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Cognition is a complex and dynamic process. It is an essential goal to estimate latent attentional states based on behavioral measures
in many sequences of behavioral tasks. Here, we propose a probabilistic modeling and inference framework for estimating the
attentional state using simultaneous binary and continuous behavioral measures.The proposedmodel extends the standard hidden
Markov model (HMM) by explicitly modeling the state duration distribution, which yields a special example of the hidden semi-
Markov model (HSMM). We validate our methods using computer simulations and experimental data. In computer simulations,
we systematically investigate the impacts of model mismatch and the latency distribution. For the experimental data collected
from a rodent visual detection task, we validate the results with predictive log-likelihood. Our work is useful for many behavioral
neuroscience experiments, where the common goal is to infer the discrete (binary or multinomial) state sequences from multiple
behavioral measures.

1. Introduction

1.1. Motivation. In behavioral neuroscience experiments, a
common task is to estimate the latent attentional or cognitive
state (i.e., the “mind”) of the subject based on behavioral
outcomes. The latent cognitive state may account for an
internal neural process, such as the motivation and attention.
This is important since one can relate the latent attentional
or cognitive state to the simultaneous neurophysiological
recordings or imaging to seek the “neural correlates” at
different brain regions (such as the visual cortex, parietal
cortex, and thalamus) [1–4]. Naive determination of such
latent states might lead to erroneous interpretations of the
result and in some cases even affect the scientific statement.
Therefore, it is important to formulate a principled approach
to estimate the latent state underlying the behavioral task,
such as attention, detection, learning, or decisionmaking [5–
9].

In a typical experimental setup of attention task, animals
or human subjects are instructed to follow a certain (such as

visual or auditory) cue to deliver their attention to execute
the task. At each trial, the experimentalist observes the
animal’s or subject’s behavioral outcome (which is of an
either binary or multiple choice) as well as the latency
(or reaction time) from the cue onset until the execution.
However, it shall be cautioned that the observed behavior
choice does not necessarily reflect the underlying attentional
or cognitive state. For instance, a “correct” behavioral choice
can be due to either unattended random exploration or
attended execution. In contrast, an “incorrect” behavioral
choice can be induced by unattended random exploration
or attended yet erroneous decision. Therefore, a simple and
direct assignment of behavioral outcomes to attentional states
can lead to a false statement or misinterpretation on the
behavior. To avoid such errors, it is essential to incorporate
a priori knowledge or all experimental evidence to estimate
the latent state. One direct behavioral measure is the statistics
of the latency. Another prior information is the task difficulty
and the animal’s overall performance. Based on the animal’s
experiences (naive versus well-trained) or the task difficulty,
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one can make a reasonable assumption about the dynamics
of latent state process. Similar rationale also applies to other
cognitive tasks that involves latent state, such as learning,
planning, and decision making.

Markovian or semi-Markovianmodels are powerful tools
to characterize temporal dependence of time series data.
Markovian models assume history independence beyond
the consecutive states (whether it is first-order or high-
order dependence), whereas semi-Markovian models allow
history dependency; therefore, they are more flexible and
they accommodate the Markovian model as special cases. In
addition, semi-Markovian models can often be transformed
intoMarkovianmodels by embedding or augmentation (such
as the triplet Markov model) [10]. Typically, Markovian
or semi-Markovian models presume stationary probability
distributions (for state transition as well as the likelihood
function) in time, although this assumption may deviate
from the real-life data that often exhibit different degrees of
nonstationarity. Despite such deviation, we still believe that
Markovian or semi-Markovian models are appropriate for
modeling a large class of behavioral data. In addition, statis-
tical models can be adapted to accommodate nonstationarity
via online learning, especially for large data sets [11–13].

1.2. State of the Art. In the literature, there has been a few
works attempting to estimate latent attentional or cognitive
states based on simultaneous binary and continuous behav-
ioral measures [15]. In their work, the latent cognitive state
was modeled as a continuous-valued random-walk process
(which is Markovian). The inference was tackled by an
expectation maximization (EM) algorithm [16, 17] based on
state space analysis [18, 19].

Alternatively, the attentional state can also be charac-
terized by a discrete or binary variable. Assuming that the
attentional state is Markovian or semi-Markovian, one can
model the latent process via a hiddenMarkov model (HMM)
[20, 21] or a variable-duration HMM [22] or a hidden
semi-Markov model (HSMM) [23–27]. We use the semi-
Markovian assumption here. The contribution of this paper
is twofold. First, motivated from neuroscience experiments,
we formulate the behavioral attention task as a latent state
Markovian problem,whichmay open away of data analysis in
behavioral neuroscience. Specifically, we extend the explicit-
durationHMM (orHSMM) tomixed observations (with dis-
crete behavioral outcome and continuous behavioral latency)
and derive the associated statistical inference algorithm.
This can be viewed as modeling conditionally independent
variables with parametric observation distributions in HMM
or HSMM [28]. Second, we apply the proposed method
to analyze preliminary experimental data collected from a
mouse visual attention task.

The rest of the paper is organized as follows. In Section 2,
wewill present themethod that details probabilisticmodeling
and maximum likelihood inference for the HSMM. Section 3
presents the results from simulated data as well as experi-
mental data collected from free-behaving mice performing a
visual detection task.We conclude the paper with discussions
in Section 4.

2. Method

2.1. Probabilistic Modeling. We formulate the attention pro-
cess as a hidden semi-Markov chain of two states, where
S = 𝑆

1:𝑇
∈ {0, 1} (0: unattended; 1: attended) denotes

the latent binary attention variables at trial 𝑡. Conditioned
on the attention state 𝑆

𝑡
, we observe discrete (here, binary)

choice outcomes y = 𝑦
1:𝑇

∈ {0, 1} (0: incorrect; 1: correct)
and continuous, nonnegative latency measures z = 𝑧

1:𝑇
∈

R+. Unlike the HMM, the HSMM implies that the current
state depends not only on the previous state, but also on
the duration of previous state [25, 29]. To model such
time dependence, we introduce an explicit-duration HMM.
Specifically, let 𝜏

𝑡
denote the remaining sojourn time of the

current state 𝑆
𝑡
. In general, the probability distribution of the

sojourn time is

𝑃 (𝜏
𝑡
| 𝑆
𝑡
, 𝜏
𝑡−1

) =

{

{

{

I (𝜏
𝑡
= 𝜏
𝑡−1

− 1) , 𝜏
𝑡−1

> 1

𝑃 (𝜏
𝑡
| 𝑆
𝑡
) , 𝜏

𝑡−1
= 1,

(1)

where the indicator function I(𝜏
𝑡
= 𝜏
𝑡−1

− 1) = 1 if 𝜏
𝑡
=

𝜏
𝑡−1

− 1 and zero otherwise. In the case of modeling intertrial
dependence, the sojourn time 𝜏

𝑡
is a discrete random variable

𝑑; therefore, the explicit duration distribution can be charac-
terized by a matrix P = {𝑝

𝑚𝑑
}, where 𝑝

𝑚𝑑
= 𝑝
𝑚
(𝑑) (𝑑 ∈

{1, 2, . . . , 𝑑max}) and the integer 𝑑max ≤ 𝑇 is the maximum
duration possible in any state or the maximum interval
between any two consecutive state transitions. Because of the
state history dependence, the state transition is only allowed
at the end of the sojourn:

𝑃 (𝑆
𝑡
| 𝑆
𝑡−1

, 𝑑) =

{

{

{

I (𝑆
𝑡
= 𝑆
𝑡−1

) , 1 < 𝑑 ≤ 𝑑max

𝑃 (𝑆
𝑡
| 𝑆
𝑡−1

) , 𝑑 = 1.

(2)

Similar to the standard HMM, the HSMM is also charac-
terized by a transition probability matrix A = {𝑎

𝑚𝑛
} (𝑚, 𝑛 ∈

{0, 1}), where 𝑎
𝑚𝑛

= Pr(𝑆
𝑡
= 𝑚 | 𝑆

𝑡−1
= 𝑛), as well as an

emission probability matrix B = {𝑏
𝑚𝑘
}, where 𝑏

𝑚𝑘
= 𝑃(𝑦

𝑡
=

𝑘, 𝑧
𝑡
| 𝑆
𝑡
= 𝑚) and 𝑘 ∈ {0, 1}. The initial state probability is

denoted by 𝜋 = Pr[𝑆
1
]. For all matrices A, B, and P, the sum

of the matrix rows is equal to one.
Furthermore, we assume the conditional independence

between the binary behavioralmeasure𝑦
𝑡
and the continuous

behavioral measure 𝑧
𝑡
; this implies that

𝑏
𝑚
(𝑦
𝑡
, 𝑧
𝑡
) ≜ 𝑃 (𝑦

𝑡
, 𝑧
𝑡
| 𝑆
𝑡
= 𝑚)

= Pr (𝑦
𝑡
| 𝑆
𝑡
= 𝑚)𝑃 (𝑧

𝑡
| 𝑆
𝑡
= 𝑚) ,

(3)

where 𝑃(𝑧
𝑡
| 𝑆
𝑡
= 𝑚) is characterized by a probability density

function (PDF) parameterized by 𝜉. Since the latency variable
is nonnegative, we can model it with a probability distri-
bution with positive support, such as exponential, gamma,
lognormal, and inverseGaussian distribution. For illustration
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purpose, here wemodel the latency variable with a lognormal
distribution logn(𝜇, 𝜎):

𝑃 (𝑧
𝑡
= 𝑧 | 𝑆

𝑡
= 𝑚) = logn (𝑧 | 𝜇

𝑚
, 𝜎
𝑚
)

≜

1

𝑧√2𝜋𝜎
𝑚

exp(−
(log 𝑧 − 𝜇

𝑚
)

2

2𝜎

2

𝑚

) ,

(4)

where 𝑧 denotes the univariate latency variable; log(𝑧) is
normally distributed with the mean 𝜇

𝑚
and variance 𝜎

2

𝑚
;

and 𝜉 = {𝜇
𝑚
, 𝜎
𝑚
}

1

𝑚=0
. The lognormal distribution is of the

exponential family.
Notes the following.
(i) Note that it is possible to convert a semi-Markovian

chain ({𝑆
𝑡
}) to a Markovian chain by defining an

augmented state {𝑥
𝑡
} = {𝑆

𝑡
, 𝑡
𝑡
} and defining a triplet

Markovian train (TMC) [10]. The triplet Markov
models (TMMs) are general and rich and consist
many Markov-type models as special cases.

(ii) If multivariate observations from behavioral measure
become available, we can introduce multiple proba-
bility distributions (independent case) ormultivariate
probability distributions (correlated case) to charac-
terize statistical dependency [30].

2.2. Likelihood Inference. The goal of statistical inference is
to estimate the unknown latent state sequences S and the
unknown variables {𝜋,A,B,P, 𝜉}. Following the derivation
of [29], here we present an expectation-maximization (EM)
algorithm for simultaneous binary and continuous observa-
tions.

We first define a forward variable as joint posterior
probability of 𝑆

𝑡
and 𝜏
𝑡
:

𝛼
𝑡|𝑡
 (𝑚, 𝑑) ≜ 𝑃 (𝑆

𝑡
= 𝑚, 𝜏

𝑡
= 𝑑 | 𝑦

1:𝑡
 , 𝑧
1:𝑡
) (5)

and the marginal posterior probability

𝛾
𝑡|𝑡
 (𝑚) ≜ Pr (𝑆

𝑡
= 𝑚 | 𝑦

1:𝑡
 , 𝑧
1:𝑡
) =

𝑑max

∑

𝑑=1

𝛼
𝑡|𝑡
 (𝑚, 𝑑) . (6)

In addition, we define the ratio of the filtered conditional
probability over the predicted conditional probability:

𝜌
𝑚
(𝑦
𝑡
, 𝑧
𝑡
) ≜

𝛼
𝑡|𝑡
(𝑚, 𝑑)

𝛼
𝑡|𝑡−1

(𝑚, 𝑑)

=

𝑃 (𝑆
𝑡
= 𝑚, 𝜏

𝑚
= 𝑑 | 𝑦

1:𝑡
, 𝑧
1:𝑡
)

𝑃 (𝑆
𝑡
= 𝑚, 𝜏

𝑚
= 𝑑 | 𝑦

1:𝑡−1
, 𝑧
1:𝑡−1

)

=

𝑃 (𝑦
1:𝑡−1

, 𝑧
1:𝑡−1

) 𝑃 (𝑦
1:𝑡
, 𝑧
1:𝑡

| 𝑆
𝑡
= 𝑚, 𝜏

𝑚
= 𝑑)

𝑃 (𝑦
1:𝑡
, 𝑧
1:𝑡
) 𝑃 (𝑦

1:𝑡−1
, 𝑧
1:𝑡−1

| 𝑆
𝑡
= 𝑚, 𝜏

𝑚
= 𝑑)

=

𝑏
𝑚
(𝑦
𝑡
, 𝑧
𝑡
)

𝑃 (𝑦
𝑡
, 𝑧
𝑡
| 𝑦
1:𝑡−1

, 𝑧
1:𝑡−1

)

=

𝑏
𝑚
(𝑦
𝑡
, 𝑧
𝑡
)

𝑃 (𝑦
𝑡
| 𝑦
1:𝑡−1

) 𝑃 (𝑧
𝑡
| 𝑧
1:𝑡−1

)

,

(7)

where the third step of (7) follows from

𝑃 (𝑦
1:𝑡
, 𝑧
1:𝑡
) = 𝑃 (𝑦

𝑡
, 𝑧
𝑡
, 𝑦
1:𝑡−1

, 𝑧
1:𝑡−1

)

= 𝑃 (𝑦
1:𝑡−1

, 𝑧
1:𝑡−1

) 𝑃 (𝑦
𝑡
, 𝑧
𝑡
| 𝑦
1:𝑡−1

, 𝑧
1:𝑡−1

)

(8)

as well as the Markovian property

𝑃 (𝑦
1:𝑡
, 𝑧
1:𝑡

| 𝑆
𝑡
= 𝑚, 𝜏

𝑚
= 𝑑)

= 𝑃 (𝑦
𝑡
, 𝑧
𝑡
| 𝑦
1:𝑡−1

, 𝑧
1:𝑡−1

, 𝑆
𝑡
= 𝑚, 𝜏

𝑚
= 𝑑)

⋅ 𝑃 (𝑦
1:𝑡−1

, 𝑧
1:𝑡−1

| 𝑆
𝑡
= 𝑚, 𝜏

𝑚
= 𝑑)

= 𝑃 (𝑦
𝑡
, 𝑧
𝑡
| 𝑆
𝑡
= 𝑚)𝑃 (𝑦

1:𝑡−1
, 𝑧
1:𝑡−1

| 𝑆
𝑡
= 𝑚, 𝜏

𝑚
= 𝑑)

≡ 𝑏
𝑚
(𝑦
𝑡
, 𝑧
𝑡
) 𝑃 (𝑦

1:𝑡−1
, 𝑧
1:𝑡−1

| 𝑆
𝑡
= 𝑚, 𝜏

𝑚
= 𝑑)

(9)

and the last step of (7) follows from the conditional indepen-
dence between 𝑦

𝑡
and 𝑧
𝑡
.

To compute the predictive probability, we define 𝑟

−1

1
=

𝑃(𝑦
1
, 𝑧
1
) and

𝑟

−1

𝑡
≜ 𝑃 (𝑦

𝑡
, 𝑧
𝑡
| 𝑦
1:𝑡−1

, 𝑧
1:𝑡−1

)

= ∑

𝑚,𝑑

𝛼
𝑡|𝑡−1

(𝑚, 𝑑) 𝑏
𝑚
(𝑦
𝑡
, 𝑧
𝑡
)

= ∑

𝑚

𝛾
𝑡|𝑡−1

(𝑚) 𝑏
𝑚
(𝑦
𝑡
, 𝑧
𝑡
) ,

(10)

where 𝛾
𝑡|𝑡−1

(𝑚) = ∑
𝑑
𝛼
𝑡|𝑡−1

(𝑚, 𝑑). Therefore, the observed
data likelihood is given by

L = 𝑃 (𝑦
1:𝑇

, 𝑧
1:𝑇

) = (

𝑇

∏

𝑡=1

𝑟
𝑡
)

−1

. (11)

Conditional on the parameters 𝜃 = {𝜋,A,B,P, 𝜉}, the
expected complete data log-likelihood is written as

E [log𝑃 (𝑆
1:𝑇

, 𝑦
1:𝑇

, 𝑧
1:𝑇

| 𝜃)]

= E[

𝑇

∑

𝑡=1

log𝑃 (𝑦
𝑡
| 𝑆
𝑡
, 𝜃) +

𝑇

∑

𝑡=1

log𝑃 (𝑧
𝑡
| 𝑆
𝑡
, 𝜃)

+

1

∑

𝑚=0

log𝜋
𝑚
+

𝑇

∑

𝑡=1

log𝑃 (𝑆
𝑡
| 𝑆
𝑡−1

, 𝜏
𝑡−1

)

+

𝑇

∑

𝑡=1

log𝑃 (𝜏
𝑡
| 𝑆
𝑡
, 𝜏
𝑡−1

)] .

(12)

Optimizing the expected complete data log-likelihood with
respect to the unknown parameters yields the maximum
likelihood estimate.

Similar to [29], we introduce notations for two condi-
tional probabilities:

D
𝑡|𝑡
 (𝑚, 𝑑) ≜ 𝑃 (𝑆

𝑡
= 𝑚, 𝜏

𝑡−1
= 1, 𝜏
𝑡
= 𝑑 | 𝑦

1:𝑡
 , 𝑧
1:𝑡
) ,

T
𝑡|𝑡
 (𝑚, 𝑛) ≜ 𝑃 (𝑆

𝑡−1
= 𝑚, 𝑆

𝑡
= 𝑛, 𝜏
𝑡−1

= 1 | 𝑦
1:𝑡
 , 𝑧
1:𝑡
) ,

(13)
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whereD
𝑡|𝑡
(𝑚, 𝑑) denotes the conditional probability of state

𝑆
𝑡
starting at state 𝑚 and lasts for 𝑑 time units given

the observations; and T
𝑡|𝑡
(𝑚, 𝑛) denotes the conditional

probability of state transition from 𝑆
𝑡−1

= 𝑚 to 𝑆
𝑡
= 𝑛. Note

the consistency holds for ∑
𝑑
D
𝑡|𝑡
(𝑚, 𝑑) = ∑

𝑛
T
𝑡|𝑡
(𝑚, 𝑛).

To derive the forward-backward updates, we further
define a backward variable 𝛽

𝑡
(𝑚, 𝑑) as the ratio of of the

smoothed conditional probability 𝛼
𝑡|𝑇
(𝑚, 𝑑) over the pre-

dicted conditional probability 𝛼
𝑡|𝑡−1

(𝑚, 𝑑):

𝛽
𝑡
(𝑚, 𝑑) ≜

𝛼
𝑡|𝑇

(𝑚, 𝑑)

𝛼
𝑡|𝑡−1

(𝑚, 𝑑)

=

𝑃 (𝑆
𝑡
= 𝑚, 𝜏

𝑡
= 𝑑 | 𝑦

1:𝑇
, 𝑧
1:𝑇

)

𝑃 (𝑆
𝑡
= 𝑚, 𝜏

𝑡
= 𝑑 | 𝑦

1:𝑡−1
, 𝑧
1:𝑡−1

)

=

𝑃 (𝑦
𝑡:𝑇
, 𝑧
𝑡:𝑇

| 𝑆
𝑡
= 𝑚, 𝜏

𝑡
= 𝑑)

𝑃 (𝑦
𝑡:𝑇
, 𝑧
𝑡:𝑇

| 𝑦
1:𝑡−1

, 𝑧
1:𝑡−1

)

,

(14)

where the third equality of (14) follows from

𝑃 (𝑆
𝑡
, 𝜏
𝑡
| 𝑦
1:𝑇

, 𝑧
1:𝑇

)

=

𝑃 (𝑆
𝑡
, 𝜏
𝑡
, 𝑦
𝑡:𝑇
, 𝑧
𝑡:𝑇

| 𝑦
1:𝑡−1

, 𝑧
1:𝑡−1

)

𝑃 (𝑦
𝑡:𝑇
, 𝑧
𝑡:𝑇

| 𝑦
1:𝑡−1

, 𝑧
1:𝑡−1

)

=

𝑃 (𝑆
𝑡
, 𝜏
𝑡
| 𝑦
1:𝑡−1

, 𝑧
1:𝑡−1

) 𝑃 (𝑦
𝑡:𝑇
, 𝑧
𝑡:𝑇

| 𝑆
𝑡
, 𝜏
𝑡
)

𝑃 (𝑦
𝑡:𝑇
, 𝑧
𝑡:𝑇

| 𝑦
1:𝑡−1

, 𝑧
1:𝑡−1

)

.

(15)

For notation convenience, we define another four sets of
random variables:

E
𝑡
(𝑚) ≜ 𝑃 (𝑆

𝑡
= 𝑚, 𝜏

𝑡
= 1 | 𝑦

1:𝑡
, 𝑧
1:𝑡
)

= 𝛼
𝑡|𝑡−1

(𝑚, 1) 𝜌
𝑚
(𝑦
𝑡
, 𝑧
𝑡
) ,

F
𝑡
(𝑚) ≜ 𝑃 (𝑆

𝑡+1
= 𝑚, 𝜏

𝑡
= 1 | 𝑦

1:𝑡
, 𝑧
1:𝑡
)

= ∑
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𝑡
= 𝑚, 𝜏
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= 1)
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| 𝑦
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F
∗

𝑡
(𝑚) ≜

𝑃 (𝑦
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| 𝑦
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)

= ∑

𝑛

𝑎
𝑚𝑛
E
∗

𝑡
(𝑛) ,

(16)

where {E
𝑡
(𝑚),F

𝑡
(𝑚)} and {E∗

𝑡
(𝑚),F∗

𝑡
(𝑚)} represent the

forward and backward recursions, respectively. Note that we
also have [29]

T
𝑡|𝑇

(𝑚, 𝑑) = E
𝑡−1

(𝑚) 𝑎
𝑚𝑛
E
∗

𝑡
(𝑛) ,

D
𝑡|𝑇

(𝑚, 𝑑) = F
𝑡−1

(𝑚) 𝑝
𝑚
(𝑑) 𝛽
𝑡
(𝑚, 𝑑) .

(17)

2.3. EM Algorithm. The EM algorithm for the explicit-
durationHMMconsists of a forward-backward algorithm (E-
step) and the reestimation (M-step). The E- and M-steps are

run alternatingly to optimize the expected log-likelihood of
the complete data (12).

In the E-step of forward-backward algorithm (note that
when 𝑑max = 1, the forward-backward algorithm reduces to
the standard Baum-Welch algorithm used for the HMM.),
we can recursively update the forward variable 𝛼

𝑡|𝑡−1
(𝑚, 𝑑)

and backward variable 𝛽
𝑡
(𝑚, 𝑑). Specifically, in the forward

update,

𝛼
𝑡|𝑡−1

(𝑚, 𝑑)

= F
𝑡
(𝑚) 𝑝
𝑚
(𝑑) + 𝜌

𝑚
(𝑦
𝑡−1

, 𝑧
𝑡−1

) 𝛼
𝑡−1|𝑡−2

(𝑚, 𝑑 + 1) ,

(18)

with an initial value 𝛼
1|0
(𝑚, 𝑑) = 𝜋

𝑚
𝑝
𝑚
(𝑑). And in the

backward update,

𝛽
𝑡
(𝑚, 𝑑) =

{

{

{

F∗
𝑡+1

(𝑚) 𝜌
𝑚
(𝑦
𝑡
, 𝑧
𝑡
) , 𝑑 = 1

𝛽
𝑡+1

(𝑚, 𝑑 − 1) 𝜌
𝑚
(𝑦
𝑡
, 𝑧
𝑡
) , 𝑑 > 1

(19)

with an initial value 𝛽
𝑇
(𝑚, 𝑑) = 𝜌

𝑚
(𝑦
𝑇
, 𝑧
𝑇
) for any 𝑑. In

the end, we obtain the smoothed conditional probabilities
𝛼
𝑡|𝑇
(𝑚, 𝑑) = 𝛼

𝑡|𝑡−1
(𝑚, 𝑑)𝛽

𝑡
(𝑚, 𝑑), 𝛾

𝑡|𝑇
(𝑚) = ∑

𝑑
𝛼
𝑡|𝑇
(𝑚, 𝑑),

andD
𝑡|𝑇
(𝑚, 𝑑) andT

𝑡|𝑇
(𝑚, 𝑛).

In the M-step, we use the smoothed probabilities for
reestimating the model parameters ̂𝜃:

�̂�
𝑚
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𝛾
1|𝑇
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𝑎
𝑚𝑛

=
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𝑇
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𝑚
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(20)

where 𝑁
𝜋
, 𝑁
𝑎
, 𝑁
𝑝
, and 𝑁

𝑏
are normalizing constants such

that the sum of probabilities is equal to one. In addition, the
unbiased maximum likelihood estimates of (𝜇

𝑚
, �̂�

2

𝑚
) in the

lognormal distribution are given by

𝜇
𝑚
=

𝑇
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𝑤
𝑡
(𝑚) log (𝑧
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,

(21)

where 𝑤
𝑡
(𝑚) = 𝛾

𝑡|𝑇
(𝑚)/∑

1

𝑛=0
𝛾
𝑡|𝑇
(𝑛).

Upon the algorithmic convergence (the convergence
criterion is set as the consecutive log-likelihood increment
is less than a small-valued threshold, say 10−5), we compute
the maximum a posteriori (MAP) estimates of the state and
duration as

(
̂
𝑆
𝑡
, 𝜏
𝑡
) = argmax

(𝑚,𝑑)

D
𝑡|𝑇

(𝑚, 𝑑) . (22)



Computational Intelligence and Neuroscience 5

2.4.Model Selection. In practice, themaximum length of state
duration 𝑑max is usually unknown, and we need to estimate
the order of the HSMM (since the state dimensionality is
fixed here). In statistics, common model selection criteria
include the Akaike information criterion (AIC) or Bayesian
information criterion (BIC):

AIC = −2 logL + 2ℓ,

BIC = −2 logL + ℓ log𝑇,
(23)

where ℓ denotes the total number of free parameters in the
model. Alternative order estimator has been suggested [25]:

̂
𝑑max = arg min

𝑑max≥1
{− logL + 2𝑐

2 log𝑇} (24)

with 𝑐 = 4𝑑

2

max.
It shall be emphasized that the AIC and BIC are only

asymptotically optimal in the presence of large amount of
samples. In practice, experimental behavioral data is often
short, and therefore it shall be used with caution or combined
with other criteria.

2.5. Alternative Parametric Formulation. Previously, we have
assumed a nonparametric probability for 𝑝

𝑚𝑑
= 𝑝
𝑚
(𝑑) (𝑑 =

1, . . . , 𝑑max), which has (𝑚 − 1)𝑑max degrees of freedom.
Alternatively, we may assume that the state duration is
modeled by a parametric distribution, such as the geometric
distribution

𝑝
𝑚
(𝑑) ≡ Pr (𝜏

𝑚
= 𝑑) = (1 − 𝜌

𝑚
)

𝑑−1

𝜌
𝑚

(𝑑 = 1, . . . , 𝑑max) ,

(25)

where 0 < 𝜌
𝑚
≤ 1,E[𝜏

𝑚
] = 1/𝜌

𝑚
, and var[𝜏

𝑚
] = (1−𝜌

𝑚
)/𝜌

2

𝑚
.

In this case, the probabilisticmodel has𝑚degrees of freedom.
For the associated EM algorithm, the E-step remains

similar (replacing the calculation of 𝑝
𝑚
(𝑑)), whereas the M-

step includes additional step to update the parameters of
parametric distribution. For instance, in the case of geometric
distribution, the parameter 𝜌

𝑚
is updated as

𝜌
𝑚
=

∑

𝑇

𝑡=2
𝛾
𝑡|𝑇

(𝑚)

∑

𝑇

𝑡=2
∑

𝑑max
𝑑=1

𝑑D
𝑡|𝑇

(𝑚, 𝑑)

(26)

which is similar to the methods of moments in maximum
likelihood estimation.

3. Results

3.1. Simulated Data

Setup. In computer simulations, we set the total number of
trials as 𝑇 = 100, with the maximum state duration 𝑑max = 4.
We simulate the state sequences and observations using the
following matrices:

A = [

0.30 0.70

0.15 0.85

] , B = [

0.70 0.30

0.05 0.95

] ,

P = [

0.15 0.50 0.30 0.05

0.01 0.20 0.60 0.19

] .

(27)
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Figure 1: Simulated data: the attended and unattended states have
distinct latency distributions (i.e., two modes), as characterized by
two lognormal distributions (solid lines).

The structure of the matrix P implies that, for the unattended
state, there is a higher probability for state duration of two; for
the attended state, the highest probability is for state duration
of three. Conditional on the attentional state, the latency
variable 𝑧

𝑡
is assumed to follow a lognormal distribution:

logn(6, 0.5) (for the unattended state) and logn(5, 0.2) (for the
attended state). Two distributions have approximately 13.5%
overlap in the area (Figure 1). One realization of simulated
latent attentional state sequence 𝑆true

1:𝑇
and behavioral sequence

𝑦
1:𝑇

are shown in Figure 2. Comparing Figures 2(d) and 2(e)
in this illustration, we can see the estimate using both
behavioral measures is more accurate and closer to the
ground truth (Figure 2(a)).

Assessment. Given the observations 𝑦
1:𝑇

and 𝑧
1:𝑇

, we run the
inference algorithm to estimate the state sequence ̂𝑆

1:𝑇
. In the

simulation where the ground truth is known, the estimation
error is defined as

err = √

𝑇

∑

𝑡=1







̂
𝑆
𝑡
− 𝑆
𝑡







2

.
(28)

In addition, we define the baseline error as err
0

=

√
∑

𝑇

𝑡=1
|𝑦
𝑡
− 𝑆
𝑡
|

2 and further compute the relative improve-
ment percentage (RIP):

RIP =

err
0
− err

err
0

× 100%. (29)

A higher value of RIP implies better improvement in the
state estimate. For comparison, we run the HSMM-EM
algorithm to compute two error rates, one using binary
observations 𝑦

1:𝑇
only (method 1), the other using both

binary and continuous observations {𝑦
1:𝑇

, 𝑧
1:𝑇

} (method 2).
We also apply the standard HMM-EM algorithm to analyze
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Figure 2: Simulation result. (a) ground truth state sequences. (b)
State duration at each trial. (c) Behavioral choice. (d) HSMM esti-
mated state sequence (blue) based on binary behavioral outcomes
only (green: state posterior probability). (e) HSMM estimated state
sequence (red) based on both binary and continuous behavioral
measures (note the MAP and posterior probability nearly overlap).
(f) Estimation error between (a) and (e).

the same data using both binary and continuous observation.
Furthermore, we consider two scenarios for HSMM. In the
first scenario, we assume that the true model order 𝑑max = 4

is known. In the second scenario, we vary the model order by
±2 from the true model order 𝑑max (i.e., model mismatch).

We compare the RIP statistic based on 100 independent
Monte Carlo runs (although the setup is same, the simulated
state sequences and behavioral outcomes are different in each
run). The results are summarized in Tables 1 and 2. In both
cases, we found that theHSMM(method 2) using both binary
and continuous measures yields the best RIP statistic. As
expected, when there is a model mismatch from the data, the
accuracy of the state estimate degrades.

Table 1: Results on the state estimate from the simulated hidden
semi-Markovian chain (mean ± sem, computed from 100 indepen-
dent Monte Carlo runs). The best result is marked in bold font. In
contrast, the RIP obtained from the HMM is 0.623 ± 0.025.

HSMM (method 1) HSMM (method 2)
RIP (𝑑max = 4) 0.084 ± 0.022 0.636 ± 0.025
RIP (𝑑max = 2) 0.091 ± 0.019 0.608 ± 0.024

RIP (𝑑max = 6) 0.027 ± 0.022 0.611 ± 0.024

Table 2: Results on the parameter estimate from the simulated
hidden semi-Markovian chain (mean ± sem, computed from 100
independent Monte Carlo runs).

Parameter HSMM estimate
𝜇
1
= 6 5.987 ± 0.010

𝜎
1
= 0.5 0.479 ± 0.007

𝜇
2
= 5 4.997 ± 0.002

𝜎
2
= 0.2 0.197 ± 0.002

The results of the HSMM estimate certainly depend on
the exact simulation setup. It is expected that when the
two-state latency distributions are heavily overlapped (see
Figure 1), the estimation error may increase; on the other
hand, if the semi-Markovian dynamics can be well approx-
imated by a Markovian dynamics, the difference between
the HSMM and HMM will become small. To investigate
this issue, we systematically change one of the lognor-
mal distribution (i.e., 𝜇

1
) while keeping other parameters

unchanged. Essentially, when 𝜇
1
and 𝜇

2
are close in value,

there will be a strong overlap in the latency distributions.
As seen in Table 3, as 𝜇

1
decreases, the distribution overlap

gradually increases; consequently, the performance also grad-
ually degrades. However, the HSMM (method 2) using both
binary and continuous behavioral measures still significantly
outperforms the HSMM (method 1, comparing Table 1), even
in the extreme situation where 𝜇

1
= 𝜇
2
= 5.0.

Testing the Robustness to Semi-Markovian Assumption. In
addition, we test the robustness of our HSMM and the
semi-Markovian assumption for Markovian-driven data. To
do that, we generate data from a simple Markovian chain
(with a similar setup as before) and then run HMM-EM
andHSMM-EM algorithms to compare their RIP.TheMonte
Carlo results are summarized in Table 4. As seen in this
case, the HMM result is slightly more accurate (yet not
statistically significant) than the HSMM results because of
the nature of Markovian chain; meanwhile, it also confirms
the robustness of the HSMM to the Markovian or semi-
Markovian assumption.

Testing the Robustness to Nonstationarity. Next, we test the the
robustness of HSMM and the EM algorithm to nonstationar-
ity. We test two types of nonstationarity: state transition and
slow drift of parameter in the likelihood model. In the first
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Table 3: Results on the state estimate from the simulated hidden
semi-Markovian chain (mean ± sem, computed from 100 inde-
pendent Monte Carlo runs). The other model parameters remain
unchanged. All analyses are based on 𝑑max = 4.

Mean
parameter

Distribution
overlap RIP (HSMM, method 2)

𝜇
1
= 6.0 13.5% 0.636 ± 0.025

𝜇
1
= 5.8 22.2% 0.540 ± 0.024

𝜇
1
= 5.5 39.4% 0.388 ± 0.026

𝜇
1
= 5.2 54.9% 0.224 ± 0.019

𝜇
1
= 5.0 58.5% 0.214 ± 0.023

Table 4: Results on the state estimate from the simulated hidden
Markovian chain (mean ± sem, computed from 100 independent
Monte Carlo runs).

HMM HSMM
(𝑑max = 2)

HSMM
(𝑑max = 3)

HSMM
(𝑑max = 4)

RIP 0.365 ± 0.021 0.354 ± 0.022 0.351 ± 0.022 0.324 ± 0.022

case, we consider the state transition in the second half of data
sequences are governed by a slightly different probability:

A = [

0.50 0.50

0.35 0.65

] , P = [

0.20 0.60 0.15 0.05

0.05 0.30 0.35 0.30

] ; (30)

yet the other model parameters and 𝑇 remain unchanged.
We reestimate the state sequences from simulated data (using
HSMM method 2) from 100 independent Monte Carlo runs
and obtain the RIP (𝑑max = 4) statistic as 0.635 ± 0.022.

In the second case, we allow the parameters of lognormal
distribution slightly drift in the second half of data sequences:
𝜇
1
= 5.5, 𝜎

1
= 0.35 (state 1) and 𝜇

2
= 4.5, 𝜎

2
= 0.15 (state

2), yet the other model parameters and 𝑇 remain unchanged.
Namely, in the second half, the mean and standard deviation
statistics of the latency are reduced for both states and their
mode gap is also narrowed. For the new data, we reestimate
the state sequences from 100 independent Monte Carlo runs
and obtain the RIP (𝑑max = 4) statistic as 0.480 ± 0.029.

The result of the first case is not significantly different
from that of the stationary setup, and the estimation accuracy
in the second case is slightly reduced. The reduction is
mostly because the latency variable is more informative in
determining the attentional state. Overall, it is concluded that
the HSMMmethod with mixed observations is rather robust
to data nonstationarity.

3.2. Experimental Data

Protocol and Animal Behavior. All experiments were per-
formed in VGAT-cre mice and conducted according to the
guidelines of Institutional Animal Care and Use Committee
atMassachusetts Institute of Technology and the USNational
Institutes of Health. All behavioral and physiological data
were collected by Dr. Michael Halassa and his team. For
details, see [14, 31].

Mice were trained on a visual detection task that requires
attentional engagement. Experiments were conducted in a
standardmodular test chamber.The front wall contained two
white light emitting diodes, 6.5 cm apart, mounted below two
nose-pokes. A third nose-poke with response detector was
centrally located on the grid floor, 6 cm away from the base
wall and two small Plexiglas walls (3 × 5 cm), opening at an
angle of 20, served as a guide to the poke. All nose-pokes
contained an infrared LED/infrared phototransistor pair for
response detection. At the level of the floor-mounted poke,
two headphone speakers were introduced into each sidewall
of the box, allowing for sound delivery. Trial logic was
controlled by custom software running on a microcontroller.
Liquid reward consisting of 10 𝜇L of evaporated milk was
delivered directly to the lateral nose-pokes via a single-
syringe pump.

A white noise auditory stimulus signaled the opportunity
to initiate a trial. Mice were required to hold their snouts for
0.5–0.7 s into the floormounted nose-poke unit for successful
initiation (stimulus anticipation period). Following initia-
tion, a stimulus light (0.5 s) was presented either to the left
or to the right. Responding at the corresponding nose-poke
resulted in a liquid reward (10 𝜇L evaporatedmilk) dispensed
directly at the nose-poke (see Figure 3).

Model Selection and Assessment of Behavioral Data. The
animal behavior (performance and latency) varied at different
experimental sessions.Thenumber of trials per session varied
between 73 and 152 (mean ± SD: 108 ± 22). The average
error rate of the visual detection task across total 20 sessions
from two animals is 24 ± 13% (mean ± SD; minimum
6%, maximum 51%). Although the number of states is fixed
to two, the model order parameter 𝑑max remains to be
determined. For the two experimental sessions studied here,
their basic statistics are shown in Table 5. Notably, for Dataset
1, the average latency is longer (yet statistically nonsignificant,
𝑃 > 0.05, rank-sum test) in incorrect trials than correct
trials, whereas for Dataset 2, the average latency is shorter
(yet statistically nonsignificant, 𝑃 > 0.05, rank-sum test) in
incorrect trials than correct trials.

We use 80% data samples for parameter estimation and
the remaining 20% for evaluation. In model selection, we
compute the AIC and BIC to select a suboptimal 𝑑max. The
model selection results for two experimental datasets are
shown in Figure 4. Specifically, we found that, for Dataset
1, there is no local minimum within the range of 2 to 9
based on both criteria; whereas for Dataset 2, there is a local
minimum 𝑑max = 3 based on the AIC. As a demonstration,
Figure 5 presents the estimated state sequences from Dataset
2 based on 𝑑max = 3 (Dataset 2). Notably, the estimate of
state sequences is nearly identical using 𝑑max = 5 (if based
on the predictive log-likelihood of Table 4). In this case, we
observe a relatively big discrepancy between the observed
behavioral outcomes and the estimated state sequences. This
may be partially due to the high error rate (around 51%) in
behavior during this session; notably, unlike most of other
sessions, this dataset has an abnormal statistic in that the
average error-trial latency is shorter than the average correct-
trial latency. Other possible reasons can be the insufficiency
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Figure 3: Schematic of the mouse visual detection task (from [14]).
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Table 5: Experimental data statistics from two recording sessions.

Number of
trials

(correct/error)
Latency (correct) Latency (error)

Dataset 1 73 (46/27) 6.54 ± 0.44 (s) 7.54 ± 1.31 (s)
Dataset 2 98 (48/50) 7.03 ± 0.85 (s) 6.23 ± 0.71 (s)
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Figure 5: Observed binary behavioral outcomes and estimated
attentional state sequences (Dataset 2, using 𝑑max = 3 based on the
AIC). In this example, #{𝑌

𝑡
= 1, 𝑆

𝑡
= 0} = 33 and #{𝑌

𝑡
= 0, 𝑆

𝑡
= 1} =

12.

of the HSMM or model mismatch or the local maximum of
EM optimization. Some of these points will be discussed in
the next section.

Since there is no “ground truth” for the attentional state
sequences, we also compute the predictive log-likelihood
of the 20% held-out data (Table 6). In Table 6, the lowest
predictive log-likelihood value is obtained for 𝑑max = 7 for
Dataset 1 and 𝑑max = 5 for Dataset 2.

4. Discussion

In this paper, we have proposed a probabilistic modeling and
inference framework for estimating latent attentional states
based on simultaneous binary and continuous behavioral
measures. The proposed model extends the standard HMM
by explicitly modeling the state duration distribution, which
yields a special example of the HSMM. The semi-Markovian
assumption provides greater flexibility to characterize latent
state dynamics.

Estimation of latent attentional states allows us to better
interpret the neurophysiological data. Our framework for
estimating attentional states is by no means limited by the
behavioral measures considered here. In human attention
tasks, we may also incorporate other sorts of behavioral
measures, such as psychophysics [32].

Bayesian Inference and Model Extension. For the simultane-
ous binary and continuous behavioral measures, we have
extended the maximum-likelihood based EM algorithm of
[29] for estimating the HSMM parameters, and we have used
the AIC or BIC for model selection. The likelihood inference

Table 6: Predicted log-likelihood on the held-out experimental data
(using both binary and continuous behavior measures).The greatest
value is in bold font.

HSMM Dataset 1 Dataset 2
𝑑max = 2 −22.34 −29.02

𝑑max = 3 −28.25 −75.25

𝑑max = 4 −31.08 −71.88

𝑑max = 5 −30.76 −25.09
𝑑max = 6 −30.76 −28.37

𝑑max = 7 −21.13 −27.88

𝑑max = 8 −25.80 −27.38

𝑑max = 9 −25.33 −25.19

maynot yield consistent estimate given a small sample size (in
our setup, the sample size𝑇 is around 100, whereas the degree
of freedom in the parameters is around 10–14). This imposes
a strong limitation of the likelihood method on model
selection in the presence of short behavioral data sequences.
An alternative approach is to consider Bayesian inference,
either variational or sampling-based Bayesian methods [33–
35]. The Bayesian methods may potentially help alleviate
the local optimum problem experienced in the likelihood-
based EM optimization. Another possibility is to employ the
Monte Carlo EM algorithm [26], in which the E-step replaces
the traditional Baum-Welch algorithm with reversible jump
Markov chain Monte Carlo (MCMC) sampling (where the
number of transitions is unknown), and the state estimate is
given by the average of Monte Carlo samples [26, 36]. In this
case, the estimate obtained from the standard EM algorithm
can serve as the initial point for the reversible jump MCMC
algorithm [26]. Development of efficient Bayesian inference
algorithms will be subject of future work.

The HSMM, or the explicit-duration HMM, is closely
related to other work in the literature, such as the sticky
HMM [37], sticky HDP-HMM [38], and HDP-HSMM [39].
In these lines of work, the number of states is characterized by
a hierarchical Dirichlet process (HDP). Although this is not
the issue in our paper (i.e., the number of states is fixed to be
two), it may be considered in other multiple-state estimation
scenarios. Another possible model extension is to consider a
nonparametric Bayesian formulation that allows infinite state
duration in HSMM (provided that a large amount of data
become available).

Verification of Experimental Data Analysis. In experimental
data analyses, it is likely that our proposed probabilistic
model is insufficient to capture the underlying state dynamics
(e.g., nonstationary or switching state dynamics [40]), or that
there might be a model mismatch between the empirical
latency distribution and the assumed parametric distribution
(e.g., lognormal, gamma, or inverseGaussian). In all analyses,
we have witnessed two types of estimation results: one is
that the outcome is correct, yet the state is determined to be
unattended (i.e.,𝑌

𝑡
= 1, ̂𝑆
𝑡
= 0); another is that the outcome is

incorrect, yet the state is identified to be attended (i.e.,𝑌
𝑡
= 0,

̂
𝑆
𝑡
= 1). Since there is no ground truth, it would be reassuring
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to have another independent measure to corroborate the
attentional state estimate. Alternatively, according to the
prior knowledge of practical requirement, one may need
to formulate a “behaviorally constrained” model and derive
a specific “constrained” inference algorithm. This line of
research remains to be investigated in the future work.

The ultimate goal of behavioral analysis is to corroborate
the neurophysiological data.Therefore, it is also important to
verify the results by examining the neural correlates of the
attention tasks. This can be in the form of either neuronal
firing rate, spike timing or phase synchrony or oscillatory
dynamics (power or phase), or LFP evoked potentials, by
which one can establish a robust relationship between the
attended state and the physiology. In the absence of ground
truth, we can rely on the “consistency truth” (condition 1:
𝑌
𝑡
= 1, ̂𝑆

𝑡
= 1 and condition 2: 𝑌

𝑡
= 0, ̂𝑆

𝑡
= 0) and com-

pare their differences in neural correlates. However, detailed
experimental investigation of attentional neural correlates is
beyond the scope of current paper.
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