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The intimate connection between coagulation and inflammation in the pathogenesis of vascular disease has moved more and more
into focus of clinical research. This paper focuses on the essential components of this interplay in the settings of cardiovascular
disease and acute coronary syndrome. Tissue factor, the main initiator of the extrinsic coagulation pathway, plays a central role via
causing a proinflammatory response through activation of coagulation factors and thereby initiating coagulation and downstream
cellular signalling pathways. Regarding activated clotting factors II, X, and VII, protease-activated receptors provide the molecular
link between coagulation and inflammation. Hereby, PAR-1 displays deleterious as well as beneficial properties. Unravelling these
interrelations may help developing new strategies to ameliorate the detrimental reciprocal aggravation of inflammation and
coagulation.

1. Introduction

Systemic and local proinflammatory changes are in focus
when investigating the pathophysiology of arteriosclerosis
and acute coronary syndromes. In acute myocardial infarc-
tion (AMI), proinflammatory markers such as C-reactive
protein (CRP), interleukins, or monocyte-chemoattractant
protein (MCP)-1 are elevated [1–3] and their increase is of
prognostic relevance for future cardiovascular events [4–6]
and mortality [7–9]. Moreover, in healthy persons elevated
proinflammatory markers are associated with an increase
in cardiovascular risk [10–12]. Patients with increased
circulating proinflammatory markers in AMI present with
decreased myocardial salvage after coronary reperfusion
therapy [13]. Similarly, in experimental studies, high levels
of CRP deteriorate infarct size [14].

Sources of inflammatory response are vascular cells such
as activated endothelial cells, which release proinflammatory
cytokines such as interleukin (IL)-8 [15]. IL-8 is a CXC
cytokine that acts as a chemoattractant and agonist for
neutrophils, lymphocytes, and monocytes and is found in
macrophage-rich atherosclerotic plaques [16]. Under flow
conditions, IL-8 facilitates the arrest of monocytes on

endothelium [16], which is necessary for migration into the
intima in evolution of arteriosclerosis. Reperfusion injury
after AMI as well as systemic inflammatory response syn-
drome can be associated to increased levels of IL-8 [17]. In
experimental setting, murine IL-8 receptor knock-out mice
display smaller arteriosclerotic lesions with less macrophages
[18]. Apart from their contribution to arteriosclerosis, CXC
cytokines are also produced by malignant cells and can
promote tumor progression of a large variety of malignancies
[19].

Besides IL-8, many other cytokines such as IL-6 take part
in inflammatory responses by inducing B-cell differentiation,
T-cell activation, and synthesis of acute phase proteins [20],
but also contributing to proliferation of vascular smooth
muscle cells (SMCs) [21]. Moreover TH1 activation was
observed in acute coronary syndromes [22].

The pathogenesis of proinflammatory changes in acute
coronary syndromes as well as the interplay between coag-
ulation and inflammation is poorly understood and is
subject to intense research. The mechanisms by which the
coagulation system is altered by inflammatory interactions
comprise enhanced synthesis and activation of coagulant
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proteins, decreased synthesis of anticoagulants, and suppres-
sion of fibrinolysis [23]. However, not only inflammation
activates coagulation but coagulation in turn perpetuates
inflammatory response [24]. Accordingly, increased levels of
prothrombin fragment F1+2, fibrinopeptide A and D-Dimer,
reflecting activation of the coagulation cascade, are also
associated with an unfavorable outcome in acute coronary
syndromes [25–27].

In this paper we focus on possible mechanisms of the
interplay between coagulation and inflammation in acute
coronary syndromes.

2. Tissue Factor

A strict separation between the intrinsic and extrinsic coagu-
lation cascade surely fails to reflect physiologic conditions.
Nevertheless, in the setting of arteriosclerosis and acute
coronary syndromes the extrinsic pathway of coagulation is
of particular significance.

Tissue Factor (TF) is the most important initiator of the
extrinsic coagulation cascade. TF, a 47 kDa transmembrane
glycoprotein and member of the class II cytokine receptor
family, is the cofactor for the activated plasma clotting factor
VII (FVIIa). The TF-FVIIa complex catalyzes the activation
of factor X and IX, which leads to the generation of thrombin
and thus finally of a fibrin clot. Under physiologic conditions
TF is abundantly expressed only in the adventitia and is
induced by several inflammatory mediators such as IL-
6, IL-8, and MCP-1 [28, 29]. After vascular injury, TF is
rapidly augmented in SMC of the media and accumulates
in the SMC of the developing neointima [30]. Consequently,
TF is highly expressed within atherosclerotic lesions and
displays high procoagulant activity suggesting a role in
determining plaque thrombogenicity [30]. In atherosclerotic
carotid lesions disruption of plaques exposes TF-positive
cells within the plaque to plasma clotting factors and initiates
local thrombosis with subsequent occlusion of the vessel
[31].

Furthermore, increased TF expression can be noticed on
circulating monocytes and microparticles in acute coronary
syndromes and may, thereby, contribute to activation of
coagulation [32–34]. A soluble form of TF within the cir-
culating blood may also support coronary thrombosis [35].
It has been shown that cytokines can induce expression of
soluble TF [36], which on the other hand has been shown to
accumulate in developing thrombi [37]. However, the clinical
significance and individual contributions of microparticle-
derived and soluble TF remain a matter of debate. Several
studies have demonstrated increased levels of circulating TF
in patients with unstable Angina pectoris (uAP) and acute
myocardial infarction (AMI) [32, 38–45]. Therefore, it has
long been speculated that, in cases with no plaque rupture or
only fractional superficial erosion, thrombus formation may
mainly depend on circulating levels of TF. Consistent with
this idea, several studies suggest that the levels of circulating
TF and other haemostatic biomarkers may correlate to
adverse cardiovascular events and mortality in patients with
acute coronary syndrome [46–48].

Stimulation of the TF-thrombin pathway does not
only occur at the site of the plaque but also within the
ischemic myocardium where activated coagulation factors
may enhance inflammatory responses and increase infarct
size [49]. TF contributes to inflammation, cell migration,
and remodelling after vascular injury [50]. Furthermore, TF
expression has been reported in a number of cancers, such
as glioma, pancreatic cancer, non-small-cell lung cancer, col-
orectal cancer, ovarian cancer, prostate cancer, hepatocellular
cancer, and breast cancer [51]. TF expression in tumors not
only correlates with the incidence of thrombosis [52] but also
promotes metastasis [53], tumor progression, and tumor
angiogenesis [54].

TF-mediated intracellular signal transduction has not
been completely elucidated so far. On one hand TF allows
docking and activation of FVII and, therefore, promotes the
generation of downstream coagulation factors and activation
of protease-activated receptors (PARs) which themselves
possibly induce intracellular signal transduction. On the
other hand there is evidence for direct signalling through
the cytoplasmic domain of TF following TF-FVIIa complex
formation [55, 56].

3. Tissue Factor Pathway Inhibitor

The endogenous Kunitz-type inhibitor Tissue Factor Path-
way Inhibitor-1 (TFPI) inhibits initiation of TF-induced
blood coagulation and is mainly expressed on vascular
endothelial cells. TFPI binds and inactivates FXa. The TFPI-
FXa complex then binds and inactivates FVIIa. Increased
levels of the TFPI-FXa complex may reflect both increased
FXa generation and increased TFPI concentrations [57]. In
addition to the full length TFPI most of the plasma TFPI
circulates in truncated forms that are bound to plasma
lipoproteins. These truncated forms lack their C-terminal
domains and exhibit reduced affinity for vascular wall
proteolysis. Additionally, it has been shown that endogenous
proteases [58] and elastase released by neutrophils degrade
TFPI, resulting in enhanced local coagulation that con-
tributes to prevent pathogen dissemination during infection
[59]. Conversely, infusion of a mutant TFPI protein resistant
to proteolysis by elastase strongly impaired host defence
against systemic infection.

4. Protease-Activated Receptors

Important players in the interaction between coagulation
and inflammation are protease-activated receptors (PARs).
PARs are G-protein coupled receptors that mediate various
cellular reactions as cytokine release, expression of adhesion
molecules, cell migration, or proliferation. Unlike other
receptors, PARs are not activated by a soluble, external
ligand. Proteases, such as activated coagulation factors,
detach a defined part of the NH2-terminal chain of the
receptor, thereby inducing a conformational change of the
receptor. This change causes a self-activation by a “tethered
ligand.” This activating sequence comprises only few amino
acids. PARs can also be activated by synthetic peptides
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consisting of the sequence of amino acids representing the
tethered ligand.

In contrast to other receptors, the activation of PARs by
enzymatic cleavage is irreversible. After proteolytic activation
the receptor must be internalized, degraded, and resynthe-
sized. PARs are mainly expressed in vascular cells, but also
in many different other cell types such as gastrointestinal
and bronchial epithelial cells. Four different PARs are known:
PAR-1, -3, and -4 show responsible for thrombin signaling
whereas PAR-2 is activated by trypsin-like serine proteases,
FVIIa, and matriptase but not by thrombin. PAR-1 and PAR-
2 are expressed on smooth muscle cells and endothelial cells,
whereas mainly PAR-1 is expressed on monocytes.

PAR-1 agonists or thrombin induce IL-8 and IL-6 in
SMC, EC, and mononuclear cells (MNCs) [60] therefore
emphasizing the role of PAR-1 in inflammatory processes
in vascular cells and confirming data about PAR-1-mediated
cytokine release in EC and monocytes [61]. In smooth
muscle cells PAR-1 and PAR-2 agonists induce cytokine
release to a similar extent which underlines the relevance
of both PARs [60]. In addition to coagulation factors
other serine proteases, for example, matriptase secreted by
monocytes stimulate proinflammatory cytokine release in
endothelial cells via PAR-2 activation [62]. Increased PAR-
2 expression in atherosclerotic lesions suggests a role for this
proinflammatory pathway (Figure 1) [63].

In addition, PARs can also be cleaved downstream of
the tethered ligand, resulting in receptor inactivation by
preventing further proteolytic activation [64]. PAR-1 sig-
nalling not only induces inflammatory responses but also
causes antiapoptotic and vasculoprotective reactions [65].
Since the anticoagulant protease-activated protein C can
activate PAR1 when in complex with the endothelial cell
protein C receptor (EPCR), which may account for much
of the protective effects conferred by activated protein C
(APC) in severe sepsis [66]. Different contributions of these
two pathways may prevail. First, APC acts via PAR-1 when
attached to EPCR [65], resulting in cellular responses distinct
from thrombin signalling [64] by a mechanism dependent in
trans-activation of the sphingosine 1 phosphate receptor 1.
In mouse models with strongly reduced EPCR expression
or PAR-1 deficiency, the loss of EPCR/APC signalling via
PAR-1 resulted in increased endotoxemia-induced lethality
[67]. Concordantly, APC mutants have been shown to
contribute to protective effects during sepsis by pathways
independent from anticoagulant properties [67, 68]. The
second pathway described is independent from EPCR. In this
case, the availability of the integrin CD11b/CD18 has been
shown to be crucial for PAR-1 mediated APC signaling on
macrophages, thereby exhibiting anti-inflammatory effects
and reducing endotoxin-induced lethality [69]. Thus the
strength of PAR1 and PAR2 activation by thrombin, factor
Xa, and activated protein C can either promote or protect
against changes in vascular permeability depending on the
status of the endothelium.

Platelet activation with subsequent thrombus generation
plays a major role in the development of acute coronary
syndromes. At low concentrations thrombin activates PAR-1
on platelets through a hirudin-like site and at high concen-

trations additional PAR-4. This induces shape change, P-
selectin, and CD40L mobilization to the platelet membrane
and promotes the release of platelet agonists ADP, thrombox-
ane A2, chemokines, and growth factors [70] and, thereby,
enhances proinflammatory changes. Thus, inhibition of
PARs by thrombin of FXa inhibitors may prove beneficial
in reducing not only thrombotic but also proinflammatory
responses.

5. FXa

Binding of the serine protease FVII to TF results in
generation of the coagulation protease FXa (FXa) and
subsequently thrombin both known to induce cell signal-
ing. FXa shows dose-dependent induction of intracellular
calcium transients in endothelial cells that is active-site-
dependent, and independent of thrombin [71]. Potential
pathophysiological responses to FXa include stimulation of
proliferation, production of proinflammatory cytokines, and
prothrombotic TF [72].

Elevated TFPI-FXa and prothrombin fragments F1+2
plasma levels indicate activation of the coagulation cascade in
acute coronary syndromes. Under physiological conditions
an inverse relationship between TFPI-FXa and F1+2 suggests
that TFPI-FXa regulates prothrombinase activity in vivo
[73]. Under conditions associated with activation of the
coagulation cascade, however, increased TFPI-Xa plasma
levels occur [57, 74]. Activation of coagulation as measured
by TFPI-FXa but not by F1+2 is associated with plasma con-
centrations of the proinflammatory cytokine IL-8 in acute
coronary syndromes [60]. Furthermore, subsequent elevated
IL-6 levels in the course of acute coronary syndromes are
associated with initial TFPI-FXa concentrations [60]. These
results argue for a proinflammatory role of FXa in acute coro-
nary syndromes that is independent of thrombin. Although
thrombin provokes similar proinflammatory effects as FXa
in vitro the effects of thrombin may be diminished after
heparin treatment in vivo. Several trials of unfractionated
heparin (UFH) [75], direct thrombin inhibitors [76], and
enoxaparin [77] have thus far failed to demonstrate mortality
reductions in acute coronary syndromes. Yet, the OASIS-
6 trial suggests a reduction in reinfarction and mortality
without excess bleeding in patients not undergoing PCI
[78]. Therapeutic inhibition of the proinflammatory effects
of Factor Xa may, therefore, prove additional benefits as
compared to thrombin inhibition in the clinical course in
acute coronary syndromes. This is currently investigated
in the ATLAS-ACS 2 TIMI 51 trial that is testing the
hypothesis that anticoagulation with the oral factor Xa
inhibitor rivaroxaban reduces cardiovascular death, MI, and
stroke among patients with ACS treated with guideline-based
therapies for ACS [79].

In vitro experiments revealed that FXa stimulates IL-8
and MCP-1 transcription in endothelial cells and mononu-
clear leukocytes [60]. Genetic studies and receptor desensiti-
zation experiments indicate that signaling by FXa is mediated
by PAR-1 and PAR-2 [80, 81].

According to the expression of PAR-1 and PAR-2, PAR-1
and PAR-2 agonists induce IL-8 and MCP-1 release in
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endothelial cells, whereas, only PAR-1 agonists stimulated
cytokine release in mononuclear cells [60].

6. FVIIa

Several studies suggest a signaling mechanism of the
TF-FVIIa complex via PAR-2 [82]. In this model, TF-bound
FVIIa proteolytically activates PAR-2 and, to a lesser extent,
PAR-1, and thereby evokes intracellular signaling cascades
[83].

In contrast to FXa, FVIIa does not elicit a proinflamma-
tory response in endothelial cells or mononuclear cells [82].
The TF-FVIIa-PAR-2 signalling was only observed in SMC
[82] since they express both TF and PAR-2 and both of them
seem to be a prerequisite for FVIIa action. EC expressing
PAR-2 but lacking TF will not permit FVIIa docking, whereas
MNC displaying TF but only low PAR-2 expression, probably
allow FVIIa binding but do not express sufficient PAR-2
molecules being subsequently activated. However, PAR-2 and
TF are induced by cytokine stimulation [28, 84]. Thus, FVIIa
may still have an important impact in atherosclerotic vessels
[31] and acute coronary syndromes [29].

In recent studies [85], it has been demonstrated that
FVII is synthesized by different cancer cells (liver, ovary,
prostate, lung, gastric, thyroid, and breast). Considering that
these tumor cells also synthesize TF it is conceivable that
supraphysiologic concentrations of FVIIa after binding of
FVII to TF occur. On tumor cells, the TF-FVIIa binary com-
plex mediates activation of PAR-2 [86]. Therefore TF-FVIIa-
PAR-2 interaction with subsequent cytokine release may
be relevant within a tumor environment. TF/FVIIa/PAR2
signalling has been shown to promote proliferation and
metastasis of tumor cells [87, 88]. Consistently, TF/FVIIa-
specific upregulation of IL-8 expression in breast cancer cells
has been shown to be mediated by PAR-2 and to increase cell
migration [83]. Whether TF-FVIIa-PAR-2 interaction may
also contribute to local thrombus formation and progression
of atherosclerotic disease remains to be elucidated.

7. Conclusion

The interplay between coagulation and inflammation is a
matter of intense research. Proinflammatory changes in acute
coronary syndromes may substantially influence prognosis
[6]. Experimental evidence suggests that this interplay may
contribute to the development of vascular remodeling or
support plaque disruption of the artery. However transfer of
these data to the clinical settings remains controversial since
additional optimized medical and interventional treatments
interfere. Therefore, understanding the causes of inflamma-
tion facilitate the development of new therapeutic strategies.
To analyse whether these new therapies translate to improved
clinical outcome needs to be studied in appropriate clinical
trials.

While inhibiting proinflammatory cytokines such as
Tumor-Necrosis Factor-α (TNF) has been shown to effec-
tively improve survival in several animal models of sepsis
[89–91], anti-TNF therapy in septic humans failed to
ameliorate or even worsened clinical outcome [92–95]. In
chronic inflammatory diseases however, anti-inflammatory
treatment has become clinical routine. For example, inhi-
bition of IL-6 by the first anti-IL-6 antibody, tocilizumab,
has been shown to completely block TF-dependent thrombin
generation in experimental endotoxemia [23, 96], and
tocilizumab will be of special future interest as it has been
approved for rheumatoid arthritis.

Inhibiting coagulation could depict a more promis-
ing mechanism in fighting overwhelming inflammatory
response. Experimental studies that have shown that
anticoagulant treatment not only diminishes activation of
coagulation but also inhibits inflammation, underline the
cross-talk between activation of coagulation and cytokine
release in vivo [49, 97, 98]. In acute inflammatory disorders
such as severe sepsis, administration of recombinant APC
significantly improves survival and long-term outcome. In
future, APC mutants that lack anticoagulant properties but
still enable sphingosine 1 phosphate receptor 1 dependent
activation of PAR-1 will be of special clinical interest as they
have been shown to reduce sepsis-induced in mice but do not
predispose to bleeding complications.
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So far, anti-inflammatory treatments displayed no
explicit benefit in patients with acute coronary syndromes
[99]. However, there is evidence that FXa inhibitors prove
to be superior to thrombin inhibitors [100]. Particularly,
treatment with low molecular weight heparins, that include
additional anti-FXa activity as compared to unfractionated
heparin, has been shown to decrease inflammatory changes
in vitro and in vivo [101, 102].

Yet the question remains if and what anticoagulant
therapies will prove beneficial to alter systemic inflammatory
responses.
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