
Multidisciplinary Ophthalmic Imaging

Automated Photoreceptor Cell Identification on
Nonconfocal Adaptive Optics Images Using Multiscale
Circular Voting

Jianfei Liu,1 HaeWon Jung,1 Alfredo Dubra,2 and Johnny Tam1

1Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United
States
2Department of Ophthalmology, Stanford University, Palo Alto, California, United States

Correspondence: Johnny Tam, Oph-
thalmic Genetics and Visual Func-
tion Branch, National Eye Institute,
10 Center Drive, Room 10N226,
MSC1860, Bethesda, MD 20892,
USA;
johnny@nih.gov.

Submitted: October 27, 2016
Accepted: July 11, 2017

Citation: Liu J, Jung H, Dubra A, Tam J.
Automated photoreceptor cell identi-
fication on nonconfocal adaptive op-
tics images using multiscale circular
voting. Invest Ophthalmol Vis Sci.
2017;58:4477–4489. DOI:10.1167/
iovs.16-21003

PURPOSE. Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification
of the photoreceptor mosaic in the living human eye using metrics such as cell density and
average spacing. These rely on the identification of individual cells. Here, we demonstrate a
novel approach for computer-aided identification of cone photoreceptors on nonconfocal
split detection AOSLO images.

METHODS. Algorithms for identification of cone photoreceptors were developed, based on
multiscale circular voting (MSCV) in combination with a priori knowledge that split detection
images resemble Nomarski differential interference contrast images, in which dark and bright
regions are present on the two sides of each cell. The proposed algorithm locates dark and
bright region pairs, iteratively refining the identification across multiple scales. Identification
accuracy was assessed in data from 10 subjects by comparing automated identifications with
manual labeling, followed by computation of density and spacing metrics for comparison to
histology and published data.

RESULTS. There was good agreement between manual and automated cone identifications with
overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average,
computed density and spacing values using automated identification were within 10.7% and
11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm.
There was no statistically significant difference between MSCV-based and histology-based
density measurements (P ¼ 0.96, Kolmogorov-Smirnov 2-sample test).

CONCLUSIONS. MSCV can accurately detect cone photoreceptors on split detection images
across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic
metrics, which will be important for future clinical trials utilizing adaptive optics.

Keywords: adaptive optics, non-confocal split detection, cell detection, image analysis,
multiscale circular voting

Adaptive optics scanning light ophthalmoscopy (AOSLO),1–6

a type of adaptive optics (AO) ophthalmoscopy,7–9 has
enabled the visualization of individual retinal cells, such as cone
photoreceptors, directly in the living human eye. Analyzing the
state of the cone photoreceptor mosaic during disease onset
and progression is important not only for understanding the
cellular nature of retinal diseases, but also for more rapidly
evaluating the efficacy of treatments.9,10 Thus far, the majority
of cone photoreceptor imaging has been performed using
confocal AOSLO1–6 or flood-illumination AO7,11,12 in which
single scattered light is captured. To date, relatively few image
analysis tools have been developed for AOSLO modalities that
utilize multiple scattered light,13–15 such as nonconfocal split
detection.16 In this paper, we will focus specifically on
nonconfocal split detection,16 which is distinct from split
detection that includes the confocal portion of the signal.17

Split detection is particularly valuable for cone analysis in
eccentric locations because the corresponding confocal reflec-
tance images (hereinafter referred to as ‘‘confocal’’) often
contain areas where the presence of cones is ambiguous (Fig.
1). This ambiguity arises from the possibility of not always

having a one-to-one correspondence between reflections from
cones in the confocal channel and their corresponding cones
visible in the split detection channel (white circles, Figs. 1D,
1H), or from the presence of rod photoreceptors, which could
be misidentified as cone photoreceptors (white circles, Figs.
1B, 1F). It is known that cone photoreceptors sometimes
appear dark on the confocal modality,18–21 which can hinder
their identification (white circles, Fig. 1C, 1G). Thus, split
detection images are typically preferred over confocal images
for eccentric cone identification. The limitation of current split
detection imaging is that cone photoreceptors are difficult to
distinguish at or near the fovea (Fig. 1E). This work aims to
develop an approach for computer-aided analysis of cone
photoreceptors on split detection AOSLO images.

A prerequisite for quantifying cone photoreceptor mosaic
metrics such as density and spacing is accurate cone
identification, which is both tedious and time-consuming when
performed manually. Existing approaches to automate this step
have been mainly focused on image analysis on confocal and
flood-illumination AO images, based on local maximum
intensity value identification,22 graph theory, and dynamic
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programming,23 circle Hough transform,24 or automated
detection of the radius of Yellott’s ring.25 Unfortunately,
differences in the appearance of split detection and confocal
modalities prevent the direct application of these existing
approaches to nonconfocal images. Individual cones tend to
have an intensity pattern resembling a Gaussian profile in
confocal AO images (Figs. 1A–D). However, in the case of split
detection, the intensity pattern corresponding to a single cell is
more similar to Nomarski differential interference contrast
microscopy26 in which pairs of dark and bright regions are
present in a consistent orientation across the entire image
(Figs. 1E–H). In this paper, we demonstrate an automated
algorithm to identify cone photoreceptors on split detection
images. This identification algorithm is the first step toward
automated computation of additional structural descriptive
metrics27 for assessing the cone mosaic.

Cone photoreceptors visualized using split detection
AOSLO images have several unique features that can hinder
automated cone identification, including irregular light illumi-
nance of the local surrounding tissue (arrow, Fig. 1F), opposing
intensity extremes within a cone (arrow, Fig. 1G) and
anisotropic contrast at cell boundaries. Moreover, image
regions at vascular shadows (arrow, Fig. 1H) often contain
unreliable image information. Finally, variations in the size and
density of individual cones depending on the eccentricity can
require an adaptive algorithm to handle these differences,
which is known as the scale-selection problem in the field of
computer vision.28 In our previous work utilizing AO images
from multiple eccentricities, we showed that the optimal scale
can be determined locally according to multiscale circular
voting (MSCV).29 In this paper, we further extend upon this
MSCV approach29 by: (1) introducing a new MSCV algorithm
for identifying and connecting dark and bright region pairs
within each cone photoreceptor; (2) refining cone positions by
incorporating size estimations derived from a multiscale
strategy for region size determination; and (3) extending the
identification results to quantitative analysis of density and
spacing across different retinal eccentricities with comparisons
to histology26 and existing published data.27,30–33

METHODS

Data Collection

Research procedures adhered to the tenets of the Declaration of
Helsinki and were approved by the Institutional Review Board
of the National Institutes of Health. Written informed consent
was obtained after the nature of the research and possible
consequences of the study were explained to the subjects.

A custom-assembled AOSLO with split detection capabili-
ty2,16 was used to image 10 subjects with no history of
systemic or ocular disease (three female, seven male; age range,
20–41 years; mean 6 SD, 28.3 6 6.8 years; additional
information in Supplementary Table S1). Two wavelengths
were used: 790 nm for retinal imaging and 850 nm for
wavefront sensing. The powers measured at the cornea were
less than 130 and 25 lW, respectively, which were less than the
maximum permissible exposure set by the American National
Standards Institute standard Z136.1 2014.34 Prior to imaging,
both eyes were dilated with 2.5% phenylephrine hydrochloride
and 1% tropicamide. The eye that subjectively yielded better
image sharpness in the confocal imaging channel was selected
at the start of each imaging session. A computer-controlled
fixation system35 was used to assist with the video acquisition
at various overlapping retinal locations from the fovea out to an
eccentricity of approximately 6 mm in the temporal direction.
Videos were acquired using multiple square fields of view
(FOV) corresponding to approximately 0.23, 0.30, and 0.45
mm on the retina. The largest FOV was used to more efficiently
connect all imaging areas with sufficiently overlapping areas,
important for montaging the collected videos for determina-
tion of retinal eccentricity. Smaller FOVs, which were acquired
at selected regions and registered to the larger FOVs, were
utilized for cone identification because they contained higher
sampling. We recruited 5 out of 10 subjects for a short
acquisition protocol (less than 50 videos total, acquired near
the fovea and at select eccentric retinal locations); the
remaining five were recruited for an extended acquisition
protocol (over 100 videos, acquired near the fovea and along a
continuous strip of retinal eccentricities). In order to capture a

FIGURE 1. Confocal reflection (top) and split detection (bottom) AO images captured simultaneously at eccentricities of 0.06, 1.5, 3.0, and 4.5 mm
from subject 7. Cone density decreases with increasing eccentricities (left to right). Cone photoreceptors are more easily identifiable on the
confocal image near the fovea in (A) when compared to its corresponding split detection image (E). In contrast, cone photoreceptors are more
reliably identifiable at eccentric locations in split detection images (white circles). Challenges for automated cone identification on split-detection
images include irregular light illuminance (white arrow, F), opposite intensity extremes within a cone (white arrow, G), and vascular shadows
(white arrow, H). Scale bar: 50 lm.
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more representative dataset containing varying levels of image
quality, the first 10 subjects to successfully complete either the
short or long imaging protocols were used for this study. Since
the primary goal of this study was to demonstrate the capa-
bilities of the MSCV algorithm, a sample size of 10 subjects was
deemed sufficient and the power of this study was not
calculated (to reach the desired sample size, 12 subjects were
recruited, with two excluded due to unsuccessful imaging
sessions: one due to excessive eye motion and the other due to
an inability to sit still due to frequent coughing).

Raw videos were preprocessed by correcting for eye
motion,36 and then averaged and assembled into montages
that included both confocal and split detection images. For the
purposes of measuring retinal eccentricity, the fovea was
manually determined based on a subjective search for the
retinal region with the highest cone density on the confocal
images. The retinal scaling factor for conversion from degrees
to millimeters was computed using a paraxial ray trace on a
three surfaced simplified model eye37 using the subject’s
biometric information (axial length, corneal curvature, and
anterior chamber depth) measured using a commercial device
(IOLMaster; Carl Zeiss Meditec, Dublin, CA, USA).

Automated Cone Identification

An automated cone identification algorithm was developed, con-
sisting of four main steps: multiscale circular voting, region size
determination, point pair connection, and centering. Detailed
descriptions of the algorithm are provided in the Appendix.

Step 1: Multiscale Circular Voting. The goal of this step is
to detect bright and dark regions within cone photoreceptors
(blue and yellow crosses in Fig. 2B) by identifying circular
objects using a combination of iterative circular voting38 and a
multiscale strategy which permits variations in the sizes of
cone photoreceptors (Fig. 1).

MSCV begins with an iterative, coarse-to-fine search
process. First, for a given starting point with large image
gradient magnitude (Fig. 3A), an angular search range of the
voting area is cast (white lines in Figs. 3B–E). The actual voting
area is a trapezoidal arc (Equation A.3, Fig. A1). The MSCV
response is computed within the trapezoidal voting area by
convolving image gradient magnitudes with a Gaussian
function (Equation A4). Wherever there is radial symmetry
(as in the case of circular cells), MSCV responses from different
voting areas accumulate in the centers of concave objects
(gray/white spots in Figure 3B–E; see also Fig. A2). Note that
the MSCV responses correspond to centers of bright and dark
regions within photoreceptor cells, which are different than
the actual center of the photoreceptor cell, which will be
addressed in Step 4. By iteratively shrinking the angular search
range, the MSCV response gradually converges to the region
centers (Fig. 3E).

Next, this entire process is repeated across different scales
(Equation A1). Here, it is important to determine what a
reasonable radius is for the angular search range. If it is too
small, the MSCV response at the region center cannot
accumulate enough high image gradient magnitudes; if it is

FIGURE 2. Overview of cone photoreceptor identification algorithm on split detection AOSLO images. (A) Original image; (B) MSCV of dual
intensity extreme regions in each individual cell (blue and yellow crosses); (C) point pair connections (orange lines); (D) region size determination,
denoted by red circles; (E) identification centering; (F) final cone identifications (green crosses). The white arrow indicates a cone photoreceptor
without a point pair connection. Scale bar: 10 lm.
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too large, image information from other cells will be
improperly attributed to each cell’s response calculations. To
search for a reasonable radius, we determine the MSCV
response across a sequence of search radii, and then search
for the radii that result in the maximal MSCV response.
Specifically, the sequence of search radii generates point
clusters which are then converted into a connected image
patch using the morphologic dilation shape operator.39

Maximal MSCV responses are then determined for each
connected patch (generally each patch corresponds to a single
cone photoreceptor). The radius that generated this maximal
MSCV response is then selected and assumed to be reasonable.

Step 2: Point Pair Connection. This step connects the
bright and dark regions within each of the cells, according to
the following criteria: (1) dark region centers are always on the
left of bright ones (yellow and blue crosses, respectively in Fig.
2C); and (2) their distance is less than the expected maximum
cone radius (4.5 lm in our datasets which is consistent with
what has been reported in histology40). If there are multiple
possibilities for region pairs, the one with the smallest distance
is selected. Some cells contained only a single detection (white
arrow, Fig. 2C; approximately 20% of all cells in our validation
datasets). The strategy for the identification of unpaired cells is
described in Step 4.

Step 3: Region Size Determination. In addition to
identifying the dual region centers, the multiscale strategy is
also important for determining the sizes of each region, which
are used in the subsequent step to determine the final
positioning of each identification. This step utilizes the local
image structure and a scale-invariant image operator to perform
optimal scale selection (based on scale-space theory).28

Scale selection is initiated by constructing a one-parameter
family of smoothed images based on a scale parameter
(Equation A8). Within this multiscale representation of the
original image, the scale parameter is treated as the additional
continuous variable. According to the scale selection theory,28

the optimal scale is determined by searching for local extrema
of a scale-invariant image operator such as the scale-normalized
Laplacian operator41,42 (Equation A10). This step outputs

circles representing the scale of each identified region which is
approximately equivalent to its size (Fig. 2D).

Step 4: Centering. The final position of each identified
cone photoreceptor is determined by taking the weighted
average of their point pairs from Step 2, where weights are
defined as their optimal scales from Step 3. By using a weighted
average to determine cell centers (Equation A11) the final
identification can be placed closer to the centers of each cell
(Fig. 2F). For any unpaired cells (white arrows, Fig. 2), we only
keep single identifications from bright regions. In this case, the
scale-normalized Laplacian operator is used to locally adjust the
locations of the single identifications by moving positions until
Laplacian value achieves the local extrema in the multiscale
image space, as demonstrated in our previous approach.29

Quantitative Analysis of Cone Photoreceptor Cell
Identifications

Averaged split detection images were assembled into a
montage of overlapping retinal regions. The montage was
used only to guide the selection of regions of interest (ROI) for
cone mosaic analysis at different eccentricities. In order to
avoid distortion artifacts due to the use of overlapping images
that were calculated from different reference frames,43 each
ROI was fully contained within a single image of the montage.
The sizes of ROIs were set to 55 3 55 lm for eccentricities less
than 3 mm and 100 3 100 lm otherwise. Voronoi diagrams
were constructed for each ROI using detected points except
for those that generated Voronoi neighborhoods that exceeded
the boundary of the ROI. Cone density was then computed by
dividing the number of cones by the total area of the Voronoi
neighborhoods.44 Cone spacing was estimated according to a
previously developed implementation27 based on the density
recovery profile.45,46

Validation of Identification Accuracy Across
Different Eccentricities

Thirty images were selected at the temporal eccentricities of
1.5, 3.0, and 4.5 mm from all 10 subjects (Supplementary Table

FIGURE 3. Process of MSCV. From left to right: original image, followed by MSCV response image of bright regions after each iteration (top row);
their corresponding cone identifications (bottom row). Note that MSCV response gradually converges to the cell region center due to coarse-to-fine
strategy controlled by decreasing the voting angle range at cell boundaries after each iteration. Meanwhile, the number of false positives gradually
drop, and true identifications are eventually found. The black dot in (A) represents an example boundary point at which the algorithm begins, with
white lines denoting the shrinking voting ranges at various steps within the iteration. White x’s are image points with maximal MSCV responses in
each iteration pertaining to the voting area that is marked with the white lines. Scale bar: 10 lm.
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S1). These eccentricities were selected to evaluate the
robustness of MSCV, since cone density varies substantially
across these three eccentricities (Fig. 1). For validation
purposes, ROIs of 440 3 440 pixels were generated for all
images. To generate ground truth, cone photoreceptors were
manually labeled by the same grader in all selected images. In
order to evaluate the accuracy of automated identifications in
comparison to ground truth, recall, precision, and F1 score
were computed (commonly used for the evaluation of cell
identification accuracy47). These metrics range from 0 to 1,
where low values indicate poor matching between automatic
cone identifications compared to ground truth, and high values
indicate good matching.

Recall ¼ TP

TP þ FN
;Precision ¼ TP

TP þ FP
;

F1 ¼ 2TP

2TP þ FP þ FN
ð1Þ

Here, TP refers to the true positive of cone identification; FP,
false positive; and FN, false negative.

Image quality plays an important role on the identification
accuracy. However, there are currently no strategies for
objectively evaluating the image quality of split detection
images. Here, we propose the use of anisotropy to objectively
evaluate image quality.48 In brief, this method assumes that high-
quality images contain dominant directions of information
content, and therefore applies a pseudo-Wigner distribution to
measure a pixel-wise entropy along different directions.
Anisotropy is defined as the standard deviation of entropy
values (normalized from 0 to 1). Larger anisotropy values in-
dicate the presence of dominant directions interpreted to mean
higher-quality images. We used this approach to objectively
assess split detection images for interpretation of our accuracy
results, based on the assumption that high-quality split detection
images have high contrast along the horizontal direction.

Validation of Spacing and Density Metrics
Computed From Automated Identifications

Cone photoreceptors were difficult to visualize near the fovea in
split detection images (Fig. 1E). Thus, 146 ROIs were selected

FIGURE 4. Identification results comparing automated MSCV identifications to manual labeling for subject 2 (A–C) and subject 3 (D–F) at
eccentricities of 1.5 (A, D); 3.0 (B, E); and 4.5 mm (C, F). True identifications, green crosses; false positives, orange crosses; false negatives, yellow

triangles. Examples of some typical false positives (multiple bright region detections within a single cell) and false negatives (cone photoreceptors
with weak boundaries that are not identified) are highlighted with circles. Scale bar: 50 lm.

TABLE 1. AO-Based Normal Databases for Cone Density and Spacing

Reference n Age

Sex,

M/F

Spherical

Equivalent, D Axial Length, mm

Eccentricity,

mm Direction

Song et al. 201130 20* 22–65 (41 6 16) 9/11 þ2.00 to 3.50

(�0.73 6 1.20)

22.1–26.3 (23.8 6 1.0) 0.2–2.2 S, I, N, T

Zayit-Soudry et al.

201531

10 25–58 (45 6 11)† 4/6 N/A N/A 0–1.0‡ S, I, N, T

Zhang et al. 201532 20 19–29 N/A þ0.63 to �3.00 N/A 0–1.2 N/A

Wells-Gray et al.

201633

5 22–27 N/A þ0.25 to �3.75 N/A 0–8.7‡ N, T

Cooper et al. 201627 20 9–67 (26 6 16)§ N/A þ2.63 to �5.25

(�0.78 6 2.24)§

22.0–26.9 (24.4 6 1.2)§ 0–2.9† S, I, N, T

I, inferior; N, nasal; S, superior; T, temporal.
* Cone density and spacing results from the younger group (n¼10) was used for comparison to our results as this age range is closer to our data.
† Age was computed from the data in the table from the original publication.
‡ Eccentricity range was estimated from degrees based on a model eye as described in the Methods section.
§ Age and spherical equivalent were computed from Supplementary Table S1 of Cooper et al.27 2016.
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from 5 subjects undergoing the extended-period protocol at
eccentricities ranging from approximately 0.4 to 6.0 mm along
the temporal direction (Supplementary Table S1). ROIs were
used to compute cone density and spacing based on MSCV-
derived cone identifications for direct comparison to previously
published adaptive-optics-based measurements in normal sub-
jects (Table 1). In addition, the relative error between MSCV-
derived measurements and histology was computed by first
averaging both density and spacing measurements every 0.3 mm
and then by computing the relative error, e.

e ¼
XN

i

va
i � vh

i

�� ��
vh

i

ð2Þ

Here, i refers to the index of selected eccentricities, va
i is the

averaged MSCV-based cone density or spacing at eccentricity
corresponding to the index i, and vh

i is the corresponding
histology value. The Kolmogorov-Smirnov 2-sample test was also
used to evaluate whether there were any differences between
MSCV-based density measurements and histology.

Comparison Between Automated Cone
Identification From Confocal and Split Detection
Images

Five pairs of simultaneously acquired confocal and split
detection images were selected from five subjects and

FIGURE 5. Comparison of cone density and spacing results calculated from automated MSCV-based cone identifications in five subjects with
histology and published data (see Table 1). The data corresponding to five points (black arrows), one from each subject, are shown in Figure 6.
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independently analyzed using automated identification algo-
rithms (Supplementary Table S1). For each subject, the largest
ROI that contained an unambiguous cone mosaic and relatively
constant cone density on both the confocal and the split
detection channels was selected, which was empirically 400 3

400 pixels in size at an eccentricity of about 0.75 mm (average
6 standard deviation: 0.73 6 0.09 mm). At this location,
confocal images contain relatively few rods and split detection
images start to have clear cell boundaries (between the
eccentricities shown in Figs. 1A, 1E and Figs. 1B, 1F). A
previously developed automated cone identification algorithm
was used to analyze the confocal images22 for direct
comparison to MSCV-based analysis of the corresponding split
detection image. Recall, precision, and F1 score were again
used to evaluate consistency. We also compared cone spacing
and density measurements from two image modalities.

RESULTS

High Identification Accuracy Across Different
Eccentricities

MSCV accurately detected cone photoreceptors in five subjects
with average recall, precision, and F1 score of 92.9%, 90.8%, and
91.8% (Fig. 4; Table 2). The average computational time was 0.9
seconds on the image of 440 3 440 pixels (Supplementary Table
S2; overall, it was faster with increasing eccentricities). On
average, there was no clear difference in accuracy across the
three eccentricities tested. Identification accuracy was higher in
the case of better image quality (subject 2, Figs. 4A–C) but lower
in the subject with the worst image quality, due to a higher rate
of false negatives (subject 3, Figs. 4D–F). Image quality
assessment based on anisotropy also confirmed that detection
accuracy was more likely to be higher on images with larger
assessment values (Supplementary Figs. 1, 2). False negatives
were likely due to weak cell boundaries (yellow marks in Figs.
4E, 4F). False positives were mostly attributed to either areas of

unusually high brightness leading to multiple identifications
within one region (orange circle in Fig. 4C), and/or irregularities
in the areas between cones, possibly caused by a weak rod
photoreceptor signal (orange circle in Fig. 4E). Artificial
boundaries created by multiple nearby photoreceptors in close
proximity to each other also gave rise to both false negatives and
positives (yellow marks in Figs. 4A, 4D).

Reliable Estimation of Quantitative Cone

Photoreceptor Mosaic Metrics

Results were in good agreement with both histology26 and
published data27,30–33 in the eccentricity range tested here
(0.4–6.0 mm, Fig. 5). There was no statistically significant
difference between the histology and MSCV-based density
measurements (P ¼ 0.96, Kolmogorov-Smirnov 2-sample
test49). The relative errors between MSCV-based cone density
and spacing measurements in comparison to histology were
10.7% 6 6.4% and 11.2% 6 4.8%, respectively. These relative
errors can be largely attributed to individual-to-individual
variations, which would likely average out with larger sample
numbers (Fig. 6). Exponential fitting was performed on the
MSCV-based cone spacing results as has been previously
described according to Equation 3:50,51

spacing ¼ A 3 e�B 3 eccentricity þ C ð3Þ

where A;B and C are constants.
Both the histology and published data were within the

range of the 95% prediction interval (PI) curves of the fit (Fig.
5B). Together these comparisons demonstrate that MSCV can
be used to derive quick estimations of quantitative metrics
such as cone density and spacing.

FIGURE 6. The retinal regions that were used to calculate cone spacing from five different subjects corresponding to the arrows in Figure 5B are
shown. Images are ordered according to increasing cone spacing from (A) to (E) (i.e., listed in the order of arrows from bottom to top) with
eccentricities of 5.52, 5.11, 5.58, 5.60, and 5.56 mm. Scale bar: 10 lm.

TABLE 3. Evaluation of Identification Consistency Between Confocal
and Split Detection Images

Subject No.

Eccentricity,

mm Recall, % Precision, % F1 Score, %

4 0.85 82.2 88.6 85.3

5 0.60 84.8 91.5 88.0

6 0.76 87.3 90.1 88.7

8 0.78 93.2 81.2 86.8

9 0.64 88.3 93.0 90.6

All 0.73 6 0.09 87.1 6 3.7 88.9 6 4.1 87.9 6 1.8

Five pairs of confocal and split detection AOSLO images simulta-
neously acquired were collected from five subjects. These eccentric-
ities were selected to reduce the presence of rod photoreceptors in
confocal images while improving the visibility of cone photoreceptor
in split detection images. A previously-published approach was used to
automatically detect cone photoreceptors on confocal images22 for
comparison to MSCV on corresponding split detection images.

TABLE 2. Evaluation of Identification Accuracy and Computational
Time

Eccentricity,

mm Recall, % Precision, % F1 Score, % Time, s

1.5 93.5 6 3.7 91.7 6 3.7 92.5 6 3.1 1.1 6 0.2

3.0 92.5 6 4.9 90.7 6 6.6 91.6 6 5.6 0.96 0.2

4.5 92.8 6 7.3 90.1 6 6.7 91.4 6 6.8 0.7 6 0.2

All 92.9 6 5.5 90.8 6 5.9 91.8 6 5.4 0.9 6 0.3

A total of 30 split detection AOSLO images from 10 subjects were
manually labeled for comparison to automated identifications using
MSCV. Additional details are shown in Supplementary Table S2.
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Consistent Identification Results Between
Confocal and Split Detection Images

Automated cone detections on confocal and split detection
images were consistent with each other in five subjects, with
average recall, precision, and F1 score of 87.1%, 88.9%, and
87.9% (Table 3; Fig. 7). These values are slightly smaller than
the values reported in the earlier validation, but can be
explained through close examination of the original images:
additional bright circular structures were detected in the

confocal image that did not have a corresponding cone-like

object in the split detection images. In addition, the close

proximity of cone photoreceptor cells reduces the overall

contrast in the split detection images.

Automated identifications were also used to compute

quantitative metrics based on a 55 3 55 lm ROI selected from

the centers of each confocal-split detection image pair (yellow

square in Fig. 7). The average relative errors of cone spacing

and density were 1.2% and 10.0%, respectively (Table 4).

FIGURE 7. Comparison of cone identifications on confocal (A, C) and split detection (B, D) images from subject 9 at the eccentricity of 0.64 mm.
Zooms of the white and black squares are shown (E–H). True identifications, green crosses; false positives, orange crosses; false negatives, yellow

triangles, assuming that the automated confocal cone identifications are ground truth. Some false negatives (white circles) were caused by bright,
circular structures that were only present in the confocal images but not present in the split detection images. These additional bright structures are
possibly from the multiple reflections of a single cone in confocal images, or from rod photoreceptors. The yellow box in (A, B) shows where
spacing and density was computed. Scale bars: 15 lm.
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DISCUSSION

MSCV allows automated identification of cone photoreceptors
in split detection AOSLO images. Its multiscale search makes it
robust to variations in cone size with good results shown
across eccentricities ranging from approximately 0.4 to 6.0
mm. MSCV-derived measurements of cone density and spacing
are consistent with both previously published AO ophthal-
moscopy and histology (Fig. 5). The overall robustness of the
MSCV algorithm demonstrated on a full spectrum of split
detection AO images showing variability in image quality
suggests that it will be useful for establishing a larger normal
database as well as for upcoming clinical applications in
patients with retinal diseases.

MSCV achieves high identification accuracy. As expected,
image quality was the most important determining factor for
identification accuracy. Poor image contrast caused MSCV to
generate false positives and false negatives (Figs. 4D–F). We
have suggested a new image quality assessment strategy based
on anisotropy48 that could be useful for evaluating split
detection images with potential applications for filtering out
low-quality AO images to ensure automated identification
robustness. We envision that MSCV will significantly reduce
the amount of time needed to assemble a more extensive AO-
based database for photoreceptor metrics that includes both
larger numbers of subjects across different age groups as well
as data from a larger range of eccentricities, which will be
particularly important for upcoming clinical trials that utilize
AO as an outcome. Current AO-based normal databases are
either lacking in sample size or in the range of eccentricities
represented (Table 1), ostensibly due to the meticulous and
tedious task of cone counting as well as the difficulty in
identifying cones reliably in eccentric locations without the aid
of split detection. On average, the time required to identify
cones in each ROI was about 0.9 seconds, an order of
magnitude faster than the current alternative based on manual
identification (all speed measurements performed using a
personal computer [Windows 7 PC with Intel quad-core i7-
3770 3.4 GHz CPU; CPU release date April 2012] and 16 GB of
random access memory).

One other method for automated cone photoreceptor
identification on split detection images has been proposed,
based on the application of global smoothing to eliminate
irregularities in illuminance, followed by local detection of
image points containing intensity extremes.52 The main
differences between this approach and ours is the scale-
selection strategy in this paper to handle the issue that cone
photoreceptors present with a substantial range of different
sizes (Fig. 1), which requires variable levels of smoothing in
different image regions, and the addition of a centering step
which refines the positioning of the detection onto the actual
cell center by automatically straddling bright and dark regions.
Accurate centering of the identification is particularly impor-
tant for spacing measurements.

To the best of our knowledge, we have compared for the
first time automated cone photoreceptor identification on
simultaneously-acquired confocal and split detection images
(Fig. 7). Systematic examination of differences between
confocal and split detection images of the photoreceptor
mosaic in an automated manner could be valuable for
interpreting the status of cone photoreceptors in which cones
appear ‘‘dark’’ or dim in the confocal modality.20,21,53–56

Automated identification of cones in the two different
modalities reveal a number of discrepancies (white circles,
Fig. 7) which are unrelated to the ability of the algorithm to
detect cone-like structures but, rather, arise from differences in
the appearance of cones in one modality versus the other.
Some of these discrepancies can be explained by the presence
of rods near the fovea57 visible on the confocal images, which
can mislead the cone identification algorithm.

There are some important areas for future improvements to
the MSCV algorithm, including the reduction of false positives
and the recovery of false negatives. For the former, the
integration of cone identification with cone segmentation
algorithms developed for split detection images58 could
eliminate the problems of multiple identifications within a
single-cone photoreceptor (orange circle in Fig. 4B). For the
latter, machine learning could be employed to build cone
photoreceptor classifiers to recover false negatives, as has been
previously demonstrated for kidney cancer,59 prostate can-
cer,60 and lymph node identification.61

CONCLUSIONS

MSCV can quickly and automatically detect cone photorecep-
tors on split detection AOSLO images through multiscale image
analysis. Validation results demonstrate that MSCV robustly
identifies cone photoreceptors over a large range of eccentric-
ities while still achieving high identification accuracy. There
was good agreement in cone identifications between simulta-
neously acquired pairs of confocal and split detection images.
Quantitative metrics derived from automated identifications
were also comparable with histology and published data.
These promising results can potentially accelerate the creation
of larger AO-based normal databases for the rapid, noninvasive
assessment of retinal pathology at the cellular level.

Acknowledgments

The authors thank Catherine Cukras, Henry Wiley, Wadih Zein,
Angel Garced, Meg Gordon, John Rowan, Patrick Lopez, Sharon
Yin, Christina Appleman, Gloria Babilonia-Ayukawa, and Denise
Cunningham for assistance with clinical procedures; Robert
Cooper, Pavan Tiruveedhula, and Austin Roorda for sharing cone
photoreceptor analysis software; Yusufu Sulai and Ethan Rossi for
technical assistance with adaptive optics instrumentation; and
Howard Metger for custom machining for adaptive optics
instrumentation.

TABLE 4. Comparison of Cone Spacing and Density Between Five Pairs of Confocal and Split Detection AOSLO Images in Table 3

Subject No.

Confocal Split Detection Relative Errors*

Spacing, lm Density, Cones/mm2 Spacing, lm Density, Cones/mm2 Spacing, % Density, %

4 6.47 36,033 6.38 31,405 1.4 12.8

5 6.41 29,422 6.41 30,083 0.0 2.2

6 7.17 24,463 7.3 26,777 1.8 9.5

8 6.44 29,091 6.35 34,050 1.3 17.0

9 6.36 32,727 6.27 30,083 1.4 8.1

All 6.57 6 0.30 30,347 6 3,874 6.54 6 0.38 30,479 6 2,351 1.2 6 0.6 10.0 6 5.0

* Relative error was computed according to the equation e ¼ split�confocal

confocal
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APPENDIX

Multiscale Circular Voting

Let the intensity function of the split detection image after
motion stabilization be defined as Iðx; yÞ. Its multiscale image
representation, L x; y; tð Þ, is generated through convolution
with the Gaussian function G x; y; tð Þ:

L x; y; tð Þ ¼ G x; y; tð Þ � Iðx; yÞ ðA1Þ

The scale parameter t is defined as t 2 0:5; � � � ; 7:7½ �, where
tkþ1 ¼ ctk, with k denoting the index of scale level. One
important property of the multiscale image representation is
that L x; y; tð Þ has theoretically infinite derivatives.28 In
particular, derivatives and convolutions are commutable,
which allows one to express derivatives of L x; y; tð Þ as the
convolution of derivatives of G x; y; tð Þ with Iðx; yÞ. Since G

x; y; tð Þ is infinitely differentiable, so is L x; y; tð Þ. As suggested
by Mikolajczyk,42 the incremental constant c should be
selected from 1:1; 1:4½ �. In this work, we use c ¼ 1:2, which
was selected as a tradeoff between having a smooth transition
between two consecutive scale levels (large values may cause
aliasing artifacts) and between computation time (smaller
values result in additional computations of L x; y; tð Þ). The scale
parameters are set based on prior knowledge of all possible
radii (in pixels) of dark and bright cell regions in split detection
images across the range of eccentricities that will be analyzed
and for all possible fields of views.

At each scale level t, we first compute the image gradient
magnitude rLðx; y; tÞ, and identify the points xs; ysð Þ for which
rLðxs; ys; tÞ.a.
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rLðxs; ys; tÞ ¼ ]L

]x

� �2

þ ]L

]y

� �2
" #1=2

’

"
L xsþ1; ys; tð Þ � Lðxs�1; ys; tÞ

2

� �2

þ L xs; ysþ1; tð Þ � Lðxs; ys�1; tÞ
2

� �2
#1=2

ðA2Þ

We set a ¼ 10 according to the original work of circular
voting,38 which we empirically determined to be effective for
our datasets. Future work will reveal whether further
optimization of this value leads to better results. A recursive
approach was used to numerically compute Gaussian image
smoothing (Equation A1) and its derivatives (Equation A2).62

For each selected point, xs; ysð Þ, a voting area, A, is created
around each of these (Fig. A1).

A xs; ys; rmin; rmax;Dð Þ
¼ xs6rcosu; ys6rsinuð Þjrmin � r � rmax; h� D � u � hþDgf

ðA3Þ
Here, 6 controls the detected region type: positive is used for
bright cell regions, and negative for dark regions. h is the voting

direction initialized with d
!
¼ �rLðxs; ys; tÞ=jjrLðxs; ys; tÞjj.

D defines the angular search range of the voting area. The
size of the voting area is constrained by rmin ¼ 1 and rmax ¼
2:5t pixels. Note that rmax utilizes the scale parameter t defined
above, and as such rmax, includes all possible radii of cell
regions. This definition of rmax enables the MSCV algorithm to
adapt to different AOSLO field of views without the need to
specify separate parameter settings because it can auto-
matically search for cone photoreceptors with varying sizes.
This definition sets the upper bound of the voting area (rmax)
such that the voting area is large enough to contain the cell
boundary, but not so large that it contains too many points
belonging to boundaries of neighboring cells (noting that
bright and dark regions are approximately half the size of the

cell and that distance is measured from the starting point
toward the cell center as depicted in Figure 3A). The lower
bound is the smallest possible region in pixel space (1 pixel).

The MSCV response at an image point ðx; yÞ contributed by
a single selected point is computed as

J x; y; rmin; rmax;D; xs; ysð Þ

¼
X

u;vð Þ2A

jjrL x þ u; yþ v; tð ÞjjĜ u; v; t; d
!
;A

� �
; ðA4Þ

Here, Ĝðu; v; t; d
!
;AÞ is a Gaussian function with variance t,

masked by the voting area A, and oriented along the voting

direction d
!

. Note that ðu; vÞ is an image point in the voting
area A, which is used to compute the MSCV response at the
point ðx; yÞ. Ĝ is only valid on the voting area A, which is
different from the Gaussian function G in Equation A1 that is
defined over the entire image domain. The MSCV response
value is essentially the convolution between image gradient
magnitudes and the Gaussian function Ĝ over the voting area
A. The radial geometry of cone photoreceptors enhances the
MSCV response in the region centers as illustrated in Figure A2.

MSCV is an iterative searching process. The MSCV re-
sponse image V x; y; rmin; rmax;Dið Þ is zeroed at each iteration,
where i 2 0;N½ � is the iteration index and Di is the angular
search range with DN , Di , D0;D0 ¼ Dmax;DN ¼ 0. Combin-
ing all voting response from different selected points, the
overall MSCV response at each image point in i-th iteration is
defined as

V x; y; rmin; rmax;Dið Þ ¼
X
ðxs;ysÞ2S

Jðx; y; rmin; rmax;Di; xs; ysÞ ðA5Þ

FIGURE A1. Circular voting area A, shown in gray, as defined by

Equation A3.

FIGURE A2. Radial symmetry leads to accumulation of MSCV responses
in the center of circle-like regions. The small unfilled black circles

represent image points with large gradient magnitudes defined in
Equation A3 (e.g., cell region boundaries). Voting areas are cast toward
the concave direction. Due to the radial symmetry, image points near
the region center (black dots) are more likely to accumulate large
MSCV response values, while the points near region boundary (gray

dots) will yield less votes with smaller response values.
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After each iteration, the point with the maximum MSCV
response is found in each voting area (white x’s, Fig. 3).

xm; ymð Þ ¼ argmax
ðx;yÞ2A

V x; y; rmin; rmax;Dið Þ ðA6Þ

The voting direction is next updated by the point xm; ymð Þ,

h x; yð Þ ¼ ðxm � x; ym � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxm � xÞ2 þ ðym � yÞ2

q ðA7Þ

The MSCV response is computed using the current angular
search range Di, and is iteratively updated by reducing Di to
zero.

Combining region identifications at different scale levels
produce a cluster of points for each cone photoreceptor. The
point that contains the highest MSCV response is selected as
the final identification of region center from the point cluster.

Region Size Determination

The region size is determined through scale selection, using
the scale-normalized Laplacian operator28:

r2
normL x; y; tð Þ ¼ t

]2L

]x2
þ ]2L

]y2

� �
ðA8Þ

Its numerical computation can be simplified as the difference
of multiscale image representations between two consecu-

tive scales in terms of the heat equation, which can be der-
ived as

]2L x; y; tkð Þ
]x2

þ ]2L x; y; tkð Þ
]y2

� �
¼ ]L x; y; tkð Þ

]t

’
L x; y; tkþ1ð Þ � L x; y; tkð Þ

tkþ1 � tk
¼ L x; y; ctkð Þ � L x; y; tkð Þ

ctk � tk
ðA9Þ

Therefore,

r2
normL x; y; tkð Þ’ L x; y; ctkð Þ � L x; y; tkð Þ

c� 1
ðA10Þ

The optimal scale t̂ of each region is determined by searching
for the most salient extrema:

t̂ ¼ argmaxmintr2
normL x; y; tð Þ ðA11Þ

Centering

Let the coordinates and optimal scales of dual (bright and dark)
region centers be ðxd; yd; t̂dÞ and xb; yb; t̂bð Þ. The location of
the final cone identification, which is pushed closer to the
region center with larger size, is calculated as

x ¼ xdt̂d þ xbt̂b

t̂d þ t̂b

; y ¼ ydt̂d þ ybt̂b

t̂d þ t̂b

ðA12Þ
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