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The gut microbiota and metabolites play pivotal roles in the pathobiology of various diseases.

Here, we describe a protocol to profile the gut microbiome and meta-metabolome of a mouse

disease model for acute graft-versus-host disease. We describe steps for fecal sample collection

and processing for 16S sequencing and UPLC-MS. Finally, we detail the steps for data analysis

and exhibit multi-omic associations to correlate with pathology.

Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional

guidelines for laboratory safety and ethics.
Li et al., STAR Protocols 3,

101494

September 16, 2022 ª 2022

The Author(s).

https://doi.org/10.1016/

j.xpro.2022.101494

mailto:linyu517@zju.edu.cn
mailto:huanghe@zju.edu.cn
mailto:axu@zju.edu.cn
https://doi.org/10.1016/j.xpro.2022.101494
https://doi.org/10.1016/j.xpro.2022.101494
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2022.101494&domain=pdf


ll
OPEN ACCESS
Protocol
Protocol for correlation analysis of the murine gut
microbiome and meta-metabolome using 16S rDNA
sequencing and UPLC-MS

Xiaoqing Li,1,2,3,4,7 Peng Wu,6,7 Xiangjun Zeng,1,2,3,4 Qiulei Lang,6 Yu Lin,1,2,3,4,* He Huang,1,2,3,4,*

and Pengxu Qian2,3,4,5,8,9,*
1Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou,
Zhejiang, China

2Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China

3Institute of Hematology, Zhejiang University, Hangzhou, China

4Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China

5Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310058, China

6LC-BioTechnology Co., Ltd., Hangzhou, Zhejiang, China

7These authors contributed equally

8Technical contact

9Lead contact

*Correspondence: linyu517@zju.edu.cn (Y.L.), huanghe@zju.edu.cn (H.H.), axu@zju.edu.cn (P.Q.)
https://doi.org/10.1016/j.xpro.2022.101494
SUMMARY

The gut microbiota and metabolites play pivotal roles in the pathobiology of
various diseases. Here, we describe a protocol to profile the gut microbiome
and meta-metabolome of a mouse disease model for acute graft-versus-host dis-
ease. We describe steps for fecal sample collection and processing for 16S
sequencing and UPLC-MS. Finally, we detail the steps for data analysis and
exhibit multi-omic associations to correlate with pathology.
For complete details on the use and execution of this protocol, please refer to Li
et al. (2020).
BEFORE YOU BEGIN

The protocol below describes the specific steps for correlation analysis of the gut microbiome and

meta-metabolome using murine acute graft-versus-host disease (aGVHD). As our colleagues have

successfully extended this protocol in an aging murine model and various murine tumor models,

our approach could be generalized to other studies.

Multiple articles have described the procedure of characterizing the microbial community structure

by using next-generation sequencing (NGS) in the STAR protocol (Reitmeier et al., 2020; Marti et al.,

2021). Most studies have characterized microbiome diversity based on a single gene, the small sub-

unit ribosomal RNA (rRNA) gene, which is encoded by highly conserved 16S ribosomal DNA (rDNA).

Characterized by high expression, stability and conservatism, 16S rDNA is the most common

method for estimation among different species of bacteria and archaea (Konstantinidis et al.,

2006; Muhamad Rizal et al., 2020). Using Illumina high-throughput sequencing of 16S rDNA, we

can fully describe bacterial diversity and community composition. As delays or failures in the iden-

tification of pathogens could occur via bacterial culture and biochemical testing in clinical diagnostic

microbiology (Muhamad Rizal et al., 2020), NGS-based bacterial detection methods are emerging

and becoming a mainstream technology in oncology. 16S rDNA sequencing provides an ideal
STAR Protocols 3, 101494, September 16, 2022 ª 2022 The Author(s).
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method for the identification of unculturable and fastidious bacteria achieving more rapid and pre-

dictable turn-around time with a streamlined identification protocol. In our study, the diversity and

abundance of intestinal flora among different aGVHDmurine groups were analyzed using 16S rDNA

high-throughput sequencing. Based on our results obtained from 16S rDNA from six replicates per

group, the data were large enough to provide sufficient statistical power to identify significant

microbiota.

Interactions between the host and microbiota occur primarily through a multitude of metabolites.

The development of metabolomic profiling offered by chromatographic separation (ex. liquid chro-

matography) coupled to mass spectrometry (MS) (LC–MS) introduced a new method for examining

the dynamic multipara metric response to pathophysiological stimuli or genetic modification (Nich-

olson and Lindon, 2008; Gika et al., 2014). As the information complements the other two major

omics genomics and proteomics, metabolomics identifies novel markers where changes face bio-

logical challenges. These variations function in unforeseen and/or unexpected ways with respect

to their biochemical function. However, due to non-standardization of methods, instrumental drifts,

MS detection instability, etc., untargeted LC–MS-based metabolic profiling still has difficulty

achieving unbiased analysis, and it is difficult to compare datasets between different experiments

or different laboratories (Gika et al., 2014; Seger and Salzmann, 2020; Kang et al., 2020). In such

cases, we encourage researchers to focus on meticulous experimental design (ex. number of repli-

cates, control selections, identification strategy and significance determination) and research (qual-

ity control and validation).

In our murine-based study, the control and test groups should ideally have the same genetic back-

ground and should be matched for age and sex, including being raised under the same feeding and

environmental conditions. Due to the high sensitivity and specificity of LC–MS resulting in large

errors in the identification or quantification of metabolites, we increased the number of replicates

up to 6 samples/group and strictly controlled the sampling conditions and procedures. After

comparing metabolomic profiling between the control and aGVHD groups, we obtained a large

discrepancy between batches in the subsequent tyrosine validation experiments, which forced us

to optimize the analytic strategies and only concentrate on the metabolites displaying significance

in the former result.

Integrating analyses of the microbiome and meta-metabolome should facilitate understanding the

role of the microbiota in human diseases. The complex microbial ecosystem inhabiting the intes-

tinal tract produces a wide range of metabolites that may be absorbed and influence physiological

processes (Raja et al., 2021). On the other hand, diet can change the intestinal microflora and

consequently affect overall host health. In this study, we performed Spearman’s correlation anal-

ysis to identify microbe–metabolite relationships in different omics layers. Our study first deter-

mined the most significantly changed factors, which was tyrosine, based on the microbiota and

meta-metabolome data between the control and aGVHD disease groups. After discovering this

correlation, specific interventions, including tyrosine-supplemented and deprived diets, were

used as confirmatory tests to assess treatment efficiency. For better understanding, the represen-

tative data from the TCD-BM (control) and TCD-BM+T (aGVHD) groups on Day 14 are provided as

an example (Li et al., 2020). This protocol aimed to provide the potential of combining microbiota

and metabolite interventions as a means of achieving person specific, integrated and efficient

therapy.
Institutional permissions (experimental animal ethics)

For animal experiments, the researchers are supposed to acquire approval form the Animal

Experimentation Ethics Committee of the relevant institutions. In this study, all mice experiments

were conducted under specific pathogen-free conditions in the Laboratory Animal Center of

Zhejiang University.
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Murine model establishment

Timing: 2 days

1. Prepare the model (aGVHD murine model).

Note: Specific pathogen-free (SPF) conditions are free from a selection of common patho-

gens to which the species are exposed in the wild. We achieve our experiment using

SPF methods consisting of a controlled, health-monitored and more natural environment

of indigenous gut flora. Although SPF gut microbiome heterogeneity may fail to

translate into human trials, we still believe that SPF manipulation of the microbiome-host

relationship has itself become a confounding variable in biomedical research (Dobson

et al., 2019).

Note: To protect against infection, recipient mice (BALB/c) are often prescribed drinking wa-

ter with antibiotics (penicillin and streptomycin antibiotic mix 100–200 mg/mL) for 1–2 weeks

before BMT. However, administration of antibiotics affects bacterial communities and may

lead to dysbiosis of the intestinal microbiota, and a standard process for clearance of gut

bacteria has been proposed for single-bacteria research. In this study, we abandon antibiotic

prophylaxis but increase the frequency of changing food and cages.

Note: Hematopoietic stem cells can reconstitute the entire hematopoietic system following

lethal irradiation. Recipient mice (BALB/c) are treated with myeloablative conditioned with

a dose of 7.5 cGy or split doses of 234.0 Gy for 4 h. The gut commensal microflora of SPF

mice is not removed using total body irradiation (TBI).

CRITICAL: Variations could be observed between different irradiation instruments or even
different runs on the same instruments, and therefore, the effect of lethal irradiation

should be tested.
2. Bone marrow transplantation (BMT).

Note: Habituate the animals to the testing environment prior to experiments.

Note: We recommend the investigator who scores and groups the animals to be blinded to

the experimental setting.

Note: All animal experiments must be performed in accordance with approved animal proto-

cols and the guidelines and ethical approval. For the procedures described here, approval of

the local Institutional Animal Care and Use Committee was received.

a. Flush bone marrow cells from the femurs and tibias of donor mice,

b. Remove CD3+ T cells by magnetic bead sorting (CD3 Selection Kit, Miltenyi Biotec).

c. Purify splenic T cells by negative sorting using magnetic microbeads from the donor’s spleen

(Pan T-Cell Isolation Kit, Miltenyi Biotec).

d. Deliver 53106 T-cell-depleted bone marrow (TCD-BM) cells with or without 53105 splenic

T cells to recipients on day 0 after lethal irradiation, while T cells are used as a source for

aGVHD induction.

e. Assess the animals for weight loss, clinical condition and disease progression twice a week

according to the criteria of the disease model.

Note:We suggest a group of investigators who are blind to the treatments for the assessment.
STAR Protocols 3, 101494, September 16, 2022 3
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f. Use recording symptoms for assessing peak clinical disease severity so that the sampling time

points can be determined.
Intervention setting

Timing: 2–4 weeks

3. Intervention determination.

Note:Mice transplanted with TCD-BM+ T cells exhibited the typical clinical manifestations of

aGVHD, such as weight loss and high mortality rates, while mice receiving TCD-BM only (non-

aGVHD) serve as the healthy control group.

a. Evaluate the changes in 16S rDNA sequencing and LC–MS-based meta-metabolomes be-

tween the two groups during early illness (day 14 after BMT) and during the critical stage

(day 28 after BMT) to identify differences with the same variation trend at different stages of

disease development.

Note: Such screening criteria aim to ensure the efficiency and sustainability of the interven-

tion. For example, our results provide an increased abundance of bacteria previously associ-

ated with disease states, such as Enterococcus, in aGVHDmice (Stein-Thoeringer et al., 2019;

Holler et al., 2014) but illustrate a dramatic and sustained decrease in many novel metabolites,

especially tyrosine.

b. Select the pattern exhibiting the most significant change as the intervention, and determine

dose limits or delivery way according to the previous studies or pharmacology.

Note: In our research, we select tyrosine as the intervention target and design tyrosine-sup-

plemented and deprive diets as a confirmatory test (Figure 1).

4. Dietary intervention.

Note: Based on the omics results between the disease and control groups, tyrosine is themost

significant item among the changedmetabolites and is chosen for further experimental exam-

ination. According to a pilot study, a tyrosine content of 2%–2.5% is even considered the up-

per limit within the standard safety margin.

a. Set 2% tyrosine diet as the highest supplementary group and a diet deprived of tyrosine as a

comparison group (normal standard 0.7% tyrosine), in order to amplify the differences (Mes-

sineo et al., 2018).

Note: The 0% or 2% tyrosine diets are administered (Hangzhou LiLeng Biotechnology Co.,

Ltd) one week before BMT.

b. Weigh feed every two to three days to record individual feed intake until the end of the

experiment.

Note: The fecal samples collect at indicated time points (Days 14 and 28 after BMT) are

subjected to microbiome and metabolomics analyses to assess the outcome of the

intervention.

5. Microbiota supplementation.
STAR Protocols 3, 101494, September 16, 2022



Figure 1. A schematic outline for identifying the intervention strategy

Analysis of the gut microbiota profiles and fecal metabolites from the preliminary experiment between the non aGVHD (TCD-BM cells only) and aGVHD

(TCD-BM+T cells) groups, which aimed to highlight the differences and further select the intervention items. Either microbiota or metabolites could be

potential modifiable factors in the intervention strategy that contribute to affecting mouse clinical outcomes (tyrosine is shown here as an example).

Correlation analysis is performed on the microbiota and metabolites that changed significantly in response to treatment.
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Note: After evaluation of the gut flora in a murine disease model, researchers directly affect

the composition of the microflora by applying a suspension of bacterial strains.

a. Grow the selected strains in aerobic or anaerobic conditions in accordance with their specific

requirements. All bacterial cultures are mixed with glycerol and added to a final concentration

of 20%. Aliquots (1 mL) are individually frozen and stored at �80�C (Mathewson et al., 2016).

b. Administrate the selected strains via intragastric gavage every other day to naive mice begin-

ning 14 days prior to allo-BMT with continued administration for 21 days post-BMT.

Note: For intervention dose, frequency and time interval from disease onset, we follow the

protocol of Mathewson et al. (Mathewson et al., 2016). Microbial intervention can also be

used in this protocol other than dietary intervention, while we use our dietary-intervened

dataset as an example.

CRITICAL: We recommend all vehicle groups undergo high stringency settings, such as a
controlled feed ratio and solvent control.
KEY RESOURCES TABLE
AGENT or RESOURCE SOURCE IDENTIFIER

erimental models: Organisms/strains

LB/c (H-2Kd)
le, 8–12 weeks

Shanghai SLAC Laboratory
Animal Co., Ltd

http://www.slaccas.com/

7BL/6 (H-2Kb)
le, 6–8 weeks

Shanghai SLAC Laboratory
Animal Co., Ltd

http://www.slaccas.com/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Mouse CD3 cell isolation Kit BioLegend Cat.480031

Pan T-Cell Isolation Kit Miltenyi Biotec Cat.130-0950139

E.Z.N.A.� Stool DNA Kit (200 preps) Omega Cat#D4015-02

Phusion� Hot Start Flex 23 Master Mix NEB Cat#M0536L

AMPure XP beads Beckman Coulter Cat#A63881

PhiX Control Kit v3 Illumina Cat#FC-110-3001

NovaSeq 6000 SP Reagent Kit v1.5 (500 cycles) Illumina Cat#20028402

Qubit dsDNA HS Assay Kits Thermo Fisher Scientific Cat#Q32851

Oligonucleotides

Modified amplicon PCR 341F Primer:
CCTACGGGNGGCWGCAG (The 50 end of the primer
is tagged with specific barcodes for sequencing)

(Klindworth et al., 2013) https://academic.oup.com/nar/article/41/
1/e1/1164457

Modified amplicon PCR 805R Primer:
GACTACHVGGGTATCTAATCC (The 50 end of the
primer is tagged with specific barcodes for sequencing)

(Klindworth et al., 2013) https://academic.oup.com/nar/article/41/
1/e1/1164457

Software and algorithms

FLASH (Magoc and Salzberg, 2011) http://ccb.jhu.edu/software/FLASH/

fqtrim (v 0.9.4) (Pertea, 2018) http://ccb.jhu.edu/software/fqtrim/

VSEARCH (v2.3.4) (Rognes et al., 2016) https://github.com/torognes/vsearch

QIIME (v 1.8.0) (Caporaso et al., 2010) https://qiime.org/

R (v 3.6.1) R Core Team https://www.r-project.org

Ribosomal Database Project (v 11.5) (Cole et al., 2014) http://rdp.cme.msu.edu/

MAFFT (v 7.310) (Fischer et al., 2013) https://mafft.cbrc.jp/

LEfSe analysis (Segata et al., 2011) http://huttenhower.sph.harvard.edu/lefse/

XCMS (Forsberg et al., 2018) https://www.nature.com/articles/nprot.2017.151

CAMERA (Kuhl et al., 2012) https://pubs.acs.org/doi/10.1021/ac202450g

MSConvert software (ProteoWizard) (Chambers et al., 2012) https://proteowizard.sourceforge.io/index.html

MetaX (Wen et al., 2017) https://bmcbioinformatics.biomedcentral.com/
articles/10.1186/s12859-017-1579-y

MetaboAnalyst (Li et al., 2020) https://dev.metaboanalyst.ca/MetaboAnalyst/
home.xhtml

Cytoscape (Li et al., 2020) https://cytoscape.org/

Chemicals, peptides, and recombinant proteins

Normal control feed (0.7% Tyrosine) LiLeng Biotechnology Co., Ltd n/a

0% or 2% tyrosine feed LiLeng Biotechnology Co., Ltd n/a

Acetonitrile LC–MS grade Merck Cat#1000304000

Methanol LC–MS grade Merck Cat#1060354000

Formic acid Thermo Fisher Scientific Cat#A117-50

Deposited data

Raw and analyzed data This paper SRA: PRJNA637751

Other

Vanquish Flex UHPLC Systems Thermo Fisher Scientific Cat#IQLAAAGABHFAPUMBJC

ACQUITY UPLC HSS T3 column (2.1 mm 3100 mm,
1.8 mm)

Waters Cat#186003539

TripleTOF 5600plus Mass Spectrometer SCIEX https://sciex.com/products/mass-spectrometers/
qtof-systems/tripletof-systems/tripletof-5600-system
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STEP-BY-STEP METHOD DETAILS

Part 1. Fecal sample collection and storage

Timing: 1–2 h/each time point
6 STAR Protocols 3, 101494, September 16, 2022
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Table 1. Master mix for amplicon PCR

Reagent Initial concentration Volume (mL/sample) Volume (mL/24 samples)

Modified Amplicon PCR 341F Primer 1 mM 2.5 70

Modified Amplicon PCR 805R Primer 1 mM 2.5 70

Phusion� Hot Start Flex 23 Master Mix 23 12.5 350

Total n/a 25 (including 7.5 mL
of sample)

n/a
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1. Collect fecal samples into fecal tubes or cryopreservation tubes with at least 150 mg/tube and

then flash-freeze in liquid nitrogen for storage at �80�C.

Note: If researchers plan to detect the fecal microbiota and metabolites at the same time

point, we recommend that fecal samples should be collected and then split into two tubes.

The previous literature by Okahashi N. et al. can be referred to for details (Okahashi et al.,

2021).

CRITICAL: To analyze all changes in the intestinal environment, fresh feces are collected
within 2 h or by stimulating defecation.
Part 2. PCR amplification of the 16S rRNA gene V3V4 region library preparation

PCR amplification

Timing: approximately 7–8 h for 24 samples

This section describes the PCR setup and cycling conditions for sequencing the bacterial 16S rRNA

gene V3V4 region.

2. Extract genomic DNA from fecal samples using an Omega E.Z.N.A.� Stool DNA Kit following the

manufacturer’s instructions.

3. Prepare the Master Mix (Table 1) for amplicon PCR.

Note: In order to enhance the amplification and sequencing efficiencies, we modified ampli-

con PCR primers, which are incorporated with the adapters and sample-specific barcode

sequences.

a. Transfer 17.5 mL of the prepared Master Mix into each well of a 96-well plate and add 7.5 mL of

fecal DNA sample (on average, this contains 25 ng of DNA), mock DNA, or negative control

per well. Pipette up and down several times to ensure proper mixing.

b. Seal and spun the plate for 30 s to collect the liquid at the bottom of the wells.

c. Place the 96-well plate in a Thermo cycler, and run the amplicon PCR program following the

settings shown in Table 2.

4. Perform PCR product clean-up using AMPure XP Beads s= according to the manufacturer’s

instructions.

a. Add 1 mL AMPure XP beads per 1 mL PCR product.

Note:We found that a 13 volume of AMPure XP beads to the PCR product is the correct ratio

to remove primer dimers and unused primers while leaving the PCR product intact. Users of

this protocol may need to perform pilot experiments to ensure that this ratio also works for

their experiments.

5. Verify that the generated amplicons have the correct size by running the PCR products on a 2%

agarose gel at 120 V.
STAR Protocols 3, 101494, September 16, 2022 7
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Table 2. PCR cycling conditions

Steps Temperature Time Cycles

Initial Denaturation 98�C 30 s 1

Denaturation 98�C 10 s 32

Annealing 54�C 30 s

Extension 72�C 45 s

Final extension 72�C 10 min 1

Hold 4�C Forever
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Note: The expected amplicon size is �630 bp.

16S rRNA gene amplicon sequencing

Timing: 3 days

This section describes the Illumina sequencing conditions. These methods are performed at LC-Bio

Technology Co., Ltd. in Hangzhou, China (www.lc-bio.com).

6. Quantify the concentration of the PCR amplicons using Qubit dsDNA HS Assay Kits according to

the manufacturer’s instructions.

Note: Typical DNA concentrations range from 2 to 5 ng/mL.

7. Pool the amplicons equally such that approximately 25 ng of DNA per sample is loaded for

sequencing.

8. Perform the sequencing with a NovaSeq 6000 System (NovaSeq 6000 SP Reagent Kit v1.5).

Note: The sequencing run should be carried out as 23250 cycles utilizing 30% Phi-X

Control V3.
Part 3. LC–MS-based untargeted metabolomics

Metabolite extraction

Timing: approximately 4–5 h for 24 samples

9. Remove the fecal sample and weigh 50 mg.

10. Transfer the sample to a 1.5 mL Eppendorf tube, add 500 mL of 50% (v/v) methanol/ultrapure

water solution, and mix them thoroughly using an ultrasonic processor for 10 min at 4�C with

100 Hz.

11. Add 500 mL of acetonitrile to the sample solution and vortexed for 1 min to enhance the

extraction efficiency.

Note: To reduce the complexity of the sample and remove proteins, store the sample at

�20�C for 2 h and then centrifuge at 20,000 3 g for 10 min at 4�C;

12. Collect the supernatant and freeze-dried at �50�C and 0.2 Pa. vacuum;

13. Dissolve the sample in 100 mL of acetonitrile, and pipet 10 mL of each sample solution to prepare

a pooled quality control sample.

Run LC–MS

Timing: approximately 16 h for 24 samples
8 STAR Protocols 3, 101494, September 16, 2022
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Table 3. LC gradient elution conditions

Time (min) Flow rate (mL/min) Solvent A (%) Solvent B (%)

0–0.5 min 0.4 95 5

0.5–7 min; 0.4 95–0 5–100

7–8 min; 0.4 0 100

8–8.1 min 0.4 0–95 100–5

8.1–10 min 0.4 95 5
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This section describes the process of chromatographic separation and LC–MS analysis. These

methods are performed at LC-Bio Technology Co., Ltd. in Hangzhou, China (www.lc-bio.com).

Note: All chromatographic separations are performed using a Vanquish Flex UHPLC System

with an ACQUITY UPLC HSS T3 column used for reversed-phase separation.

14. Inject 4 mL of each sample, set the flow rate is 0.4 mL/min, and the mobile phase consisted

of solvent A (0.1% (v/v) formic acid/ultrapure water) and solvent B (0.1% (v/v) formic acid/

acetonitrile).

Note: The gradient elution conditions are set as shown in Table 3.

15. Maintain the column at 35�C in the oven.

16. Detect metabolites eluted from the column by TripleTOF 5600 plus.

17. Operate Q-TOF in positive ion and negative ion modes separately.
a. For the positive-ion mode, the ion spray floating voltage is set at 5 kV, and for the negative-

ion mode, it is set at - 4.5 kV. The MS data are acquired in the IDA mode.

b. The curtain gas pressure is set at 30 PSI, and the ion source gas1 and gas2 pressures are set at

60 PSI. The interface heater temperature is set at 650�C.
c. The TOF mass range is 60–1200 Da. Survey scans are acquired every 150 ms, and as many as

12 signal ion scans are collected if the threshold of 100 counts/s is exceeded with a 1+ charge

state. The entire collection cycle time is fixed at 0.56 s.
18. Sum four time bins for each scan at a pulse frequency of 11 kHz by monitoring the 40 GHz multi-

channel TDC detector with four-anode/channel detection.

Note: Set the dynamic exclusion time of the scan to 4 s.

CRITICAL: During the collection process, the accuracy of the instrument is calibrated every
20 samples. Furthermore, a QC sample is analyzed every 10 samples to evaluate the stabil-

ity of the LC–MS.
EXPECTED OUTCOMES

Sequence data processing and microbiota diversity

Paired-end reads are assigned to samples according to the barcodes, which are further truncated

through the cutoff of barcodes and primer sequences and merged using FLASH. Quality filtering

of the raw tags is performed under specific filtering conditions to obtain high-quality clean tags

by fqtrim (v 0.9.4). Chimeric sequences are filtered using Vsearch software (v2.3.4), and operational

taxonomic units (OTUs) are generated from sequences with at least 97% similarity. Taxonomic clas-

sification is conducted using the ribosomal database project (RDP) classifier (v11.5). Sequences are

aligned using the MAFFT (v 7.310).

The normalization rarefying is achieved by QIIME (v 1.8.0), which makes each sample have the equal

numbers of sequences for comparison. Recently, several methods have been developed to avoid

making assumptions regarding the variation within a taxonomic group, which target the weakness of
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Table 4. Statistics of the alpha diversity index between TCD-BM (control) and TCD-BM+T (aGVHD) groups

Gut microbiota diversity index Control group aGVHD group

p-valueDay 14 Mean (SD) Median (IQR) Mean (SD) Median (IQR)

Observed species 82.33 G 5.95 82.00 (61.00–100.00) 109.67 G 7.92 113.00 (76.00–135.00) 0.026

Chao1 130.83 G 12.61 124.00 (90.25–172.30) 104.71 G 24.28 93.00 (39.25–208.38) 0.3095

Shannon 1.83 G 0.23 1.57 (1.35–2.83) 1.91 G 0.26 2.11 (1.01–2.59) 0.999

Simpson 0.50 G 0.18 0.44 (0.33–0.77) 0.57 G 0.20 0.64 (0.32–0.77) 0.824

Good coverage 1.00 G 0.00 1.00 (1.00–1.00) 1.00 G 0.00 1.00 (1.00–1.00) >0.9999
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OTUs. Amplicon sequence variants (ASVs) attempt to model the error of the sequencer and to cluster

reads so that their distribution within clusters is consistent with the error model (Caruso et al., 2019).

Alpha diversity

Alpha diversity represents the overall functional biodiversity of a location or within an ecosystem

(Lozupone and Knight, 2008). Use Chao1 and Observed_species to estimate the total number of

species in a community, while Goods_coverage, Shannon and Simpson consider both species rich-

ness and evenness. The above indices are analyzed using QIIME (v 1.8.0) and the sample data are

made available in Table 4.

Beta diversity

Beta diversity indicates differences in species composition among different habitats and commu-

nities using QIIME software (v 1.8.0). Apply distance-based statistical tests (weighted and un-

weighted UniFrac distances clustered) to test the association of the cluster composition with envi-

ronmental and biological factors. Unweighted UniFrac is a presence–absence distance and counts

the fraction of branch lengths unique to either community, which exhibits efficient in detecting abun-

dance change in rare lineages. Weighted UniFrac distance considers species abundance differences

and weights that measure branch length with abundance information (Lozupone and Knight, 2005)

(Figure 2 (Li et al., 2020)).
Metabolite annotation

The acquired LC–MS data pretreatment is performed using XCMS software. Raw data files are con-

verted into mzXML format using MSConvert software (ProteoWizard) and then processed using the

XCMS, CAMERA and metaX toolbox included in R software.

Utilize retention time (RT) combined with m/z to identify each ion. The intensity of every peak is re-

corded to generate a three-dimensional matrix, which contained randomly assigned peak indices

(RT-m/z pairs), sample names (observations) and the intensity information of ions (variables). Identify

metabolites at the MS2 level by matching their molecular formula through an in-house fragment
Figure 2. Weighted UniFrac and unweighted UniFrac analysis

Inter sample variability in community structure is determined by calculating the difference in beta diversity using

unweighted and weighted UniFrac distance metrics.
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Figure 3. Score plots of the PCA and PLS-DA models

The PC1 and PC2 axes represent the first two principal coordinates. Clear discriminations between the non aGVHD

(blue dots) and aGVHD (red dots falling in other quadrants) groups are observed in the PCA and PLS-DA score plots,

with PC1 and PC2 explaining approximately 30% and 20% of the total variance, respectively.
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spectrum library and public database. Adopt the Human Metabolome Database (HMDB) and online

Kyoto Encyclopedia of Genes and Genomes (KEGG) to annotate metabolites through matching be-

tween the precise molecular mass data (m/z) of samples and those from database values below

10 ppm. Perform a QC-based signal-correction method, engaging nonlinear local polynomial

regression (LOESS), to minimize the drift of signal intensity over time using the MetaX R package

(Wen et al., 2017).

Note: The relative standard deviations (SDs) of metabolic features among all QC samples are

calculated, among which those > 30% are excluded.

Use principal component analysis (PCA) to detect potential outliers and evaluate batch effects due

to experimental covariates, while supervised partial least squares discriminant analysis (PLS-DA) is

conducted on variables using a discriminant profiling statistical method to identify more specific

differences between the groups (Figure 3).
QUANTIFICATION AND STATISTICAL ANALYSIS

As our study is comparing between two groups (healthy control vs. aGVHD group, tyrosine-deprived

group vs. tyrosine-supplemented group), all analyses are based on a two-group comparison by an

unpaired Student’s t test (2-sided) is applied.

CRITICAL: Apply Mann–Whitney U test if the data did not meet the criteria of normality.
For experiments include more than two groups, Wilcoxon-paired test corrected for multi-

ple test comparisons using the Benjamini–Hochberg procedure.
All of the above analyses are conducted using the R statistical package (available as functions ‘t.test’

and ‘wilcox.test’).
Differential species screening

1. Use linear discriminant analysis (LDA) effect size (LEfSe) analysis on the grouped samples using

the nonparametric factorial Kruskal–Wallis (KW) sum-rank test to identify the significantly

different genera between assigned taxa (Segata et al., 2011).

Note: An LDA threshold of 3.5 is used for all biomarkers, and all tests of significance are two-

sided, with p values less than 0.05 considered statistically significant.
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Figure 4. Relative abundance of gut microbiota at the phylum and genus levels

(A and B) 16S rDNA gene sequencing of fecal microbiota from TCD-BM (n=6) and TCD-BM+T-cell groups (n=6) and the relative abundance of gut

microbiota at the phylum level (A) and genus level (B) on day 14 after transplantation. Reprinted with permission from (Li et al., 2020).
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2. Differential species analysis can theoretically be performed at the level of domain, phylum, class,

order, family, genus and species.

a. In our study, downstream analysis is performed at the phylum and genus levels (Figures 4A and

4B (Li et al., 2020)). The abundance of top 20 different genus had took up over 99%, which are

selected and organized the data into a structured matrix.

b. Each row is the name of the species, and each column is the microbiota abundance and fold

change value in each sample (Table 5).

Differential metabolite selection

3. Screen the metabolites meeting the requirements for the further study.

a. Variants with ratio R2 or %1/2,

b. VIP (Multivariate statistical analysis with PLS-DA to obtain Variable Important for the

Projection, VIP) R1,

c. q value %0.05,

d. Annotated at MS2 level.

Note: The summary for differentmetabolites is collatedand summarized inTable 6. Each row is the

type of metabolite, and each column represents the metabolic relative components in a sample.

4. Develop a heatmap of the top 50 differentially expressedmetabolites to organize and display the

data clearly (Figure 5 (Li et al., 2020)).

5. Perform analysis of the relative enrichment of KEGG pathways using the web-based tool

MetaboAnalyst 4.0 (Figures 6A and 6B), which contribute to understanding the biological func-

tions of various metabolites.

Correlation analysis

6. Use Spearman’s correlation coefficient to measure the strength of a linear relationship between

two variables using the R package Hmisc, which ranges from -1 to 1. The sign reflects either a

negative or a positive correlation, respectively.

Note: Depending on the purpose of the experiment and the actual situation, the appropriate

threshold can be determined to identify the significantly related bacterial-metabolite pair. In

our study, only correlations with |Correlation coefficient | > 0.4 and p value < 0.01 are indi-

cated and considered to be displayed. After calculating the correlation coefficient in each mi-

crobiota-metabolite, microbiota-microbiota and metabolite-metabolite pair (Table 7).
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Table 5. Gut microbiota in healthy control (TCD-BM) and aGVHD (TCD-BM+T) groups

Genus

TCD-BM_D14 TCD-BM+T_D14 Fold change
p value of
abundance(Mean abundance) (Mean abundance) Day 14

Lachnospiraceae_unclassified 54.957 9.4476 0.1719 0.0277

Bacteroides 13.6581 15.5655 1.1397 0.8624

Clostridium_XlVa 12.2968 48.7368 3.9634 0.0396

Akkermansia 7.5159 10.9121 1.4519 0.6767

Blautia 2.8294 5.4473 1.9252 0.4202

Enterococcus 1.9151 2.0063 1.0476 0.9462

Anaerovorax 1.771 0.0332 0.0188 0.086

Clostridioides 1.4102 5.5145 3.9105 0.0806

Flavonifractor 1.0631 0.3846 0.3618 0.0287

Erysipelotrichaceae_incertae_sedis 0.9833 0.1265 0.1287 0.1256

Anaeromassilibacillus 0.8568 0.9289 1.0841 0.8471

Clostridium_IV 0.2106 0.2111 1.0024 0.9943

Lachnoclostridium 0.1478 0.0708 0.479 0.058

Anaerostipes 0.1219 0.067 0.5498 0.1055

Ruminococcaceae_unclassified 0.0618 0.1008 1.632 0.3518

Delftia 0.0422 0 0 0.3436

Clostridium 0.0421 0.0217 0.5146 0.0945

Porphyromonadaceae_unclassified 0.0197 0.0248 1.2576 0.7447

Erysipelatoclostridium 0.0148 0 0 0.0723

..

Note: Gut microbiota accorded with significant change (p<0.05, highlighted in yellow) and abundance over 1%
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7. Select an appropriate pattern of data visualization. Heatmap or network graphs can help us to

visualize important relationships.

Note: For the network graph generated by using Cytoscape, each node represents a metab-

olite (circular) or microbiota (square), and the node-to-node relationship (edges) represents

the interaction between these biomolecules (Figures 7A and 7B (Li et al., 2020)).

8. Represent the parameters by different components in the network after the initial generation

from the input data,

Note: For example, the volume size refers to the strength of the correlation, and red and blue

colors indicatepositiveandnegative correlations, respectively (Figures 4Cand4D (Li et al., 2020)).
LIMITATIONS

One challenge is that fecal metabolomics cannot distinguish between endogenous and exogenous me-

tabolites, leadingus to relyon the reported literatureor characterizationof species,which isaccomplished

primarily using isolated, cultural, biochemical and molecular methods. However, there are many diffi-

culties with experiments using pure cultures: most bacteria cannot be isolated in pure cultures, synthetic

communities constructed from pure cultures might not represent any natural community, and there is no

general standardization for knocking out specific taxa from natural communities (Rivett and Bell, 2018).

Therefore, many studies of microbiota have been based on microflora with clarified properties.
TROUBLESHOOTING

Problem 1: Batch differences

We could generally separate our research into two parts: changes discovered and metabolite inter-

vention. When we compared the latter result to the former data, we found that the outcomes are

poor with respect to homogeneity and characterized differences. Large variations in themicrobiome
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Table 6. Different metabolic profile between TCD-BM (control) and TCD-BM+T (aGVHD) groups on day 14

MS2superclass Metabolites

Control group aGVHD group Fold change q Value VIP

Day 14 (mean value) Day 14 (mean value) Day 14 Day 14 Day 14

Phenylpropanoids and polyketides Dehydroneotenone 100.61352 588.23156 5.8464462 0.0010913 2.6696723

4-Hydroxycinnamic acid 9213.1937 781.732 0.0848492 0.0208994 3.3757817

Caffeic acid 8433.7234 2545.4257 0.3018152 0.021606 2.1227442

Organoheterocyclic compounds Riboflavin 56724.319 21366.578 0.376674 0.0014216 2.1782754

Urocanic acid 16116.717 34136.885 2.1181041 0.0123058 1.6555307

6-Hydroxynicotinic acid 3823.8213 654.00322 0.1710339 0.0141133 3.0237255

Organic oxygen compounds Erythromycin 3751458.7 1854299.6 0.4942876 0.0039898 1.6508956

Methacrolein 38248.643 2346.5117 0.0613489 0.0133858 3.4746616

Organic acids and derivatives Tyrosine 3997.4834 1202.9267 0.300921 0.0182199 1.9353743

L-Aspartic acid 10803.05 10391.73 0.9619256 0.8656363 1.0143129

L-Glutamic acid 38549.17 30655.81 0.7952392 0.0970525 1.7928728

Lipids and lipid-like molecules Floionolic acid 21504.28 7555.0427 0.3513274 7.20E-05 2.3758445

Physalin P 9607.4026 2579.4691 0.2684877 0.0013269 2.2378511

Anabsin 4722.1024 1496.2174 0.3168541 0.0013382 1.9491503

Acylcarnitine 18:0 4008.0528 24523.682 6.1186024 0.0084062 3.3540335

Glycocholic acid 1545.3678 3826.1 2.4758507 0.0084969 1.7927763

Benzenoids Phenyl acetate 5304.0912 2548.4334 0.4804656 0.0054596 1.2035083

2-Phenylethanaminium 1831.6042 12447.273 6.7958312 0.0176947 3.0204275

Styrene 4818.0634 29328.697 6.0872377 0.0226978 2.8442328

Tyramine 23230.42 24770.6 1.0663001 0.7209578 1.5157371

Dopamine 5221.277 7967.126 1.5258961 0.0468903 1.2107321

Nucleosides, nucleotides, and analogs S-Adenosylhomocysteine 2953.48 3625.85 1.2276534 0.1285364 0.7623467

..
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identified between batches are apparent even at the family level, although we tried our best to con-

trol all of the variables, including mouse biological condition, feed ratio and sample collection.
Potential solution

Batch differences remain technically challenging in 16S rDNA sequencing and LC–MS. We recom-

mend increasing the replicates in each group, when laboratory conditions and funding permit. If

available, getting animals from the same parental colony would be better. Pre-screening of fecal mi-

crobiota community before any intervention could be helpful tominimize this variability and improve

the consistency of results in subsequent experiments. For metabolite extraction, it requires a stable

temperature, extraction time and space to ensure accuracy.
Problem 2: Dietary intervention falls short of expectation

Altering the content of a single metabolite in a diet might be not sufficient to reduce the risk of dis-

ease or to improve the manifestation, which leads to unsatisfactory microbiome and metabolomics

results.
Potential solution

To be most effective, any supplementation plan should include a broad-spectrum metabolite com-

bination as replenishment. For example, tyrosine is one of the predominant essential amino acids in

the aromatic amino acid family, including phenylalanine and tryptophan. Therefore, a series of aro-

matic amino acids could be an appropriate choice for dietary intervention.
Problem 3: Selection of intestinal flora intervention

In some cases, an inappropriate increase in beneficial bacteria or the complete elimination of harm-

ful bacteria might lead to counterproductive outcomes.
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Figure 5. Changes in the metabolomics of the TCD-BM and TCD-BM+ T cell groups

The 50 most important metabolites after Student’s t test and the hierarchical clustering of samples shown in the heatmap. Reprinted with permission

from (Li et al., 2020).
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Potential solution

The population of microorganisms in the intestine is a balanced phase. Hence, careful consideration

should be given not only of the significance between groups but also their abundances. We recom-

mend dose escalation experiments to determine the maximum tolerated dose and effective dose of

the microbiota.

Problem 4: Identifying the metabolite under positive and negative ion scanning mode

Metabolites are acquired in both positive and negative ion modes, while some metabolites could

only be identified in one mode. In addition, the molecular weight of the metabolite could be signif-

icantly different between positive and negative ion modes.

Potential solution

Basic metabolites are normally positively charged, and acidic metabolites are negatively charged.

Identification of each metabolite is performed as the mass-to-charge ratio (m/z) of adducts. If a
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Figure 6. Enrichment analysis of selected metabolites

(A) Submitted selected metabolite data (MS2 level name) as compound name (input type) to the MetaboAnalyst Enrichment Analysis module. Pathway

analysis based on the KEGG database as the library. We recommend displaying only metabolite sets containing at least two entries.

(B) The degree of KEGG enrichment ranked by enrichment score and assessed by the p value. Reprinted with permission from (Li et al., 2020).
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metabolite exhibited greater variation in positive and negative ion modes, this phenomenon is

attributable to different forms of adducts representing negatively and positively charged groups.

Indeed, it is more accurate to identify metabolites by identifying ions from the same metabolite.

Problem 5: Limited data suggested from Spearman’s correlation

Spearman’s correlation analysis suggested limited information on the roles andmechanism between

microbiota and metabolites, resulting in difficulty in validating predicted functions.

Potential solution

Spearman’s correlations assume independence between interactions, simplifying the estimation

procedure by reducing it to a combination of independent two-dimensional problems. However,
Table 7. Correlation network analysis of different comparisons on day 14

Node1 Relation Node2 Rho p-value

Clostridium_XlVa neg L-Glutamic acid �0.8 0.0027

Bacteroides pos L-Glutamic acid 0.76 0.004

Akkermansia pos L-Glutamic acid 0.62 0.0373

Peptostreptococcaceae_unclassified neg L-Tyrosine �0.75 0.0048

Blautia neg S-Adenosylhomocysteine �0.65 0.0259

Others pos L-Tyrosine 0.69 0.013

Akkermansia neg Clostridium_XlVa �0.86 0.013

Enterococcus pos Blautia 0.85 0.013

L-Aspartic acid pos L-Dopa 0.87 0.013

Others neg Dopamine �0.72 0.0081
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Figure 7. A network diagram is created using Cytoscape

(A) The correlation data are imported into Cytoscape. The genus is set as the source node, and the metabolite is set as the target node.

(B) Generate style form statistics by Network Analyzer menu under the Tools menu is used.

(C) Obtaining the initial network diagram.

(D) The size and color of the nodes and the color and thickness of the line can be set as some related parameters, such as the correlation coefficient and

p value. Reprinted with permission from (Li et al., 2020).
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these simplifications are not statistically valid for compositional data, especially for bothmicrobiome

and mass spectrometry datasets (Gloor et al., 2017). Recently, Morton et al. described a novel

method for performing an integrated analysis of the microbiome and meta-metabolome, named

microbe-metabolite vectors (MMVEC). Using neural networks (https://github.com/biocore/

mmvec), MMVEC can estimate the conditional probability that each molecule is present given the

presence of a specific microorganism (Morton et al., 2019).
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact Pengxu Qian (axu@zju.edu.cn).
Materials availability

This study did not generate new unique reagents.
Data and code availability

The published article (https://www.sciencedirect.com/science/article/pii/S2352396420304242) in-

cludes all datasets generated or analyzed during this study.
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