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Abstract

Background and aims

The bacterial leaf nodule symbiosis is a close interaction between endophytes and their

plant hosts, mainly within the coffee family. The interaction between Rubiaceae species and

Burkholderia bacteria is unique due to its obligate nature, high specificity, and predominantly

vertical transmission of the endophytes to the next generation of host plants. This vertical

transmission is intriguing since it is the basis for the uniqueness of the symbiosis. However,

unequivocal evidence of the location of the endophytes in the seeds is lacking. The aim of

this paper is therefore to demonstrate the presence of the host specific endophyte in the

seeds of Psychotria punctata and confirm its precise location. In addition, the suggested

location of the endophyte in other parts of the host plant is investigated.

Methods

To identify and locate the endophyte in Psychotria punctata, a two-level approach was

adopted using both a molecular screening method and fluorescent in situ hybridisation

microscopy.

Key results

The endophytes, molecularly identified as Candidatus Burkholderia kirkii, were detected in

the leaves, vegetative and flower buds, anthers, gynoecium, embryos, and young twigs. In

addition, they were in situ localised in leaves, flowers and shoot apical meristems, and, for

the first time, in between the cotyledons of the embryos.
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Conclusions

Both independent techniques detected the host specific endophyte in close proximity to the

shoot apical meristem of the embryo, which confirms for the first time the exact location of

the endophytes in the seeds. This study provides reliable proof that the endophytes are

maintained throughout the growth and development of the host plant and are transmitted

vertically to the offspring.

Introduction

Plants interact with a broad range of endophytic microorganisms, ranging from fungi, such as

arbuscular mycorrhizal fungi (AMF), to bacteria, including rhizobia [1–5]. Most of these inter-

actions are neutral or mutualistic, with only a small percentage being pathogenic [2]. However,

endosymbionts are not limited to the rhizosphere but are also detected in above-ground plant

organs such as stems and leaves. The term ‘endophyte’ as defined by Partida-Martı́nez and

Heil [3] is used in this study to refer to endosymbionts occurring in plant tissue without nega-

tively affecting the host plant.

Bacterial leaf nodule symbiosis is an intimate endosymbiosis in which endophytes are

housed in galls or ‘nodules’ in the leaves of several species in the flowering plant families Dios-

coreaceae, Primulaceae, and Rubiaceae [6,7]. In the latter two families, the endosymbiosis is

suggested to be unique due to the presence of vertical transmission, the obligate nature, and

the high specificity of the interaction [6–9]. The presence of vertical transmission in combina-

tion with possible ecological advantages may transform beneficial interactions into long-term

and possibly obligate mutualisms [2,10]. Bacterial leaf nodule symbiosis evolved into a highly

specific and obligate endosymbiosis in which one specific host plant species interacts with one

single bacterial species [7–9,11–12]. This leaf symbiosis is the most prevalent in Rubiaceae,

where the endophytes were identified as Burkholderia species [6–9,13–18].

Papers like von Faber [19], Lersten and Horner [20,21], and Miller [6] are the most exten-

sive microscopic reports on the nodulated species Pavetta zimmermanniana [19], Psychotria
bacteriophila [20–21], and Psychotria kirkii [6] (the latter two being synonyms of Psychotria
punctata [22]). These studies not only detected bacterial microorganisms in leaf nodules, but

also found them in other plant structures such as vegetative and reproductive buds, sepals

[6,19–21], and pyrenes (i.e., the stones of fleshy drupes containing the seeds) [19]. Although,

vertical transmission of the endophytes to the next generation was suggested by von Faber

[19]–based on the detection of bacterial microorganisms in the gynoecium (micropyle region)

and the pyrenes (cavity surrounding the embryo)–to date, strong evidence is still lacking. Van

Oevelen et al. [18] was the first to molecularly identify the endophyte in the leaf nodules of Psy-
chotria punctata as Candidatus Burkholderia kirkii and Lemaire et al. [12] detected endophytic

DNA in seeds, flowers, shoots, and leaves. Despite this progress, the exact location of Candida-
tus Burkholderia kirkii still remains unclear.

Here, we combine two methods (i.e., molecular screening and fluorescent in situ hybridisa-

tion) to study the location of the host specific endophyte, Candidatus Burkholderia kirkii, in

the seeds of the nodulated host plant Psychotria punctata. We hypothesize that, if the bacterial

endophytes are vertically transmitted, they should ideally be located in close proximity to the

embryonic apical shoot meristem as this facilitates their transmission to the vegetative and

reproductive structures of the next generation of host plants. In addition to the localisation of
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the endophytes in the seeds, we also screened other suggested locations of the bacterial endo-

phytes within the host plant using the same approach.

Materials and methods

Plant material

Leaves, vegetative buds, flower buds, flowers, pyrenes, twigs, and roots of Psychotria punctata
were obtained from plant specimens grown at the Botanic Garden Meise (accession numbers

BR19536779, BR20010513-92, BR20001943-58, BR19951273-22, and BR20021526-47).

Molecular analysis

For the molecular analysis, all plant structures, sampled in three-fold, were surface sterilised.

Leaves, one-year-old and older lignifying twigs, roots, flowers, vegetative and flower buds were

surface sterilised with 70% (v/v) ethanol and 1.6% (w/v) sodium hypochlorite for ten seconds

each and the samples were subsequently rinsed with sterile water [7,12,14–17]. Pyrenes were

treated with 70% (v/v) ethanol for three minutes and 1.6% (w/v) sodium hypochlorite with

0.1% (v/v) Tween20 for 20 minutes before rinsing them with sterile water. Anthers and gynoe-

cia were dissected from the flowers, whereas endosperm, sclerified endocarp and embryos

were prepared from the pyrenes. To remove the embryo, an incision was made along the ven-

tral intrusion at the opposite side of the funicle. This incision facilitated the rupture of the pyr-

ene and the isolation of the embryo from the embryonic cavity. For smaller plant structures,

multiple samples of the same plant individual were combined, i.e., five gynoecia, ten anthers,

and 15 embryos.

Plant tissues were ground in liquid nitrogen with a tissue homogeniser and their total geno-

mic DNA was extracted using a modified cetyltrimethylammonium bromide (CTAB) protocol

[23]. Polymerase chain reactions (PCR) were performed using 16S rDNA [15], recA and gyrB
[24] bacterial primers, specifically designed for Burkholderia species. A positive control with

Burkholderia caledonica and a negative control were included in each PCR run. The amplified

products were visualised using gel electrophoresis and the positive results were purified and

sequenced in both directions by Macrogen sequencing facilities (Macrogen Europe, Amster-

dam, Netherlands). The raw sequences were assembled and screened for potential sequencing

errors in Geneious v9.1.8 (Biomatters, Auckland, New Zealand). After assemblage, the consen-

sus sequences were compared to sequences present on GenBank with the BLAST program

(www.ncbi.nlm.nih.gov/BLAST) and were attributed to species level based on 99% or more

sequence similarity [25].

Microscopic analysis

The samples (i.e., three leaves, five embryos, three vegetative buds, and three flower buds) for

microscopic analysis were fixed in 4% (v/v) formaldehyde in PEM buffer (100 mM 1,4-pipera-

zinediethanesulfonic acid, 10 mM MgSO4, and 10 mM ethylene glycol tetra-acetic acid, pH

6.9) for two hours under vacuum. After washing in phosphate-buffered saline (PBS, Na2HPO4

0.148 g, KH2PO4 0.043 g, NaCl 0.72 g, NaN3 0.9 g in 100 mL distilled water, pH 7.1), the sam-

ples were dehydrated using a graded ethanol series (30, 50, 70, 85, 100% (v/v)). Subsequently,

they were gradually impregnated with and embedded in LR White acrylic resin (medium

grade, London Resin Company, UK) using polypropylene embedding moulds and polymer-

ized at 37˚C for three days. Semi-thin sections of 350 nm were cut using a diamond knife

mounted on a Leica UC7 ultramicrotome (Leica Microsystems, Vienna) and of each biological
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sample between five and ten sections were collected on polylysine-adhesion slides (Carl Roth,

Germany).

As the FISH probe can only detect endophytes at the surface of sections, we also employed

a ‘bacteria isolating’ technique [19] to collect endophytes from the outer surface of the embryo.

To this end, three freshly excised embryos were submerged for five minutes in one droplet of

sterile water on polylysine-adhesion slides. After air-drying the slides, the residue left by the

embryos was fixed in 4% (v/v) formaldehyde in PEM buffer for 30 minutes and rinsed with

PBS and sterile water. This ‘bacteria isolating’ technique was replicated three times.

Fluorescent in situ hybridisation (FISH) was performed as outlined by Daims et al. [26]

using the 5’-Alexa-555-labelled Burkho primer (Thermo Fisher Scientific, US), a specific

primer designed for Burkholderia [27]. The slides were mounted in Citifluor AF2 anti-fade

agent (Agar Scientific, UK) and observations were made with a Nikon Eclipse Ni-U micro-

scope equipped with a Nikon DS-Fi1c camera (Nikon, Japan) and the following filter cubes:

FITC (excitation 480/20 BP; dichroic mirror 505 LP; emission 410 LP) referred to as the green

channel and TRITC (excitation 535/30 BP; dichroic mirror 565 LP; emission 580 LP 541/572)

referred to as the red channel. The green channel was used to observe plant tissue autofluores-

cence, while the red channel visualised the 5’-Alexa-555-labeled probe (excitation 555 nm,

emission 580 nm). The use of merged epifluorescence images of both channels facilitated

interpretation of the tissue-specific localisation of the endophyte. The hybridisation protocol

of Daims et al. [26] with the Burkho probe was successfully tested on leaf cross sections

through a bacterial leaf nodule.

After observation of FISH labelling, cover slips were carefully removed, and the slides were

thoroughly rinsed with demineralised water to remove the anti-fade agent. Subsequently, the

slides were stained with 1% (w/v) toluidine blue O (Merck, Germany) (TBO) in 1% (w/v)

Na2B4O7 for 20 seconds at 50˚C. After rinsing with demineralised water, slides were mounted

with DePeX (VWR international, Belgium). Observations were made with a Nikon Eclipse Ni-

U bright field microscope equipped with a Nikon DS-Fi1c camera.

Results

Molecular analysis

Endophytic DNA was detected in the leaves, vegetative buds, flower buds, anthers, gynoecia,

embryos, and twigs with the specific Burkholderia primers 16S rDNA, recA, and gyrB
(Table 1). Burkholderia DNA was not detected in the roots, the endocarp, nor in the endo-

sperm of the seeds (Table 1). All the sequences were identified with BLAST (99% threshold) as

Candidatus Burkholderia kirkii (S1 Table).

Based on these results, plant structures for detailed microscopic analysis were determined,

which included leaves, vegetative buds (inter alia shoot apical meristem), flower buds (inter
alia gynoecium and anthers), and embryos.

Fluorescent in situ hybridisation

The bacterial leaf nodule symbiosis is characterised by macroscopically visible bacterial leaf

nodules that are, in case of P. punctata, randomly distributed in the lamina of the leaves (Fig

1A). The nodules, located in the spongy parenchyma of the mesophyll, are lined by two or

three cell layers of compressed mesophyll cells (Fig 1B). FISH labelling allowed identification

of the nodule bacteria as Burkholderia (Fig 1C). This result indicated that the used protocol

and probe allows for in situ detection of Burkholderia endophytes. The endophytic colony was

interspersed with strands of parenchymatous cells (Fig 1D). No endophytes were detected in

the extracellular spaces of the spongy parenchyma of the lamina (Fig 1E and 1F).

Vertical transmission of the leaf endophyte in Psychotria punctata
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In vegetative buds, the leaf enclosed chamber (LEC) is formed by the interpetiolar stipules

positioned above the shoot meristem that protect the developing leaf primordia (Fig 2A and

2B). This LEC is further protected by decussately arranged pairs of leaves and their still enclos-

ing interpetiolar stipules (Fig 2A and 2B). In addition to the leaf primordia, multicellular, den-

droid trichomes or colleters were detected in the LEC (Fig 2B–2D). These structures were

distinguishable from neighbouring cells due to their high level of autofluorescence and their

densely stained cytoplasm, which suggests a high cytoplasmic activity, potentially correlated

with mucus production (Fig 2C and 2D). At the abaxial side of the enclosing leaves, a different

multicellular type of trichomes was observed, characterised by the absence of dense cyto-

plasmic staining (Fig 2B–2F). Burkholderia bacteria were detected in the mucus that surrounds

the colleters in the LEC (Fig 2C and 2D). Furthermore, endophytes, yet at a lower abundance

compared to the LEC, were also detected in the mucus between the trichomes at the abaxial

side of the enclosing leaves (Fig 2E and 2F).

To analyse the presence of the endophytes in flowers, longitudinal sections through devel-

oping flower buds were made (Fig 3A). Flowers of P. punctata are pentamerous, with an infe-

rior gynoecium, bilocular ovaries, uniovulate locules and anatropous ovules (Fig 3A). The

observed flower buds were in a late developmental stage, judging by the differentiation state of

sepals, petals, and anthers (Fig 3A). Endophytes were not found in the locules (only one of the

two locules can be observed) of the gynoecium (data not shown). The developing stamens and

style (not shown) are still enclosed by the petals (Fig 3A–3C). FISH labelling only detected

endophytes in a mucus-filled space between the sepals and petals (Fig 3D and 3E). At the base

of the latter space, colleters with intensely TBO stained cytoplasm were observed (Fig 3C–3E).

Although molecular techniques indicated the presence of endophytic DNA in the anthers, no

endophytes were detected in these structures by FISH (data not shown).

The fruits of P. punctata contain one or two hemispherical pyrenes that are characterised

by a T-shaped intrusion at the ventral side following the longitudinal axis (Fig 4A). When the

pyrene is cut in half, a cavity is observed above the ventral intrusion close to the funiculus in

which the embryo is located (Fig 4A and 4B). Mucus was observed in this embryonic cavity

and between the cotyledons of the embryo (Fig 4C). Despite the presence of mucus in the

embryonic cavity, endophytic DNA was only found in embryos and not in the endosperm or

sclerified endocarp samples (Table 1). To assess the presence of endophytes in close association

with the embryo, we employed two methods. The first method is based on the collection of

bacteria from mucus covering the embryo surfaces (‘bacteria isolation method’). FISH

Table 1. Results of the PCRs with the specific primers for the genus Burkholderia. Of each plant structure, three biological replicates were tested. If the sequences were

identified as Candidatus Burkholderia kirkii, the presence of the host specific endophyte is indicated with a +, otherwise the absence is indicated with a–in the last column.

Plant structure 16S recA gyrb Identified as Candidatus Burkholderia kirkii

Leaves 3/3 3/3 3/3 +

Vegetative buds 3/3 3/3 3/3 +

Flower buds 3/3 3/3 3/3 +

Anthers 2/3 3/3 3/3 +

Gynoecia 3/3 3/3 3/3 +

Endocarp 0/3 0/3 0/3 –

Endosperm 0/3 0/3 0/3 –

Embryos 3/3 3/3 3/3 +

Twigs (second internode) 2/3 3/3 3/3 +

Twigs (lignifying, older sample) 3/3 3/3 3/3 +

Roots 0/3 0/3 0/3 –

https://doi.org/10.1371/journal.pone.0209091.t001
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labelling of the extracted residue allowed detection of the Burkholderia endophyte (Fig 4D and

4E). In case the endophytes are transmitted vertically, one would expect to detect them in close

proximity of the embryonic shoot apical meristem, flanked by the cotyledons. Therefore, lon-

gitudinal sections (perpendicular to the surface of the cotyledons) of embryos were investi-

gated using FISH. The second method allowed detection of endophytes–which were also

stained with TBO–in the intercotyledonary space of several embryos (Fig 4F–4I and S1E and

S1F Fig). In addition to the intercotyledonary space, Burkholderia bacteria were also observed

at the outer surface of the embryo (S1A–S1D Fig). Endophytes were not detected in the embry-

onic tissue nor randomly dispersed over the slide.

Discussion

This study, which combined FISH and PCR techniques, is the first to report and identify the

host specific endophyte Candidatus Burkholderia kirkii in several locations in the host plant

(Table 1). Detection of Burkholderia bacteria in the pyrene of P. punctata demonstrates how

these endophytes are vertically transmitted to the next plant generation.

The detection of the endophyte in the leaf enclosing chamber (LEC) above the shoot apical

meristem is in line with the findings of previous studies [6,12,19–21]. The location of the latter

endophytic colony is an essential part of the symbiotic cycle of the bacterial leaf nodule symbi-

osis as it enables the transmission of endophytes to the leaves as well as to (axillary) vegetative

and reproductive buds. Besides the presence of endophytes, mucus-producing colleters were

also present in the LEC. The production of mucus most likely facilitates the passive infiltration

of the endophytes towards the leaves during the early leaf developmental stages via stomatal

pores [6,19–21]. Endophytes were also detected in mucus residue between the trichomes at the

abaxial side of the leaves forming the LEC (Fig 2E and 2F). This can be explained by the forma-

tion of successive LECs above the shoot apex. In the LEC, newly developed leaf primordia are

completely surrounded by mucus and endophytes. As the latter leaves elongate and cover the

LEC, a small amount of mucus and endophytes may still be present at abaxial leaf surfaces.

The low abundance of endophytes may be an indirect result of the absence of mucus-produc-

ing colleters at the leaf surface and the decreasing mucus production of the colleters at the

enclosing stipules, as mucus is necessary to sustain the endophytic colony [20–21,28]. This

process might also explain why endophytic DNA was detected in the twig samples, as inter-

nodal stem segments also develop in the LEC and endophytic colonies cannot be maintained

as mucus-producing trichomes are absent.

The detection of the endophyte in the flower buds, between the sepals and the petals (Fig

3C–3E), supports the findings of earlier studies [6,19]. Moreover, endophytic DNA was con-

firmed in the gynoecia (Table 1). Although the endophytes were not observed during the

microscopic analysis of multiple biological replicates, their presence was suggested by molecu-

lar detection. This molecular detection corroborates the observations of von Faber [19] and

the current hypothesis [6,12,19–20], which states that the endophytes infiltrate the locules of

the gynoecium during early floral development, when the carpels are not yet fused [6,19,20].

This mode of transmission may be possible as Figueiredo et al. [29], in an ontogenetic study of

Psychotria carthagenensis flowers, observed a (temporary) opening in developing gynoecia

Fig 1. In situ detection of Burkholderia endophytes in transverse sections of Psychotria punctata leaves using FISH. (A) Detail of a leaf showing nodules scattered

throughout the abaxial leaf surface. (B) TBO-stained section through a nodule, which contains endophytes, as well as parenchymatous cells. (C) Merged epifluorescence

image of the nodule showing FISH-labelled bacteria (red, arrows) and autofluorescence of parenchymatous cells (green). (D) Same section as (C), stained with TBO after

FISH labelling, which stains the mucus surrounding the bacteria (arrows correspond with the same bacteria indicated on the fluorescent image (C)). (E) Merged

epifluorescence image of the spongy parenchyma showing the intercellular space, in which no endophytes were detected. (F) Same section as (E), stained with TBO after

FISH labelling. n, nodule; pa, elongated parenchymatous cells; sp, spongy mesophyll.

https://doi.org/10.1371/journal.pone.0209091.g001
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with carpels that are not completely fused. There are two hypotheses that explain the infiltra-

tion of the ovule by the endophyte: von Faber [19] suggested that the bacteria infiltrate the

ovule together with the pollen tube when it fuses with the ovule, while Miller [6], on the other

hand, added that, if the embryogenesis of Psychotria was apomictic, placental secretion could

also facilitate the transmission of the endophyte to the ovule, which in fact has been confirmed

for Ardisia (Primulaceae). In other mutualistic or parasitic interactions throughout the angio-

sperms, endophytes may infiltrate the seeds via other pathways including the gametes, the

shoot meristem, vascular tissue in the funiculus, the micropyle, or through the seed coat [30–

32]. Our results do not unequivocally refute either of these hypotheses, but the absence of

endophytes in vascular tissue seems to suggest that the endophytes infiltrate the ovule via the

micropyle.

Candidatus Burkholderia kirkii was also genetically identified in embryos (Table 1 and S1

Table). FISH labelling supported these results as endophytes were detected in close proximity

to the embryo, more specifically in the intercotyledonary space (Fig 4F–4I and S1 Fig). These

findings provide strong proof for the presence of endophytes near the embryonic shoot meri-

stem, as suggested by earlier studies [6,19–20]. Although Miller [6] was not able to detect bac-

terial microorganisms with a transmission electron microscope, we were able to detect

Burkholderia in the embryonic cavity of five biological replicates (Fig 4 and S1 Fig). The pres-

ence of endophytes above the embryonic shoot meristem may be a first and crucial step

towards developing successive endophyte-housing LECs as soon as the first leaves appear after

germination and vegetative growth is initiated. In other mutualistic or parasitic interactions,

seed microbiota is mostly detected near the seed coat and present in grooves, while other bac-

teria are detected in the endosperm or embryonic tissue [30–34]. In contrast to the endophytes

located near the seed coat, the bacteria present in the embryonic tissue are unlikely to be con-

tamination of external microbiota and are vertically transmitted microorganisms [31–34]. In

bacterial leaf nodule symbiosis, the close proximity of the endophytes to the embryonic shoot

meristem validates the vertical transmission of the endophyte and the obligatory character of

the endosymbiosis.

Although endophytic DNA was found in the anthers (Table 1 and S1 Table), complemen-

tary FISH experiments on transverse sections through several flower buds did not confirm the

presence of endophytes. Transmission of endophytes via pollen (both internally, enclosed

within the pollen wall, as externally, attached to the exine) has been reported in other symbi-

otic interactions, e.g., the bacterial endophyte Enterobacter cloacae in Mediterranean pines

[35], and endophytic fungi (Alternaria alternata and Cladosporium sphaerospermum) in forbs

[36]. Other studies suggested the possibility of (vertical) endophyte transmission via pollen for

bacterial leaf nodule symbiosis as well, but they did not provide conclusive evidence [7,12,37].

Besides transmission via pollen, other modes of transmission, through herbivorous insects or

free-living soil bacteria, have been proposed [7,9,12,37]. Our study can neither confirm nor

Fig 2. In situ detection of Burkholderia endophytes in longitudinal sections of P. punctata vegetative buds using FISH. (A) Overview of an

excised vegetative bud revealing the shoot apical meristem and two leaf primordia, and the leaf enclosed chamber (LEC) filled with mucus. The LEC

is enclosed by decussate arranged leaf pairs and their interpetiolar stipules. The stipules of the second distalmost node are not visible due to their

parallel placement with the sectioning plane. (B) TBO-stained section through the LEC, enclosed by stipules and the leaves of the first distalmost node

and the regions visualised in (C and E). (C) Merged epifluorescence image of the LEC (B), showing FISH-labelled bacteria (red, arrows) between the

colleters in the mucus. (D) Same section as (C) stained with TBO after FISH labelling. (E) Merged epifluorescence image of the abaxial leaf surface

(B), showing Burkholderia (red labelling, arrows) in the mucus between the trichomes. (F) Same detail as (E) stained with TBO after FISH labelling.

The detected endophytes occur in mucus residue. c, colleters; l1, leaves of first distalmost node; l2, leaves of second distalmost node; lec, leaf enclosed

chamber; lp, leaf primordia; m, mucus; sam, shoot apical meristem; st, stipules of the leaf primordia; st1, stipules of the first distalmost node; st3

stipules of third distalmost node; t, trichomes.

https://doi.org/10.1371/journal.pone.0209091.g002
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reject these modes of transmission. However, transmission via free-living soil bacteria seems

to be less plausible as no endophytic DNA was detected in the roots of the host plant (Table 1).

Fig 3. In situ detection of Burkholderia endophytes in longitudinal sections of P. punctata flower buds using FISH. (A) TBO-stained section through the

flower bud. (B) Detail of (A) showing a locule with ovule. (C) Detail of (A) showing the absence of mucus between the anthers and the location of detail (D)

between the sepals and petals. (D) Merged epifluorescence image of the space between the sepals and petals (C), showing FISH-labelled endophytes (red, arrows)

between colleters. (E) Same detail as (D) stained with TBO after FISH labelling, visualising mucus between the bacteria and colleters. a, anthers; c, colleters; f,

filament; lo, locule; o, ovule; p, petals; se, sepals.

https://doi.org/10.1371/journal.pone.0209091.g003
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Even though the number of endophytes in some plant structures appears to be low (Figs 2E

and 2F, 4D–4I), these observations are reliable due to the specificity of the FISH-probe and the

reproducibility of the observations in multiple biological replicates (Fig 4 and S1 Fig). Com-

parison of the microscopically observed abundances among the analysed plant structures indi-

cated a decrease from the vegetative apex (Fig 2C and 2D) to the developing flower (Fig 3D

and 3E) and the embryo (Fig 4D–4G). This is in line with findings of previous studies investi-

gating the location and abundance of endophytes in Psychotria using molecular techniques

[8,12] as well as those of other vertically transmitted symbionts, such as Burkholderia phytofir-
mans in Vitis vinifera and Xanthomonas fuscans in Phaseolus vulgaris [38–40]. Based on the

above-mentioned decline in endophyte abundance, a low amount might be expected in gynoe-

cia and anthers and this may explain why they were not detected in the latter structures using

FISH.

The occurrence of vertical transmission of the endophyte combined with the high specific-

ity and the obligatory nature of the endosymbiosis underline the significance of this interac-

tion for the host species. In other interactions, the endophytes are vertically transmitted due to

their importance for seed germination and growth of the seedlings, which increases their sur-

vival chance [30–31,41]. Genomic analysis of Candidatus Burkholderia kirkii demonstrated

the absence of genes or pathways for nitrogen fixation or hormone synthesis that could influ-

ence plant growth [8]. However, a specific pathway was detected in the endophytic genome for

the production of a C7N aminocyclitol, i.e. kirkamide, which protects the host plant against

insects [8,37,42–43]. Although our results did not contribute to the functional aspects of the

endosymbiosis, the obligate nature of the interaction is reinforced by the confirmation of verti-

cal transmission.

To conclude, our study is the first to unveil the location of the Burkholderia endophytes in

the seeds, unequivocally confirming vertical transmission. The host specific endophytes were

detected in close proximity to the shoot apical meristem of the embryo. This is the first step in

the establishment of a key colony in the LEC above the shoot apical meristem, which enables

the transmission of endophytes to new leaves and inflorescences. We obtained strong evidence

by combining two independent but complementary techniques. The molecular screening

enabled the localisation of endophytes in different plant structures, even in not earlier sug-

gested locations. Fluorescent in situ hybridisation enabled determination of the in situ location

of Burkholderia endophytes in several plant structures. The results of this study show that

adopting a similar approach to other interactions would generate new insights in how endo-

phytes are transmitted.

Supporting information

S1 Fig. In situ detection of Burkholderia endophytes in longitudinal sections of the three

additional P. punctata embryos using FISH. (A) Merged epifluorescence images of the outer

space of the embryo in close proximity of the cotyledons, showing FISH-labelled endophyte

Fig 4. In situ detection of Burkholderia endophytes in longitudinal sections of P. punctata embryos using FISH. (A) Overview of a longitudinal

section through the pyrene showing the embryo, located in the embryonic cavity, above the ventral intrusion. (B) Overview of an embryo showing the

site of the section (red line). (C) TBO-stained section through the embryo of which the sectioning plane is indicated in (B), showing the

intercotyledonary space (�). At the shoot meristem, between the cotyledons, mucus is stained between endosperm cell residue. (D) Merged

epifluorescence images of the bacterial isolation method, showing a FISH-labelled endophyte (red, arrow). (E) Same detail as (D) stained with TBO

after FISH labelling. (F) Merged epifluorescence images of the intercotyledonary space (C; �), showing FISH-labelled endophyte (red, arrow). (G)

Same detail as (F) stained with TBO after FISH labelling. (H) Merged epifluorescence images of the intercotyledonary space of a different embryo,

showing FISH-labelled endophytes (red, arrows) located between the cotyledons at the outer cell wall surface of degrading endosperm cells. (I) Same

detail as (H) stained with TBO after FISH labelling. co, cotyledon; d, degrading endosperm cell; e, embryo; ec, embryonic cavity; en, endocarp; es,

endosperm; vt, ventral intrusion.

https://doi.org/10.1371/journal.pone.0209091.g004
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(red, arrow). (B) Same detail as (A), stained with TBO after FISH labelling. (C) Merged epi-

fluorescence images of the outer surface of the embryo close to the cotyledons, showing FISH-

labelled endophyte (red, arrow). (D) Same detail as (C), stained with TBO after FISH labelling.

(E) Merged epifluorescence images of the intercotyledonary space close to the apical shoot

meristem, showing FISH-labelled endophyte (red, arrow). (F) Same detail as (E), stained with

TBO after FISH labelling.

(TIF)

S1 Table. Detailed information on the identification of the endophytes in the different

plant structures of Psychotria punctata. List of the detected endophytes, the plant structure

from which their DNA was extracted, host plant acquisition numbers of the living collection at

the Botanic Garden Meise (BGM), the identity of the endophytes on species level, GenBank

accession numbers for 16S rDNA, gyrB and recA, and the BLAST similarity to the identified

species.

(DOCX)
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