T., Borsos, E.,
Barna, J., Erdelyi, P., Takacs-Vellai,
K., et al. (2008). Longevity path-
ways converge on autophagy genes to
regulate life span in Caenorhabditis
elegans. Autophagy 4, 330–338.

Trifunovic, A., Hansson, A., Wre-
denberg, A., Rovio, A. T., Dufour,
E., Khvorostov, I., et al. (2005).
Somatic mtDNA mutations cause
aging phenotypes without affecting
reactive oxygen species production.
Proc. Natl. Acad. Sci. U.S.A. 102,
17993–17998.

Trifunovic, A., Wredenberg, A., Falken-
berg, M., Spelbrink, J. N., Rovio, A.
T., Bruder, C. E., et al. (2004). Prema-
ture ageing in mice expressing defec-
tive mitochondrial DNA polymerase.
Nature 429, 417–423.

Tullet, J. M., Hertweck, M., An, J.
H., Baker, J., Hwang, J. Y., Liu, S.,
et al. (2008). Direct inhibition of the
longevity-promoting factor SKN-1
by insulin-like signaling in C. elegans.
Cell 132, 1025–1038.

van Heemst, D., Beekman, M., Mooi-
jaart, S. P., Heijmans, B. T., Brandt,
B. W., Zwaan, B. J., et al. (2005).
Reduced insulin/IGF-1 signalling and
human longevity. Aging Cell 4, 79–85.

Van Raamsdonk, J. M., and Hekimi,
S. (2009). Deletion of the mito-
chondrial superoxide dismutase sod-
2 extends lifespan in Caenorhabditis
elegans. PLoS Genet. 5, e1000361. doi:
10.1371/journal.pgen.1000361

www.frontiersin.org November 2012 | Volume 3 | Article 244 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/Genetics_of_Aging/archive


“fgene-03-00244” — 2012/11/23 — 19:21 — page 10 — #10

Troulinaki and Bano Mitochondria in aging and neurodegeneration

Vellai, T., Takacs-Vellai, K., Zhang,
Y., Kovacs, A. L., Orosz, L., and
Muller, F. (2003). Genetics: influ-
ence of TOR kinase on lifespan in C.
elegans. Nature 426, 620.

Vingtdeux, V., Giliberto, L., Zhao, H.,
Chandakkar, P., Wu, Q., Simon, J.
E., et al. (2010). AMP-activated pro-
tein kinase signaling activation by
resveratrol modulates amyloid-beta
peptide metabolism. J. Biol. Chem.
285, 9100–9113.

Walter, L., Baruah, A., Chang, H.
W., Pace, H. M., and Lee, S. S.
(2011). The homeobox protein CEH-
23 mediates prolonged longevity in
response to impaired mitochondrial
electron transport chain in C. ele-
gans. PLoS Biol. 9, e1001084. doi:
10.1371/journal.pbio.1001084

Wang, Y., Branicky, R., Stepanyan,
Z., Carroll, M., Guimond, M. P.,
Hihi, A., et al. (2009). The anti-
neurodegeneration drug clioquinol
inhibits the aging-associated protein
CLK-1. J. Biol. Chem. 284, 314–323.

Welle, S., Bhatt, K., Shah, B., Needler,
N., Delehanty, J. M., and Thornton,
C. A. (2003). Reduced amount of
mitochondrial DNA in aged human
muscle. J. Appl. Physiol. 94, 1479–
1484.

Willcox, B. J., Donlon, T. A., He,
Q., Chen, R., Grove, J. S., Yano,
K., et al. (2008). FOXO3A genotype
is strongly associated with human
longevity. Proc. Natl. Acad. Sci. U.S.A.
105, 13987–13992.

Wong, A., Boutis, P., and Hekimi,
S. (1995). Mutations in the
clk-1 gene of Caenorhabditis ele-
gans affect developmental and
behavioral timing. Genetics 139,
1247–1259.

Xie, M., and Roy, R. (2012). Increased
levels of hydrogen peroxide induce
a HIF-1-dependent modification of
lipid metabolism in AMPK compro-
mised C. elegans Dauer larvae. Cell
Metab. 16, 322–335.

Yang, C. C., Chen, D., Lee, S. S., and Wal-
ter, L. (2011). The dynamin-related

protein DRP-1 and the insulin sig-
naling pathway cooperate to modu-
late Caenorhabditis elegans longevity.
Aging Cell 10, 724–728.

Yorimitsu, T., and Klionsky, D. J. (2005).
Autophagy: molecular machinery
for self-eating. Cell Death Differ.
12(Suppl. 2), 1542–1552.

Zarse, K., Schmeisser, S., Groth,
M., Priebe, S., Beuster, G.,
Kuhlow, D., et al. (2012). Impaired
insulin/IGF1 signaling extends life
span by promoting mitochondrial L-
proline catabolism to induce a tran-
sient ROS signal. Cell Metab. 15,
451–465.

Zid, B. M., Rogers, A. N., Katewa, S.
D., Vargas, M. A., Kolipinski, M. C.,
Lu, T. A., et al. (2009). 4E-BP extends
lifespan upon dietary restriction by
enhancing mitochondrial activity in
Drosophila. Cell 139, 149–160.

Conflict of Interest Statement: The
authors declare that the research was

conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 15 August 2012; accepted:
23 October 2012; published online: 26
November 2012.
Citation: Troulinaki K and Bano D
(2012) Mitochondrial deficiency: a
double-edged sword for aging and neu-
rodegeneration. Front. Gene. 3:244. doi:
10.3389/fgene.2012.00244
This article was submitted to Frontiers in
Genetics of Aging, a specialty of Frontiers
in Genetics.
Copyright © 2012 Troulinaki and Bano.
This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License, which
permits use, distribution and reproduc-
tion in other forums, provided the origi-
nal authors and source are credited and
subject to any copyright notices concern-
ing any third-party graphics etc.

Frontiers in Genetics | Genetics of Aging November 2012 | Volume 3 | Article 244 | 10

http://dx.doi.org/10.3389/fgene.2012.00244
http://dx.doi.org/10.3389/fgene.2012.00244
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Genetics_of_Aging/
http://www.frontiersin.org/Genetics_of_Aging/archive

	Mitochondrial deficiency: a double-edged sword for aging and neurodegeneration
	Introduction
	Longevity pathways
	The insulin/IGF-1 signaling pathway
	The TOR signaling pathway
	Mitochondrial deficiency and oxidative stress

	Mitochondrial function and aging: how to live longer
	Mitochondrial function and neurodegeneration: a delicate balance that can kill
	Can longevity pathways confer neuroprotection?
	Concluding remarks
	Acknowledgments
	References


