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Abstract: Atherosclerosis represents one of the major causes of death globally. The high mortality
rates and limitations of current therapeutic modalities have urged researchers to explore potential
alternative therapies. The clustered regularly interspaced short palindromic repeats-associated
protein 9 (CRISPR/Cas9) system is commonly deployed for investigating the genetic aspects of
Atherosclerosis. Besides, advances in CRISPR/Cas system has led to extensive options for researchers
to study the pathogenesis of this disease. The recent discovery of Cas9 variants, such as dCas9,
Cas9n, and xCas9 have been established for various applications, including single base editing,
regulation of gene expression, live-cell imaging, epigenetic modification, and genome landscaping.
Meanwhile, other Cas proteins, such as Cas12 and Cas13, are gaining popularity for their applications
in nucleic acid detection and single-base DNA /RNA modifications. To date, many studies have
utilized the CRISPR/Cas9 system to generate disease models of atherosclerosis and identify potential
molecular targets that are associated with atherosclerosis. These studies provided proof-of-concept
evidence which have established the feasibility of implementing the CRISPR/Cas system in correcting
disease-causing alleles. The CRISPR/Cas system holds great potential to be developed as a targeted
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treatment for patients who are suffering from atherosclerosis. This review highlights the advances
in CRISPR/Cas systems and their applications in establishing pathogenetic and therapeutic role of
specific genes in atherosclerosis.

Keywords: CRISPR/Cas9; atherosclerosis; gene editing; gene therapy

1. Introduction

Cardiovascular diseases (CVDs) refer to a group of disorders that affect the heart and
blood vessels, including hypertension, coronary heart disease, heart failure, rheumatic
heart disease, congenital heart disease and cardiomyopathies, cerebrovascular disease, and
peripheral vascular disease [1]. Atherosclerosis represents one of the main underlying
causes of CVD, characterized by the presence of fibro-fatty lesions in the artery wall due to
lifelong exposure to elevated low-density lipoprotein (LDL) cholesterol [2]. Lipid-lowering
drugs are the primary therapeutic strategy for managing atherosclerosis. A drug such
as statin helps in lowering LDL cholesterol and can be prescribed as a primary [3] and
secondary prevention drug [4] for atherosclerosis treatment. Statins inhibit 3-hydroxy-
3-methylglutaryl-CoA reductase (HMG-CoAR), a key enzyme which is involved in the
synthesis of cholesterol. Non-statin lipid-lowering drugs, such as bile-acid sequestrants
(e.g., Ezetimibe), are alternative options which inhibit the absorption of cholesterol into
enterocytes of small intestine and reducing the LDL cholesterol levels. In combination
therapies, statin can be combined with ezetimibe, and the treatment was shown to provide
additional 15-20% reduction in LDL cholesterol levels [5]. On the other hand, there is an
increasing focus on the proprotein convertase subtilisin/kexin type 9 (PCSK9) enzyme,
which plays a key role in plasma cholesterol metabolism [6]. PCSK9 inhibitors such as
evolocumab [7-9], alirocumab [10] that target PCSK9 enzyme have been tested in clinical
trials and showed efficacy in lowering LDL cholesterol levels.

Considering that atherosclerosis constitutes a long pre-clinical phase, early detection of
atherosclerosis may allow identification of individuals at risk for developing atherosclerotic
clinical events and provides an opportunity for prevention. Both subclinical and clinical
atherosclerosis has known genetic components, and novel causal therapeutic targets are
being identified in several genetic studies. For instance, two prominent loci, SERPINA1
and AQPY, were identified as potential candidate genes of atherosclerosis in a multi-
phenotype genome-wide association study (GWAS) [11]. SERPINA1 gene encodes for
alpha 1-antitrypsin (A1AT), a protease inhibitor that enhances the degradation of LDL [12].
On the other hand, the AQP9 gene coordinates the transport of glycerol in liver, and it
is associated with reducing lipid accumulation in hepatocytes [13]. Besides, a genome-
wide interaction study (GWIS) between genetic and environmental exposures uncovered
several novel genetic variants in FCAMR (Fc fragment of IgA and IgM receptor)-PIGR
(polymeric immunoglobulin receptor) locus that are associated with coronary atheroscle-
rosis in individuals who are chronically exposed to traffic air pollution [14]. Another
GWIS on gene-smoking interactions identified two novel genetic variants (e.g., rs1192824
and rs77461169) in the regulatory region of TBC1 domain family member 8 (TBC1D8)
gene that affect carotid intima-media thickness and thus, increased consequent risk for
atherosclerosis [15].

In line with these genetics and genomics studies, nucleic acid-based cardiovascular
therapies are developing rapidly and have shown significant progress in the safety and
efficacy for atherosclerosis treatment. Some prominent clinical studies of RNA-targeted
nucleic acid-based therapeutics utilize small interfering RNAs (siRNAs) and antisense
oligonucleotides (ASOs) to inhibit the production of proteins that are involved in lipid
homeostasis such as apolipoprotein B (APOB), PCSK9, angiopoietin such as 3 (ANGPTL3),
and apolipoprotein C3 (APOC3). The double-stranded siRNA has the capability to target
and induce cleavage of mRNAs [16]. Inclisiran is the first-in-class cholesterol lowering
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siRNA conjugated to triantennary N-acetylgalactosamine carbohydrates (GalNAc) which
inhibits the translation of PCSK9 and reduces levels of LDL cholesterol [17]. It was ap-
proved by EU in Dec 2020 for treatment of primary hypercholesterolaemia (heterozygous
familial and non-familial) or mixed dyslipidaemia. ASO, on the other hand, is a short,
single-stranded oligo that prevents protein translation by binding to mRNA target [18].
Mipomersen is an FDA approved ASO drug that binds to APOB-encoding mRNA, which
prevents the translation of APOB and reduces LDL cholesterol level [19-21].

The discovery of CRISPR/Cas has emerged as an effective genome editing tool due to
its ease of customization, feasibility to target almost any genome regions, and high editing
efficiency with multiplexing capability. Numerous experimental studies have shown that
correction of single gene defect can be achieved by the use of CRISPR/Cas technology
in atherosclerosis models. This genome editing tool provides compelling alternatives
to current treatment options (statins and ezetimibe), which require multiple dosages
during the course of the disease. It has immense potential in facilitating development of
atherosclerosis disease models and nucleic acid-based cardiovascular therapy. Despite its
potential, there are two major limitations associated with this technology for its clinical
translation. First, low delivery efficacy of therapeutic CRISPR tools results in non-specific
targeting. Second, there are possible off-target mutations which may cause unwarranted
side effects. Further research in this field is essential before it can be expanded for clinical
treatment and prevention of atherosclerosis.

2. CRISPR/Cas System: Experimental Considerations in Atherosclerosis Models

CRISPR/Cas system was first discovered in the genome of prokaryotes in 1987 [22],
but its role in adaptive immunity was not known until 2007 [23]. The basic mechanism of
CRISPR/Cas genome editing has been extensively discussed elsewhere [23-25]. Briefly,
genome editing takes advantage of the CRISPR/Cas-mediated double-strand break (DSB)
at desired genome sites. DSB activates either non-homologous end-joining (NHE]) or
homology-directed repair (HDR) pathway. In NHE], the repair pathway mediates direct
re-ligation of the excised DNA, which often results in the introduction of insertions and/or
deletions (indels). The introduced indels result in either frameshift mutations or in-frame
insertions/deletions, generally resulting in gene “knockout”. Conversely, HDR repair
requires a donor DNA template (i.e., single or double stranded DNA) with flanking
homology arms for precise replacement or repair at the cleavage site [26—29]. In general,
NHE] is the dominant repair pathway, while HDR tends to occur at a lower frequency and
is usually limited to proliferating cells (i.e., S phase or G2 phase cell proliferation) [30-32].

Among all identified types of CRISPR/Cas systems, the one derived from Streptococcus
pyogenes (Type II) is the most commonly used and well-characterized [33-35], which
consists of Cas9 protein and a single guide RNA (sgRNA). Meanwhile, Streptococcus
pyogenes Cas9 (spCas9) derivatives, such as spCas9-NG and xCas9, are also being used for
genome editing. Both spCas9-NG and xCas9 variants have better PAM flexibility, and the
former recognizes any target site with NG without any preference for the third nucleotide,
while the latter has broader PAM compatibility that allows recognition of NG, GAT, and
GAA [36,37]. Some studies utilize catalytically impaired Cas9 protein, also known as dCas9
(dead Cas9). A dCas9-gRNA ribonucleoprotein (RNP) complex can bind the promoter or
regulatory regions of a target gene to induce transcriptional activation or inhibition [38—43].
Both CRISPR-activation (CRISPRa) and CRISPR-interference (CRISPRi) approaches can
regulate multiple gene expressions simultaneously [44-46].

2.1. Types of Cells Used in CRISPR/Cas9 Applications

CRISPR/Cas9 can be performed on various cellular sources including somatic cells,
zygotes/embryos, and pluripotent stem cells [47,48]. However, the choice of cells for
genome editing application may present different technical and ethical issues. Depending
on the cell type and cell state, the efficiency of DNA repair mechanisms, either NHE] or
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HDR, varies substantially [49]. NHE] can happen in most cell types including actively
dividing and post-mitotic cells, whereas HDR perform better in proliferating cells [50].

Specific cell types, such as liver Kupffer cells (KCs) or liver resident macrophages,
were used in the investigation of iron metabolism and atherosclerosis development. It was
shown that KCs play a central role in transferring LDL-derived cholesterol to hepatocytes
via ATP binding cassette subfamily A member 1 (ABCA1) in the presence of iron [51].
Human liver cell line Huh?, on the other hand, was used to investigate coronary artery
disease (CAD) risk and atherosclerosis associated with increased milk fat globule EGF and
factor V/VIII domain containing (MFGES) expression [52]. Other immortal leukemic cell
lines, such as K562 and Meg-01, were used to investigate the relationship between CD36
expression and the risk of thrombo-embolism [53]. Meg-01 cell line displays phenotypic
properties that resemble megakaryocytes and produces functional platelets, which is
suitable for studying platelet functions [54], whereas K562 cell line possesses myelogenous
origin which allowed high transfection efficiency and comparable expression profile with
megakaryocytes [53].

Primary cells such as mesenchymal stem cells (MSCs) are capable of self-renewal
and differentiating into various cell types, and they are recognized as a promising tool
with high therapeutic utility and disease modeling [55,56]. For instance, MSCs from
individuals with both atherosclerosis and T2DM have been used for the evaluation on
the role of NF-«B in immuno-potency, and it was shown that constitutively active nuclear
factor kappa B kinase subunit beta (IKKB) reduces the immuno-potency by changing
their secretome composition [57]. Recent studies have also used MSC as a model to
evaluate cardioprotective effects of LEF1 from oxidative stress conditions [58]. Besides,
the human aortic endothelial cells (HAECs) are also widely used to study endothelial
pathophysiology, due to its essential role in pro- and anti-thrombotic activities as well as
modulating inflammatory processes [59]. HAEC was used to investigate the effects of a
noncoding polymorphism involved in endothelial mechanosensing mechanisms [60].

Human pluripotent stem cells (hPSCs) which encompass both human embryonic
stem cells (hESCs) and induced pluripotent stem cells (iPSCs), is an attractive option for
in vitro atherosclerosis model system [61]. Both cell lines can be reprogrammed and differ-
entiated into specific cells for functional analysis. However, the use of hESC for research
purposes remain controversial due to the use of early embryos [62]. However, the scientific
community argues that hESCs should not be regarded as equivalent to embryos since the
isolated hESC is unable to developed into a human being [62,63]. Meanwhile, iPSCs is
genetically identical to the donor which allows reaffirmation of the patient phenotype
with the in vitro cellular phenotype [61]. For instance, iPSC is used to generate vascular
smooth muscle cells (VSMCs) to model the protective effects of arylacetamide deacetylase
(AADAC) over-expression against atherosclerosis [64].

Nevertheless, the drawback of iPSC is that the comparison of iPSC lines between
different individuals can be confusing due to the difference in epigenetics modifications and
its capacities to differentiate into desired specialized cells [65]. Besides, iPSC is also prone
to undesired genetic modifications during reprogramming [66]. Furthermore, genome
editing in germ cells has been controversial and sparked considerable debate, where the
argument revolves around permanent DNA modifications that can be passed on to future
generations [67]. Hence, somatic cell genome editing appears to be more widely accepted
for disease treatment of affected individuals without influencing the genetic makeup of
future descendants [49].

2.2. Off-Target Effects of CRISPR/Cas

Off-target effects have been observed in many CRISPR/Cas9-mediated atherosclerosis
model systems. For instance, a hypercholesterolemia and atherosclerosis mouse model
developed by the AAV-based delivery of CRISPR/Cas9 (AAV-CRISPR) approach have
detected 5% mutations in one of the predicted off-target sites in an intron of the syntaxin 8
(STX8) gene [68,69]. Undesired off-target effects can be reduced by using a sgRNA design
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tool, which helps in predicting the off-target sites across the genome [70,71] as well as
using truncated sgRNA which composed of shorter number of nucleotides (<20 nt) to
increase the specificity of CRISPR/Cas9 system [72]. The use of engineered Cas9 nucleases,
such as enhanced S. pyogenes Cas9 (eSpCas9) [73] and Cas9-HF-1 [74], could provide
higher on-target fidelity without affecting the cleavage efficiency. Recent studies have
used two CRISPR/Cas9 nickases to flank the target DNA and generate DSB with increased
specificity [75,76]. Meanwhile, other researchers have used an inactive fusion protein
complex that comprises of two FokI-dCas9 fusion proteins that are recruited to adjacent
target sites to facilitate efficient genome editing [77]. Modifying the binding sites of Cas9
nuclease also reduces the chance of off-target binding [78].

Meanwhile, it is suggested that different screening methods such as exome- and
whole-genome sequencing (ES and WGS) are used to detect off-target events on a genome-
wide scale. Specifically, the Genome-wide, Unbiased Identification of DSBs Enabled by
sequencing (GUIDE-seq) and in vitro Cas9-Digested whole-genome sequencing (Digenome-
seq) can detect specific DSBs in the genome. Guide-seq relies on the detection of double-
stranded oligodeoxynucleotides in DSBs [79], while Digenome-seq involves in vitro di-
gestion and profiling of all DSBs [80]. Another strategy to evaluate off-target assessment
in vivo, also known as ‘verification of in vivo off-targets’ (VIVO), was developed and in-
volves the identification of off-target sites using the CIRcularization for in vitro reporting
of CLEavage effects by sequencing (CIRCLE-seq) method [81], followed by confirmation
through the targeted amplicon sequencing approach [82]. This strategy was shown to be
robust and sensitive in detecting off-target mutations with minimal frequencies (0.13%) [82].

2.3. Types of Mutations

Genome editing can be performed in many ways to achieve the desired mutational
outcome. For example, disruption of a particular gene of interest can be achieved by the
formation of indels, which often cause frameshift mutations [83]. NHE] pathway is the
main mechanism involved for the gene deletion approach and often utilizes two different
guide RNAs to create two DSBs flanking the target sequence [84,85]. The method can also
be used to create exon skipping by inducing DSBs at two different intron regions flanking
a targeted exon. Recently, it was demonstrated that similar results can be obtained by
using single guide RNA only [85]. In another example, Madan et al. [53] has successfully
deleted a 573 base pair fragment in vitro using two guide RNAs which flank a targeted
genomic locus containing the CVD-associated genetic variants (rs2366739 and rs1194196).
On the other hand, base editors and HDR approaches are both applicable for point mutation
correction. Base editors are capable of precise nucleotide substitution without the need of
donor template [86-88], whereas the HDR method requires donor template such as a copy
of the wild-type gene that serves as a corrective template [32,89]. Base editors (e.g., cytosine
deaminase) that fused to CRISPR/Cas9 has the ability to convert cytosine bases into uracil,
and have been successfully used to introduce nonsense mutations in PCSK9 gene [90].

2.4. Delivery of Genome Editing Components

Delivery of the CRISPR system into cellular or animal model systems can be challeng-
ing [91], and efficient delivery is necessary to minimize off-target effects [92]. CRISPR/Cas9
systems contain two main components—the Cas9 endonuclease and guide RNA. The two
components can be delivered into the cells in different forms such as plasmids, mRNAs,
and RNP. Plasmid-based method utilize plasmids containing expression cassettes for Cas9
and guide RNA, and the expression of the two components are controlled by the endoge-
nous U6 promoter [93]. Besides, mRNA for Cas9 and guide RNA can be delivered into
target cells simultaneously to achieve genome editing [94]. Next, the plasmid-free method
emphasized on the formation of RNP complexes before being introduced into the cells for
genome editing [93]. The RNP approach was found to exhibit higher editing efficiency
with lower off-target effects in hard-to-transfect cells [95]. This method allows transient
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genome editing effect in transfected cells where the CRISPR/Cas9 components gradually
cleared from cells over time [49].

Generally, ex vivo and in vitro genome editing can be performed using non-viral
and viral delivery systems. Non-viral approach involves physical and chemical delivery
strategies such as electroporation, transfection agents, nanoparticles, and cell-penetrating
peptides, whereas viral delivery systems involve viral transduction using adeno-associated
viruses (AAVs) or lentiviruses [91]. Electroporation method uses electrical currents to
increase permeability of the cell membranes which allows the delivery of genome edit-
ing components into the cells. Electroporation method may be a better option against
difficult-to-transfect cells. However, it is more laborious and expensive [96]. On the other
hand, chemical methods involving the use of positively charged lipid-based nanoparti-
cles encapsulate negatively charged nucleic acids and facilitate the delivery across the
cell membranes of the targeted cells [97]. Similarly, non-lipid polymeric reagents (e.g.,
polyethylenimine and poly-L-lysine) share the same principle by mediating the encapsula-
tion of CRISPR/Cas9 and allows the positively charged complexes to enter the cells via
endocytosis [98].

Alternatively, viral systems offer higher genome editing efficiency in vitro/in vivo
and provide the advantage of natural tropism for specific cell types, along with long-term
transgene expression [49,91]. To date, the AAV viral delivery systems are frequently used
for gene transduction due to its non-pathogenicity, mild immunogenicity, serotype speci-
ficity, and ability to infect proliferating and non-proliferating cells indiscriminately [99].
AAV-packaging plasmids such as adenoviral helper plasmid pAdDeltaF6 (PL-F-PVADEF6)
and AAVS packaging vector pAAV2/8 (PL-T-PV0007) were co-transfected with the AAV-
CRISPR plasmid into HEK293T to produce high viral titer, before intraperitoneally injected
into mice. Besides, lentivirus vector is also widely used. For instance, sgRINA-Cas9-
expressing lentiviruses were produced from co-transfection of gRNA-integrated Cas9-
producing lentiviral plasmid (e.g., pLentiCRISPR v2) and lentiviral packaging plasmid
(e.g., pMDLg/pRRE, pRSV-REV, and pVSV-G), where the former is capable of expressing
CRISPR/Cas9 components upon expression, and the latter is involved in the packaging of
lentivirus [57]. In addition, lentivirus has high infection efficiency, which can be a better
option to transfect hard-to-transfect or non-dividing cells [100].

3. Therapeutic Potential of CRISPR/Cas9 System for Atherosclerosis Treatment

Development of nucleic acid-based approaches has shown promising results, the
CRISPR/Cas9 gene editing technique, on the other hand, have been explored as a novel
therapeutic approach for atherosclerosis. Inactivation of gene targets such as PCSK9 [101],
APOC3 [102], and ANGPTL3 [103] have shown to be athero-protective. For instance,
CRISPR-mediated inhibition of PCSK9 showed reduced serum PCSKO9 levels and low-
ered plasma cholesterol by 30—40% in mice [104]. In 2016, Wang et al. [105] used the
same approach on the chimeric liver-humanized mice bearing human hepatocytes and
demonstrated reduced human PCSK9 levels. PCSK9 gene modification through adenoviral
delivery of CRISPR/Cas9 showed high on-target mutagenesis (close to 50%) and relatively
low off-target effects [105]. Besides, robust editing of PCSK9 (more than 40%) in murine
can be achieved using a Staphylococcus aureus Cas9 (SaCas9) nuclease with more restrictive
PAM that can reduce the probability of off-target mutagenesis [106]. Furthermore, Thakore
et al. [107] demonstrated gene silencing of PCSK9 though systemic administration of
SaCas9-based repressor (dSaCas9¥RAB) that is compatible with AAV delivery. Specific base
editing was also successfully achieved by using a base editor 3 (BE3), which comprises of a
CRISPR/Cas9 that is fused to a cytosine deaminase domain, and the resulting gene-edited
mice showed more than 50% reduction of plasma PCSK9 protein levels and approximately
30% reduction of cholesterol levels without detectable off-target mutagenesis [108]. More-
over, following the subsequent success of in utero gene editing of PCSK9 with positive
results in murine models, gene editing before birth was made possible [109]. Hence, the
idea of ‘one shot’ treatment from the elimination of liver PCSK9 [110] in humans is ap-
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pealing and seemingly possible to treat dyslipidemias. Meanwhile, ANGPTL3, is another
new promising candidate that influences human lipoprotein metabolism by inhibiting
lipoprotein lipase (LPL) [111] and endothelial lipase [112]. ANGPTL3 gene silencing in the
mouse model successfully lowered plasma cholesterols (e.g., triglyceride, HDL and LDL
cholesterols) [113]. Lower triglyceride and cholesterol levels were also obtained by using
CRISPR/Cas9 to mediate base editing of ANGPTL3, which introduced loss-of-function
mutations of ANGLTL3 in the transgenic mice model, highlighting the immense potential
and feasibility of CRISPR/Cas9 technologies in gene therapy [90].

4. Applications of CRISPR/Cas in Atherosclerosis Models
4.1. In Vitro Disease Modeling

CRISPR/Cas9 tool has been widely used as a means of generating various in vitro
disease models. In this section, studies that utilized CRISPR/Cas9 technology for mod-
eling atherosclerosis are reviewed and summarized in Table 1. For instance, microsomal
triglyceride transfer protein (MTTP)-R46G mutation has been successfully modeled in car-
diomyocytes derived from iPSCs by electroporation of CRISPR/Cas9 components, which
resulted in the inhibition of APOB protein expression, intracellular lipid accumulation
and cell death [114]. Besides, restoration of the low density lipoprotein receptor (LDLR)-
mediated endocytosis function as well as normalization of cholesterol metabolism have
been achieved in iPSCs, by repairing the LDLR gene deletion with CRISPR/Cas9 [115].
Mechanistic insights of lipase A (LIPA) role in human macrophages were studied in human
iPSC-derived macrophage model where the loss-of-function of LIPA exhibited reduced
lysosomal acid lipase (LAL) enzymatic activity and cholesterol efflux capacity. On the
other hand, iPSC-differentiated VSMCs derived from type 2 diabetes mellitus (T2DM)
patients were used to investigate the protective role of AADAC gene [64]. CRISPR/Cas9-
mediated generation of AADAC-knockout (KO) in T2DM patient-derived iPSC were differ-
entiated into VSMCs. Overexpression of AADAC significantly diminished amount of lipid
droplets in VSMCs, and amelioration of atherosclerotic lesions. Meanwhile, C-X-C motif
chemokine receptor 4 (CXCR4)-deficient human platelets derived from iPSCs was used to
investigate the functional aspects of the CXCR4-KO platelets [116]. Interaction between
C-X-C motif chemokine ligand 14 (CXCL14) and CXCR4 was found to promote mono-
cyte and platelet migration, and it is involved in thrombus formation, whereas CXCR4
deficient in platelets interrupts the interaction, offering a novel therapeutic strategy for
atherosclerosis treatment.

On the other hand, CRISPR/Cas9 genome editing have helped to establish an as-
sociation between phosphatase and actin regulator 1 (PHACTR1) intronic SNPs and the
locus of myocyte enhancer factor 2 (MEF2) binding site, suggesting the involvement of
an unknown mechanisms that influence CAD/MI (coronary artery disease/myocardial
infarction) risk in the vascular endothelium. CRISPR/Cas9 mediated deletion of phos-
pholipid phosphatase 3 (PLPP3) gene in human aortic endothelial cells (HAECs) genome,
on the other hand, demonstrated the protective role of a non-coding SNP (rs17114036)
that confers increased endothelial enhancer activity, and promoted endothelial quies-
cence [60]. Furthermore, CRISPR/Cas9-mediated overexpression of HECT domain E3
ubiquitin protein ligase 1 (HECTD1) in human umbilical vein endothelial cell (HUVEC) I/R
(ischaemia/reperfusion) model exhibited reduced cell viability and increased cell apoptosis
and migration, providing novel insights into the relationship between HECTD1 expression
and I/R induced endothelial cell dysfunction [117]. Meanwhile, mesenchymal stem cells
(MSCs) derived from patients with type-2 diabetes mellitus (T2DM) and atherosclerosis
were used to investigate the effect of IKKB modulation on immuno-potency of MSCs [57].
Selective IKKB knockdown with CRIPSR/Cas9 technology in the patient-derived MSCs
demonstrated reduced pro-inflammatory secretome from the deactivation of inflammatory
effector (e.g., IKKB and NF-«kB), which, in turn, increased survival and immuno-potency
in atherosclerosis- and T2DM-patient MSCs. Meanwhile, CRISPR/Cas9 edited human
umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) that stably express
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LEF1 showed significant improvement in overall survival in transplanted rats. This study
has successfully demonstrated the cardio-protect effect of LEF1 gene and potential for
combining the stem cell-based therapy with genome editing technique as a therapeutic
strategy for treating cardiovascular diseases [58].

Both SREBF chaperone (SCAP) and alanine-glyoxylate aminotransferase 2 (AGXT2)
genes are responsible for cholesterol metabolism and nitric oxide (NO) production, and
they are associated with premature myocardial infarction (MI) [118]. SCAP gene vari-
ant (c.3035C > T) and AGXT?2 gene variant (c.1103C > T) can be introduced into H293T
and EA.Hy926 cell lines with the help of CRISPR/Cas9 technology. These edited cell
lines exhibit disrupted cholesterol metabolism and reduced NO production [118-120].
CRISPR/Cas9-mediated deletion of CARMA in Huh7 demonstrated increased MFGES
expression. This study highlighted the roles of CARMA/MFGES that may be linked to cell
proliferation and/or improved survival. Meanwhile, CRISPR/Cas9 have also been used to
assess the role of genomic locus that is linked to CD36 transcription in K562 and Meg-01
cells. The research showed genomic locus variant that regulates expression of CD36, which,
in turn, affects platelet function in these cell lines.

Table 1. CRISPR/Cas9 genome editing in atherosclerosis models (in vitro).

Type of Cells

Targeted

Genes

Type of
Mutation

Delivery
Strategy

CRISPR
Components

Model Phenotype

Reference

iPSCs

iPSCs, HEK293T,
Neuro-2a

iPSC-derived
cardiomyocytes,
human hepatocytes

iPSCs-derived
platelets

iPSCs-derived
macrophages

iPSC-derived
VSMCs

LDLR

PCSK9

MTTP

CXCR4

LIPA

AADAC

Knock-in

Knockout

Knockout and
knock-in

Knockout

Knockout

Knockout

Electroporation

No information

Electroporation

Electroporation

Electroporation

Electroporation

Cas9n, sgRNAs
plasmids, and ssODN

BE3-encoding
plasmid and sgRNA

sgRNA-Cas9
expressing plasmid
and ssODN’s

sgRNA-Cas9
expressing plasmid

Cas9-GFP and sgRNA
expressing plasmids

Cas9-GFP and sgRNA
expressing plasmids

Restored LDLR-mediated
endocytosis and showed
normalized cholesterol
metabolism in hepatocytes.
Reduced plasma PCSK9 and
cholesterol levels.
MTTP-knockout human
hepatocytes and
cardiomyocytes exhibit loss
of APOB secretion,
accumulated intracellular
lipid, and increased cell
death; the adverse
phenotypes were reversed
in corrected hepatocytes
and cardiomyocytes.
Deficiency of CXCR4 in
iPSC-derived platelets
disrupted CXCR4
interaction with CXCL14
and inhibit platelet
migration.
LIPA-KO macrophages
showed low LAL enzymatic
activity, suggesting
deficiency in lysosomal
cholesteryl ester hydrolysis.
Reduced expression of
AADAC resulted in
significant increase of lipid
droplets in VSMCs;
overexpression of AADAC
in vitro and in vivo
diminished lipid droplets
and ameliorated
atherosclerotic lesions.

[115]

[108]

[114]

[116]

[121]

[64]
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Table 1. Cont.

Targeted

Type of

Delivery

CRISPR

Type of Cells Genes Mutation Strategy Components Model Phenotype Reference
CARMA (CAD Associated
Region between MFGES and
Lentiviral Lenti-iCas9-neo, ABHD?) deletion increases
Huh?7 CARMA Knockout . psPAX2 and pMD2.G MFGES expression; it is [52]
transduction : . L
plasmids associated with increased
proliferation of smooth
muscle cells and monocytes.
The deletion of a genomic
Lipofectamine AIO-GFP(Cas9)- I(I)\f[us ‘(I)alnalﬁt m KSI? dapd
K562, Meg-01 CD36 Knockout 2000 reagent sgRNA expressing €8 cl:et.s res;lCeD 321 [53]
/Nucleofection plasmid upreguation o
transcription and platelet
activation.
The SCAP variant impaired
activation of cholesterol
synthesis-related genes and
AGXT2 variant leads to
HEK293T, SCAP, Knockout Lipofectamine sgRNA-Cas9 down-regulation of nitric [118]
EA.Hy926 AGXT2 2000 reagent expressing plasmid oxide production. The two
CRISPR-induced variants
are associated with
premature myocardial
infarction.
Reduced production of
pLentiCRISPR v2, pro-inflammatory
Patient-derived Lentiviral MDLg/pRRE, secretome, improved
MSCs IKKB Knockdown transduction };RSV-EE{)/ and survival a}r)1d 571
pVSV-G plasmids immuno-potency in
patient-derived MSCs.
LEF1-overexpressing
hUCB-MSCs showed
Human umbillical Lipofectamin LEFI-overexpressin activation of canonical
cord blood-derived- LEF1 Knock-in po ;500 € OVErexpressing Wnt/ 3-catenin signaling [58]
MSCs plasmid and cyclin D1 expression;
Y p ;
reduced MI region and
fibrosis.
Established an association
hESCs PHACTR1 Knockout Electroporation Cas9-G}1?P an.ccll sgRNA between the PHACTR1 SNP [122]
plastmds with CAD/MI risk.
Deletion near rs17114036
Lipofectamine location showed. reduced
HAECs PLPP3 Knockout RNAIMAX Cas9-sgRNA RNP PLPP3 expression and [60]
reagent complex promoted endothelial

quiescence from
unidirectional shear stress.

BE3, base editor 3; CAD, coronary artery disease; CAD/MI, coronary artery disease/myocardial infarction; Cas9n, Cas9 nickase; EA . Hy926,
permanent human endothelial cell line; GFP, green fluorescent protein; HAECs, human aortic epithelial cells; HEK293T, human embryonic
kidney 293 cell line; Huh?, hepatocellular carcinoma Huh? cell line; hESCs, human embryonic stem cells; iPSC, induced pluripotent stem
cells; KO, knockout; K562, human erythroleukemic cell line; LAL, lysosomal acid lipase; Meg-01, megakaryoblastic cell line; MI, myocardial
infarction; MSCs, mesenchymal stem cells; Neuro-2a, neuro-2a neuroblastoma cell line; RNP, ribonucleoprotein; sgRNA, single guide RNA;
ssODN, single-stranded oligo DNA nucleotide; VSMCs, vascular smooth muscle cells.

4.2. In Vivo Disease Modeling

CRISPR/Cas9 technology has made powerful breakthroughs in generating animal dis-
ease models (Table 2). Among all rodents, mice are considered organism of choice to study
lipid metabolisms that contribute to diseases including atherosclerosis, due to their high ge-
netic similarity [123]. For example, PCSK9 gene knockout in mice, through the nanocarrier-
delivered CRISPR/Cas9 system [124], and adenoviral transfection of CRISPR/Cas9 compo-
nents [104] showed reduced plasma LDL cholesterol. Besides, CRISPR/Cas9 can be used
to introduce human PCSK9 gene into hypercholesterolemic mice to generate humanized
animal models, as well as to introduce mutations in the human PCSK9 gene with base
editors (e.g., BE3) [125]. Remarkably, increased plasma cholesterol levels were observed
in PCSK9-knock-in (KI) mice, whereas CRISPR/Cas9-mediated PCSK9 knockout with
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BE3 reduced the plasma levels of PCSK9 and total cholesterol in the humanized mice.
LDLR is another gene known to have direct effects on cholesterol metabolism. Somatic
deletion of LDLR in mice can be performed using AAV-CRISPR/Cas9 system to generate
atherosclerotic mice models [126]. A separate study, which induced nonsense point muta-
tion (E208X) in LDLR gene using a similar approach in mice, showed severe atherosclerotic
phenotypes [127]. The mutation was shown to be corrected by subcutaneous injection of
AAV-CRISPR/Cas9 system which demonstrated partial restoration of LDLR expression,
with reduced total cholesterol, triglyceride, and LDL cholesterol levels [127]. Double gene
knockout has also been successfully performed in mice models where the LDLR/APOE
deficiency exhibits prominent atherosclerosis phenotypes [128,129].

Down-regulation of other gene targets such as ANGPTLS, FMO3, and STXBP5 were
also modeled in mice and displayed impaired lipogenesis with reduced body weight and
plasma triglyceride levels [130], reduced thrombosis potential and atherosclerosis [131],
and lowered plasma von Willebrand factor (VWF) levels with reduced thrombosis [132].
Besides, conditional Geranylgeranyl transferase-I (GGTase-I) knockout mice was generated
to study the GGTase-I enzyme, which is involved in the mediation of post-translational
modification (e.g., geranylgeranylation) of small GTPase, Rac1 [133]. GGTase-I produced
from the expression of protein geranylgeranyltransferase type I subunit beta (PGGT1B)
gene is associated to diabetes-accelerated atherosclerosis, and removal of PGGT1B gene in
mice shown attenuated phenotype of diabetes-accelerated atherosclerosis with possible
involvement of several mechanisms that inhibit VSMC proliferation [133].

Hamster, on the other hand, serves as a suitable choice for hyperlipidemia translational
research due to several advantages which include its capability of producing cholesteryl
ester transfer protein, feasibility for intestine-only APOB editing, and low hepatic choles-
terol synthesis properties [134]. Hybrid strain of golden Syrian hamsters was found to
respond to high-cholesterol diets and greater susceptibility to atherosclerosis, which makes
it an excellent choice for generating atherosclerosis models with prominent cardiovascular
pathophysiology manifestation [135]. Besides, the LDLR-KO hamsters can be induced
by microinjecting CRISPR/Cas9 components into fertilized eggs for the development of
hypercholesterolemia and hyperlipidemia model [134]. Meanwhile, LCAT-deficient ham-
sters can be generated using similar approach and the resulting adult hamsters exhibited
pro-atherogenic dyslipidemia [136]. Novel homozygous apolipoprotein C2 (APOC2)-
ablated golden Syrian hamster that exhibits severe hypertriglyceridemia was established
with CRISPR/Cas9, and the genetically modified hamster is useful to study the APOC2
function and its effect on lipid and glucose homeostasis [137]. Recently, Guo et al. [138]
showed anti-atherogenic effects in APOC3-KO golden Syrian hamster, suggesting that
CRISPR-mediated knockout of APOC3 in human may be a potential therapeutic approach
in alleviating atherosclerosis.

Zebrafish has been regarded as a useful model to study cardiovascular diseases,
serving as an excellent tool for rapid, simple and low-cost system for drug screening [139].
Thrombocytes in zebrafish are homologous to mammalian platelets, thus zebrafish become
an excellent model to study thrombosis in mammals [140,141]. Specific heart development
protein with EGF such as domains 1 (HEG1) knockout in zebrafish line with CRISPR/Cas9
showed severe cardiovascular malformations [142]. On top of that, thrombosis phenotype
was observed with venous thrombosis and slow blood flow, which were similar to human
heart failure. The HEGI-specific knockout zebrafish line was established as a new model
of dilated cardiomyopathy (DCM) and thrombosis and verified to be appropriate for
drug screening.

Disease modeling involving rabbits are frequently used to study atherosclerosis due
to their similar lipoprotein metabolism with humans [143,144]. Rabbits are known to have
abundant plasma cholesteryl ester transfer protein (CETP), which is advantageous for
studying CETP and its relationship with atherosclerosis [145,146]. Interestingly, genetic
ablation of CETP gene in the rabbit model demonstrated athero-protective effects, sug-
gesting a potential therapeutic target for atherosclerosis treatment [146]. Meanwhile, the
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Watanabe heritable hyperlipidemic (WHHL) rabbits are often used as a human familial
hypercholesterolemic model due to its characteristic high LDL levels [147]. Following the
discovery of CRISPR/Cas9, knockout rabbit models are made possible with the capability
to target different gene of interests [148]. The first reported CRISPR-KO rabbits for the
investigation of lipid metabolism was demonstrated by Niimi et al. [149]. In addition,
CRISPR/Cas9-mediated knockouts of LDLR and LDLR/APOE double-knockout in rab-
bits successfully demonstrated reduced high-density lipoprotein (HDL) cholesterol levels,
severe dyslipidemia and atherosclerotic lesions in the rabbits aorta [143,150]. However,
recent studies highlighted that rabbits lack of calponin 2, an actin-associated cytoskeletal
protein involved in the pathogenesis of diseases including atherosclerosis, and the use of
rabbit model for replicating human diseases require cautious consideration [144]. On the
other hand, two different studies have successfully produced APOE~/~ and LDLR-KO
pigs by introducing indels in primary pig fetal fibroblasts (PFFs) and porcine embry-
onic fibroblasts (PEFs), respectively. The edited cells were subsequently used as nuclear
donors for the reconstruction of pig embryos using the somatic cell nuclear transfer (SCNT)
method [151,152]. These studies have demonstrated the feasibility of CRISPR/Cas9 across
different animal models of dyslipidemia and atherosclerosis and shed light to the under-
lying molecular mechanisms, paving the way for development of novel therapeutics and
treatment possibilities.

Table 2. CRISPR/Cas9 genome editing in atherosclerosis models (in vivo).

Disease Model TaGreg:::d l\}if:ti%i Delivery Strategy CRISPR Components Model Phenotype Reference
Electroporation into Reduction in
embryonic stem Promoter-driven KO trimethylamine N-oxide
Mice FMO3 Knockout cells; microinjection i . . levels, thrombosis [131]
. . irst targeting plasmid 1
into mice potential in
blastocysts FMO3-KO mice.
sgRNAs (APOE- and Devglorzme?t pla(f]ues,
Mice LDLR, APOE  Double-knockout Microinjection LDLR-targeting), estruction o [128]
and Cas9 ) pancreatic islets,
inflammatory response.
Coomiagna e dnlipenis
Rat LDLR, APOE Double-knockout Microinjection sgRNAs (LDLR- and th lerofi ,la u [129]
APOE-targeting) atheroscierotic plaques
in the aorta.
Adenoviral Plasmid 1375 (sgRNA Severe
. transduction; and Cas9-encodin hypercholesterolemia
Mice LDLR Knockout intraperitoneal plasmid), pAdDelta%%, Zrl:l)d atherosclerotic [126]
injection and pAAV2/8 plasmids lesions in the aorta.
LDLR-E208X point
mutation was corrected
Adenoviral Cas9- and sgRNA- in mice, and it showed
Mice LDLR Knock-in transduction; donor-exp?essing AAV  partially ?estored LDLR [127]
subcutaneous plasmids, and expression, reduced
injection AAVS-GFP plasmid total cholesterol,
triglyceride, and serum
LDL cholesterol.
Mice LDLR Knock-in Tail vein injection i%g%%ﬁigiﬁ/ Cii‘?;iif;elgjg [153]
GAL-LGCP
. Intravenous encapsulated TAT- Reduced plasma LDL
Mice PCSK9 Knockout injection GNCSPCas9-sgPCSK9 choleste},-)rol levels. [124]
complex
BE3 base editing of
. . PCSK9 in mice liver
Mice PCSK9 Knockout Rgtrf) -orbltal BE3-ngI\XXA-{e]xp ressing demonstrated reduced [108]
mnjection plasma PCSK9 and

cholesterol levels.
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Table 2. CRISPR/Cas9 genome editing in atherosclerosis models (in vivo).
Disease Model Targeted Type of Delivery Strategy CRISPR Components Model Phenotype Reference
Genes Mutation
Decreased plasma
Adenoviral Cas9-sgRNA expressing PCSKO9, increased
. transduction; recombinant plasmid expression of hepatic
Mice PCSK9 Knockout retro-orbital and GFPI;- IE)DL receptor alid [104]
injection expressing plasmid decreased plasma
cholesterol levels.
dSaCas9RAB and
Calcium phosphate gRNA lentiviral Decreased plasma
Mice PCSK9 Knockdown precipitation; tail expression plasmids, PCSK9 and [107]
vein injection psPAX2, and cholesterol levels.
pMD2.G plasmids
Development of
humanized mouse
model with
Mice PCSK9 Knodknand  Tail vein injection Cas9/§1§§;?§°dmg liver specific xpression [12]
human-like
hypercholesterolemia
phenotype.
Attenuated phenotype
of diabetes-accelerated
Mice PGGT1B Knockout Microinjection Caizg cﬁiﬁpglz‘gﬁé\g:’ ?/\tz}ﬁzﬁicslzzoszlcsi:tle\c]l“t]g [133]
the inhibition of VSMC
proliferation.
STXBP5 SNP
(rs1039084) mice model
SpCas9 mRNA, SNP S\l}“;\‘]"l’fld lower plasma
. . T X evels, reduced
Mice STXBP5 Knock-in Microinjection (437 Asn)-targeting thrombosis and reduced [132]
sgRNA, and ssODN rombosis educe
platelet secretion
compared to
wild-type mice.
Pro-atherogenic
dyslipidemia in
Hamster LCAT Knockout Microinjection Cas9 mRNA and LCATYdegcient hamster; [136]
sgRNAs hioh fat diet i
igh fat diet increases
atherosclerotic lesions.
Chow diet
hamsters developed
hypercholesterolemia,
hyperlipidemia; HCHF
Hamster LDLR Knockout Microinjection sgRNA and Cas9 P diept hamsters [134]
mRNAs
developed
atherosclerotic lesions
in the aorta and
coronary arteries.
Hyperlipidemia with
prominent aortic and
coronary atherosclerosis
Rabbit LDLR, APOE  Double-knockout Microinjection sgRNA and Cas9 with accun‘.lulateid [150]
mRNAs atherosclerotic lesions

consisted macrophage
foam cells in
rabbit model.
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Table 2. CRISPR/Cas9 genome editing in atherosclerosis models (in vivo).

Targeted Type of

Disease Model Genes Mutation

Delivery Strategy CRISPR Components Model Phenotype Reference

LDLR-KO rabbit
exhibited increased
plasma triglycerides,
LDL cholesterol, and
sgRNA and Cas9 reduced HDL
mRNAs cholesterol levels;
prominent aortic and
coronary artery
atherosclerosis
were observed.
APOE-KO pigs on
HFHC diet
displayed severe
hypercholesterolemia, [151]
and atherosclerotic
lesions in the aorta and
coronary arteries.
APOE- and LDLR-KO
SCNT pigs
Electroporation; Cas9 and gRNA demonstrated increased
SCNT plasmids LDL cholesterol, total
cholesterol and
apolipoprotein B levels.
Mutant zebrafish model
demonstrated severe
cardiovascular
malformations and
thrombosis phenotype
such as venous
thrombosis and slow
blood flow.

AAV, adeno-associated virus; BE3, base editor 3; GAL-LGCP, Gal-conjugated PEG-lipid/ TAT-GNCs/Cas9/sgPCSK9; GFP, green fluorescent
protein; GNCs, gold nanoclusters; HCHEF, high-carbohydrate high-fat; HDL, high-density lipoprotein; HFHC, high-fat and high-cholesterol;
KO, knockout; LDL, low-density lipoprotein; mRNA, messenger RNA; SCNT, somatic cell nuclear transfer; sgRNA, single guide RNA;
SNP, single nucleotide polymorphism; SpCas9, Streptococcus pyogenes Cas9; ssODN, single-stranded oligo DNA nucleotide; TAT, HIV-1-
transactivating transcriptor; VSMC, vascular smooth muscle cell; VWE, von Willebrand factor.

Rabbit LDLR Knockout Microinjection [143]

Electroporation; Cas9-sgRNA expressing

Pigs APOE Knockout SCNT plasmid

Pigs LDLR, APOE  Double knockout [152]

Zebrafish HEG1 Knockout Microinjection gRNA and Cas9 protein [142]

5. Clinical Application of Genome Editing in Atherosclerosis Patients

The use of genome editing as a form of therapeutic option constitutes an exciting
research area. The first gene therapy clinical trial dated back in September 1990 used
genetically modified T-cells of a patient suffering from adenosine deaminase deficiency to
restore the gene function [154]. Since then, the trial acted as a foundation for all subsequent
nucleic acid-based therapies developed. Ex vivo therapy using CRISPR technology, has
advantages over the in vivo approach in the aspect of technical feasibility and safety as
gene editing and generation of respective edited cells are performed under controlled
environment. For example, hUCB-MSCs has been used as a potential development of stem
cell-based therapy of ischemic heart diseases by generating the CRISPR edited hUCB-MSCs
ex vivo, before transplanting into the infarction region of mice [58]. The experiment showed
overall improvement of the survival in mice. Several clinical trials involving CRISPR ex
vivo genome editing were already initiated, for instance, to treat leukemia/lymphoma
patients (clinical-trial.gov: NCT04037566), sickle cell disease patient (clinical-trial.gov:
NCT03745287), and others. [155]. On the other hand, in vivo genomic editing strategy could
directly edit the target cells. Systemic delivery of CRISPR/Cas9 components were shown
to restore the dystrophin (DMD) reading frame and improve overall heart functionality
in the mouse model [156]. Breakthrough was made by the generation of human disease
modeling using human pluripotent stem cell (PSC) lines, where the SNP of interest was
successfully introduced to myosin heavy chain 7 (MYH?7) gene [157]. The study highlighted
the capability of CRISPR/Cas9 in producing isogenic cell lines/models, which would
be useful for evaluating new therapies and paving the way for gene-based therapeutics.
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Furthermore, CRISPRi was used in devising a novel therapeutic strategy for patient with
long-QT syndrome [158]. The strategy involved the use of dCas9 fused with a Kriippel
associated box (KRAB) suppressor to target and suppress the mutant gene in iPSC-CM
derived from a patient, which demonstrated functional rescue phenotypes (e.g., normalized
action potential, and Ca?*/CaM-dependent inactivation) after treatment. Altogether,
these studies provided proof-of-concept evidence on the potential use of CRISPR/Cas9
technology in CVDs treatment. However, rigorous assessment and evaluation on the safety
of use and efficacy in large trials are needed.

6. Conclusions

The CRISPR/Cas system is a powerful genome editing tool for manipulating the
genome and investigating the pathophysiological mechanisms of atherosclerosis using
in vitro and in vivo experimental models. Various CRISPR/Cas applications, such as
single-base editing, epigenetic modifications, live-cell imaging, CRISPRi, and CRISPRa
have been utilized in the field of cardiovascular medicine to dissect the molecular patho-
genesis of atherosclerosis, and it can potentially be used as a therapeutic tool for targeting
atherosclerosis-associated diseases such as hyperlipidemia and hyperglycemia. Neverthe-
less, challenges, including off target mutagenesis, delivery efficiency of genome editing
tools, lower success rate of HDR in non-proliferating cells, and the potential of Cas9-
triggered immune responses in the human body, need to be taken into considerations
during the development of CRISPR therapeutics. Despite its practicality, ethical conflicts
regarding the use of CRISPR/Cas system in human subjects remains a huge barrier. Hence,
future advancement of CRISPR/Cas system is essential to achieving better efficacy and
long-term safety in CRISPR-based therapy.
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