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Abstract
Many clonal plants have two reproductive patterns, seed propagation and vegetative propa-

gation. By vegetative propagation, plants reproduce the genetically identical offspring with a

low mortality, because resources are supplied from the other individuals through intercon-

nected ramets at vegetative-propagated offspring. However, the ramets transport not only

resources but also systemic pathogen. Pathogens evolve to establish and spread widely

within the plant population. The superinfection, which is defined as the ability that an estab-

lished pathogen spreads widely by infecting to already-infected individuals with other strains

of a pathogen, is important to the evolution of pathogens. We examine the dynamics of

plant reproduction and pathogen propagation considering spatial structure and the effect of

superinfection on genetic diversity of pathogen by analysis of several models, 1-strain and

multiple-strain models, on two-dimensional square lattice. In the analysis of 1-strain model,

we derive equilibrium value by mean-field approximation and pair approximation, and its

local stability by Routh-Hurwitz stability criterion. In the multiple-strain models, we analyze

the dynamics by numerical simulation of mean-field approximation, pair approximation and

Monte Carlo simulation. Through the analyses, we show the effect of parameter values to

dynamics of models, such as transition of dominant strain of pathogen, competition

between plants and pathogens and density of individuals. As a result, (i) The strain with

intermediate cost becomes dominant when both superinfection rate and growth rate are

low. (ii) The competition between plants and pathogens occurs in the phase of coexistence

of various strains by pair approximation and Monte Carlo simulation. (iii) Too high growth

rate leads to the decrease of plant population in all models. (iv) Pathogens are easy to main-

tain their genetic diversity with low superinfection rate. However, if they do not superinfect,

the maintenance becomes difficult. (v) When growth rate of plant is low, individuals are very

influenced by distant individuals.
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Introduction
Many clonal plants have two reproductive patterns, seed propagation and vegetative propaga-
tion (i.e. clonal growth). By seed propagation, plants reproduce genetically different offspring
with a high mortality, because seed-propagated offspring are not supported by their parents
(no physical connection). By contrast, in vegetative propagation, plants reproduce genetically
identical offspring with a lower mortality, because resources are supplied from the other indi-
viduals through interconnected ramets at vegetative-propagated offspring [1, 2]. However, if
some of systemic pathogens invade the population, the pathogens spread rapidly within the
population, because ramets transport not only resources, but also pathogens [3].

According to Stuefer et al. (2004), pathogens have diverse negative effects on plants, such as
lethality or severe damage. For example, they lead to deformation of leaves [4], reduction the
growth rate [5–7], change of the growth form of plants [8, 9] and effectively block plant repro-
duction [10–12]. Thus, the possibility that the plant population suffers serious damage through
effect of a pathogen is high, and plants have evolved to prevent the spread of infection, such as
escaping by increasing their growth rate [8].

Contrastingly, pathogens have evolved to establish and spread widely within the plant popu-
lation. A diversity of infections, e.g. superinfection, plays an important role in the evolution of
pathogens [13–15]. Superinfection is defined as the ability of an established pathogen to spread
widely by infecting already-infected individuals with other strains of a pathogen (secondary
infection) [14]. Thus, competition among different strains of a pathogen occurs and leads to
increased fitness of the pathogens relative to single infection [16].

There are several theoretical studies pertinent to evolution of pathogen virulence with
superinfection [17–23]. They defined that the already-infected individual is supreinfected and
taken over by other strain of pathogen with higher virulence, thus strains do not share in a
host. Additionally, most of them assumed that there is trade-off between the infection rate
and the virulence of the pathogen, and considered the evolution of virulence in a host popula-
tion by the host-parasite model. If hosts are long-lived, pathogens should get a long-term ben-
efit from the plants by a low infection rate. However, if hosts are short-lived, the infection rate
is supposed to evolve to a higher value, because pathogens should propagate quickly in a new
host before the death of the hosts from the high infection rate. In addition, previous studies
analyzed the evolution of virulence in the two cases where a host is either infected by only one
strain of a pathogen (single infection) or by several strains (superinfection) of a pathogen. As
a result, in the model of single infection, the virulence evolves towards an intermediate value.
In the other case, it evolves towards higher virulence compared with single infection. How-
ever, they did not consider the spatial structures, such as the configuration of ramets in plant
population.

Thus, we focus on the spatial structures, which play an important role in evolution of both
plants and pathogens. The interaction between a plant and a pathogen depends on the spatio-
temporal dynamics of pathogen dispersal, the genetic diversity of the host plant population
and the spatial positioning of ramets [24, 25]. According to Koubek and Herben (2008), there
are several defense reactions against systemic pathogens in clonal plant, such as (i) increasing
the growth speed of the plant [8, 9, 26–28], (ii) dispersing the risk of infection and spread of
pathogen by splitting the physical connection of ramets [7, 29], and (iii) detaching the
infected ramets or tissues deliberately [30]. Additionally it is expected that features of the
host would assist local pathogen transmission and evolution of the pathogen to lower levels
of virulence [21], because clonal growth increases the probability of finding susceptible hosts
in the vicinity of the initially infected host. However, they did not consider the superinfection
event.
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To explain these dynamics, we constructed a model based on the contact process (CP) [31],
especially the two stage contact process (TCP) [32, 33], in mathematical models. These are sim-
ple models that express the dynamics of the contact infection process. The CP assumes only
two states, healthy and infected, and healthy individuals are infected by only neighboring
infected individuals. By contrast, TCP assumes three states, such as empty, healthy and
infected, and healthy individuals reproduce new offspring and infected individuals increase
only by transmission to healthy ones. Therefore, we adopted TCP to express not only the infec-
tion process, but also the plant growth process. In addition, we analyzed this model on the lat-
tice space for simplicity. However, an explicit solution was not obtained in TCP, because it is
too difficult to solve analytically. Thus, we performed an approximation by applying the mean-
field approximation (MA) and the pair approximation (PA) to discuss the behavior of the sys-
tem analytically. MA is the simplest approximation method, which takes no account of the
effect of other sites. PA assumes that the effects of distant sites will be less important than those
of the nearest neighbor sites. Therefore, this approximation is very useful to analyze the effect
of local connections. Several studies have applied PA to TCP [34–36]. Satō et al. (1994) ana-
lyzed TCP in detail using PA; however, they could not determine the stability of the epidemic
equilibrium (coexistence of healthy and infected individuals) analytically. Satulovsky and
Tomé (1994) studied a predator-prey system using an improved TCP that had similar transi-
tion rules to our model, and obtained the analytical result with respect to the coexistence equi-
librium. However, we did not use their model to express the superinfection process directly
because they assumed only one predator species (not many). Haraguchi and Sasaki (2000) con-
sidered mutants of pathogens, which have additional mortality, based on TCP and analyzed
the ESS (Evolutionarily Stable Strategy) of the mortality and transmission rate by computer
simulation. However they did not include the superinfection event in propagation process of
pathogens. Thus, further modification of the models is needed to express the pathogen spread
process, including superinfection.

In this paper, we explain the plant reproduction and pathogen propagation dynamics con-
sidering special structures (using lattice structured space) and the effect of superinfection
events on genetic diversity of pathogens using several models, the 1-strain and multiple-strain
models. In the analysis of the 1-strain model, we derived an equilibrium value by MA and PA,
and its local stability by the Routh—Hurwitz stability criterion. In the multiple-strain models,
we analyzed the dynamics by numerical simulation using MA, PA and Monte Carlo simula-
tion (MCS). Through these analyses, we showed the effect of parameter values on the dynam-
ics of the models, such as density of individuals, transition of a dominant strain of a
pathogen, and competition between plants and pathogens. As a result, the superinfection
event leads to the polymorphism of pathogen strains in the host plant population, the domi-
nant strain changes depending on plant and pathogen ability; and the competition is observed
in particular parameter range. Thus, the plant and pathogen affect in the course of evolution
mutually. In addition, when the growth rate of a plant is low, our present model is largely
affected by the spatial structure.

Analysis
We constructed a model of plant growth and pathogen propagation processes, including
superinfection. In the model, we assume that there is a single species of plant and multiple
strains of a pathogen, and that a healthy plant individual is infected by a strain of the patho-
gen and an already-infected plant is superinfected by other strains of the pathogen. The
dynamics of our model is a continuous Markov process on a lattice space, and the states of
each site, the transition rate and mortality of each state are represented by a vector
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O = (σ0, σ1, σ2,. . .,σn), B = (βσ0, βσ1, βσ2,. . .,βσn) and D = (dσ0, dσ1, dσ2,. . .,dσn), respectively, where
the total number of states is n+1. Let ρσi(t) be the probability that a randomly chosen site has
state σi at time t, in other words, ρσi(t) means the global density of the site with state σ0 = “0”,
σ1 = “S”, and σi+1 = “Ii”(i = 1, 2,. . .,n − 1), which mean the empty, susceptible (healthy) indi-
vidual, and infected individual by a pathogen with i-strains, respectively. In addition, we
assumed that the already-infected individuals with i-strain (“Ii“) are superinfected (and taken
over) by the more virulent j-strain than i-strain, because the strain with higher virulence
often wins within-host competition [21, 37]. From the definition of d0 and β0, d0 = 0 and
b0 ¼ 1

n

Pn
i¼1 dsi because the empty site does not die and transition to “0”means death of

healthy and infected individuals.
We configured four demographic processes: (i) the plant growth process, (ii) the first infec-

tion process, (iii) the superinfection process and (iv) the death process. The growth process is
represented by transition from state “0” to “S”, which means that plants grow their ramets into
an open area (i.e. an empty site is occupied by a healthy individual). The first infection process
is represented by transition from state “S” to “Ii”, which means healthy individuals are infected
by pathogens of the i-strain. The superinfection process is represented by transition from state
“Ii” to “Ij” (i> j). The death process is represented by transition from “S” or “Ii” to “0” which
represent the death of healthy and infected individuals from natural causes and virulence of the
pathogen, respectively. In addition, infected individuals are not able to recover to a healthy
one. Thus, we describe these processes by the following notation, which is often used to explain
the TCP.

ðiÞ 0 ! S at rate
bSn Sð Þ

z

ðiiÞ S ! Ii at rate
bIi
n Iið Þ
z

ðiiiÞ Ii ! Ij at rate s
bIj
n Ij
� �
z

ðivÞ S; Ii ! 0 at rate dS; dIi

ðTPÞ

Parameter n(σi) is the number of σi-sites in the nearest neighbor of focal sites, z is the num-
ber of nearest-neighbor sites (e.g. z = 4 for von Neumann neighborhood on the two-dimen-
sional square lattice), and s is the superinfection rate. Thus sbIj

describes the proportion of

superinfection to first infection [18]. The growth or infection event occurs at a rate propor-
tional to the number of the healthy or infected state in nearest-neighbor sites, respectively.

Here, let qσj/σi(t) be the conditional probability that a randomly chosen nearest neighbor of a
σi-site is a σj-site. In particular, qσi/σi means the local density of σi-site. Pσi σj(t) is the probability
that a randomly chosen site has state σi and a randomly chosen nearest-neighbor site has state
σj at time t. These variables have the following relationship [34, 38].

Psisj
¼ rsi

qsj=si: ð1Þ

Thus, we can describe the following set of master equations, which is referred to as the gen-
eral model (GM) from the above dynamics.
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_P00 ¼ 2
Xn�1

i¼1

dIi
PIk0

þ dSPS0 �
bS z � 1ð ÞqS=00

z
P00

 !
;

_PS0 ¼
bS z � 1ð ÞqS=00

z
P00 þ dSPSS �

bS

z
PS0 �

bS z � 1ð ÞqS=0S
z

PS0

�dSPS0 þ
Xn�1

i¼1

dIi
PSIi

� bIi
z � 1ð ÞqIi=S0

z
PS0

� �
;

_PSS ¼ 2
bS

z
PS0 þ

bS z � 1ð ÞqS=0S
z

PS0 �
Xn�1

i¼1

bIi
z � 1ð ÞqIi=SS

z
PSS � dSPSS

 !
;

_P Ii0
¼ bIi

z � 1ð ÞqIi=S0
z

PS0 þ dSPSIi
� bS z � 1ð ÞqS=0Ii

z
PIi0

þ
Xn�1

j¼1

dIj PIiIj
� dIi PIi0

þs
Xn�1

j¼iþ1

bIi
z � 1ð ÞqIi=Ij0

z
PIj0

�
Xi�1

j¼1

bIj
z � 1ð ÞqIj=Ii0

z
PIi0

 !
;

_PSIi
¼ bS z � 1ð ÞqS=0Ii

z
P0Ii

þ bIi
z � 1ð ÞqIi=SS

z
PSS �

bIi

z
PSIi

�
Xn�1

j¼1

bIj
z � 1ð ÞqIj=SIi

z
PSIi

� dS þ dIi

� �
PSIi

þ s
Xn�1

j¼iþ1

bIi
z � 1ð ÞqIi=IjS

z
PSIj

�
Xi�1

j¼1

bIj
z � 1ð ÞqIj=IiS

z
PSIi

 !
;

_P IiIj
¼

bIi
z � 1ð ÞqIi=SIj

z
PSIj

þ
bIj

z � 1ð ÞqIj=SIi
z

PIiS
� dIi þ dIj

� �
PIiIj

þs
Xn�1

k¼iþ1

bIi
z � 1ð ÞqIi=IkIj

z
PIkIj

þ
Xn
k¼jþ1

bIj
z � 1ð ÞqIj=IkIi

z
PIiIk

 

�
Xi�1

k¼1

bIk
z � 1ð ÞqIk=IiIj

z
PIiIj

�
Xj�1

k¼1

bIk
z � 1ð ÞqIk=IjIi

z
PIiIj

�
bIj

z
PIiIj

!
i > jð Þ;

_P IiIi
¼ 2

bIi

z
PSIi

þ bIi
z � 1ð ÞqIi=SIi

z
PSIi

� dIiPIiIi

�

þs
Xn�1

j¼iþ1

bi

z
PIiIj

þ
bIi

z � 1ð ÞqIi=IjIi
z

PIjIi

 !
�
Xi�1

j¼1

bIj
z � 1ð ÞqIj=IiIi

z
PIiIi

 !#
:

ð2Þ

Here, for example, in the right side of the fifth equation in the set (i.e. differential equa-
tion of PSIi

), the first term describes the transition from P0Ii
to PSIi

, which means healthy

individuals reproduce their offspring to empty sites (state 0! S). In this term, the
transition rate is determined by TP(i), n(S) is ðz � 1ÞqS=0Ii . Transition begins from P0Ii

;

therefore, one of the nearest-neighbor sites of the 0-state site is state Ii, and at least one of
the other nearest-neighbor sites of the 0-state site (in (z−1) sites) should be S to transition
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from 0 to S. Thus, the probability is qS=0Ii , and the expectation of n(S) is equal to

ðz � 1ÞqS=0Ii . In subsequent terms, the n(σ) (σ 2 O) is obtained in a similar process, except

the third term.
The second and third terms mean that healthy individuals are infected by pathogens with i-

strain (state S! Ii). These terms describe the transition from PSS to PSIi
and from PSIi

to PIiIi
,

respectively, and the transition rate of these terms is determined by TP(ii). In particular, the
value of n(Ii) in the third term is equal to 1. The transition begins from PSIi

; therefore, there is

already a Ii-state site in nearest-neighbor sites of S-state site. Here, the case that the state of
other sites in the nearest-neighbor sites is also Ii is included in the fourth term.

The fourth term means that healthy individuals are infected by pathogens with j-strain
(state S! Ij). This term describes the transition from PSIi

to PIjIi
(i 2 j), and sums the transition

rates in respect to all strains (from I1 to In−1).
The fifth term means the death of healthy or infected individuals (state S, Ii! 0). The term

describes the transition from PSIi
to P0Ii

or PS0 and the transition rate of each process is deter-

mined by TP(iv).
The last term means that the already-infected individuals are superinfected by other strains

of the pathogen (e.g. state I2 ! I1). The first and second terms in parentheses describe the
transition from PSIj

to PSIi
and from PSIi

to PSIj
(j 6¼ i), respectively, and the transition rate of

these term is determined by TP(iii). The first term means that the infecting pathogens super-
infect already-infected individuals with another strain, and the second term means that an
already-infected individual is superinfeced by another strain of the pathogen. Thus, the range
of summation in the first term is from i+1 to n−1 and in the second term is from 1 to i−1 from
our assumption.

Results
In the subsequent sections, we introduce a new parametermi (we refer to the parameter as
mortality cost in this paper) defined as bIi

=dIi for n − 1 strains (mi :¼ bIi
=dIi ,m1 <m2 < � � �<

mn−1), and set dIi ¼ 1 (8Ii 2 O) to standardize the parameter, for ease of analysis. The mortality

cost means the expectation of the number of new infected-individual produced during a life-
time of an infected-individual, thus, higher virulent strain has lower mortality cost. Conse-
quently, already-infected individuals are superinfected by the strains with lower mortality
costs. In addition, we set dS � 0, because the plant mortality is generally smaller than plant
growth rate in clonal plant (i.e. the plants are long lived).

1-strain model
Initially, we analyzed the simplest case (n = 2) in GM by MA and PA. The state of each site was
denoted by σi 2 S� {0, S, I}(I: = I1) from the assumption of only one strain of pathogen.
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Therefore, we obtained the following set of master equations to rewrite Eq (2).

_P00 ¼ 2PI0 � 2
bS z � 1ð ÞqS=00

z
P00;

_PS0 ¼ PSI þ
bS z � 1ð ÞqS=00

z
P00

� bS

z
þ bS z � 1ð ÞqS=0S

z
þmI z � 1ð ÞqI=S0

z

� �
PS0;

_P I0 ¼ PII þ
mI z � 1ð ÞqI=S0

z
PS0 �

bS z � 1ð ÞqS=0I
z

þ 1

� �
PI0;

_PSS ¼ 2
bS

z
þ bS z � 1ð ÞqS=0S

z

� �
PS0 � 2

mI z � 1ð ÞqI=SS
z

� �
PSS;

_PSI ¼
bS z � 1ð ÞqS=0I

z
P0I þ

mI z � 1ð ÞqI=SS
z

PSS

� mI

z
þmI z � 1ð ÞqI=SI

z
þ 1

� �
PSI;

_P II ¼ 2
mI

z
þmI z � 1ð ÞqI=SI

z

� �
PSI � 2PII:

ð3Þ

In this model, superinfection does not occur because there is only one strain of the
pathogen.

Mean-field Approximation. To close a set of Eq (3), we approximated several variables by
MA, qσi/σj � ρσi (e.g. PS0 = ρS q0/S� ρS ρ0) and qσi/σj σk � ρσi. In addition, the equations were sim-
plified by the definition of variables from Eq (S1.3) in S1 Appendix.

_r0 ¼ 1� r0 � rS 1þ bSr0ð Þ;

_rS ¼ rS bSr0 �mI 1� r0 � rSð Þð Þ:
ð4Þ

The system has three equilibrium states.

~EM � ð~r�
0; ~r

�
S; ~r

�
I Þ ¼ ð1; 0; 0Þ;

ÊM � ðr̂�
0; r̂

�
S; r̂

�
I Þ ¼ ð0; 1; 0Þ;

�EM � ð�r�
0; �r

�
S; �r

�
I Þ

¼ mI � 1

bS þmI

;
1

mI

;
bSðmI � 1Þ
mIðbS þmIÞ

� �
:

~EM, ÊM and �EM mean the states of extinction, disease-free and epidemic, respectively. From

local stability analysis of the each equilibrium (see S2 Appendix), ~EM is always unstable, which
means that plants do not become extinct at the positive parameter range in the system. When

mI < 1, ÊM is stable, which means that the pathogen is not able to survive when it has a low

mortality cost. By contrast, whenmI exceeds 1, ÊM becomes unstable and �EM becomes always
stable, which means that the epidemic occurs because of the spread of the pathogens within the
plant population. Thus,mI = 1 is the threshold value of stability shifting. In conclusion, the
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stability of the equilibrium states and the equilibrium density of healthy individuals (r�
S) in the

epidemic state depend only onmI, regardless of βS in MA.
Pair Approximation. To close a set of Eq (3) and consider the effect of local connections

on the dynamics, we approximated several variables by PA, qS=0s � qS=0 and qI=Ss � qI=S. In

addition, the equations were simplified by definition of variables (see S1 Appendix), and we
obtained following three equilibrium states.

~EP � ð~r�
0; ~r

�
S; ~r

�
I ; ~q

�
0=0; ~q

�
S=0; ~q

�
I=0Þ

¼ ð1; 0; 0; 1; 0; 0Þ;
ÊP � ðr̂�

0; r̂
�
S; r̂

�
I ; q̂

�
0=S; q̂

�
S=S; q̂

�
I=SÞ

¼ ð0; 1; 0; 0; 1; 0Þ;
�EP � ð�r�

0; �r
�
S; �r

�
I ; �q

�
0=0; �q

�
S=0; �q

�
I=0; �q

�
0=S; �q

�
S=S; �q

�
I=S; �q

�
0=I; �q

�
S=I; �q

�
I=IÞ

¼ ðsee S3AppendixÞ:
~EP means that the plants become extinct. Therefore, qσ/S and qσ/I are non-existent,

because ρS and ρI are equal to 0. ÊP means the disease-free state; thus, qσ/0 and qσ/I are non-

existent, because ρS and ρI are non-existent, because ρS and ρI are equal to 0. �EP means the
epidemic state, at which state all of the twelve variables exist and have positive values. The
local stability of each equilibrium state was examined using the Routh—Hurwitz stability cri-
terion (see S3 Appendix). From the stability analysis, we obtained the three stable-equilib-

rium phases, disease-free, epidemic, and periodic oscillation (Fig 1). In particular, ~EP is
always unstable (i.e. plants do not become extinct), and we derived two thresholds, which

are referred to as the epidemic and bifurcation thresholds. The stability of ÊP and �EP

Fig 1. Phase diagram of pair approximation showing the three regions of the equilibrium state. In the
epidemic region, plants and pathogens coexist and the equilibrium is stable. In the oscillation region, plants
and pathogens coexist, but the equilibrium is unstable. Therefore, Hopf bifurcation occurs and oscillation is
observed. The solid line indicates the bifurcation threshold, and the dashed line the epidemic threshold,
respectively. In the disease-free region, pathogens become extinct because of the too low mortality cost.

doi:10.1371/journal.pone.0154883.g001
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depends on whether the parameter values exceed each threshold, especially the epidemic
condition depends only on the mortality cost, irrespective of the growth rate because the epi-
demic threshold is ðmIÞc ¼ z=ðz � 1Þ, which is similar to MA. That is, if mI is low, pathogens
become extinct (panels (a) and (b) in Fig 2), because the lowmI means a high virulence or
low infection rate, thus pathogens die within the infected hosts before infecting other hosts.
In addition, a large mI leads to a decrease in both healthy and infected individuals. βS affects
the equilibrium value in the epidemic phase. For example, a large βS leads to an increase in
the equilibrium density of infected individuals (panel (c) in Fig 2), because pathogens can
spread widely within the many hosts supplied by the fast growth rate. In the epidemic phase,
when βS is large, the equilibrium density of healthy individuals (r�

S) decreases, thus a low
growth rate has an advantage over a high growth rate for plants in this phase. In addition,
Hopf bifurcation occurs when the parameter values exceed to the bifurcation threshold

(panel (b) in Fig 2). In other words, the stability of ÊP shifts from stable to unstable, which is
different from MA.

To check the validity of each approximation method, we compared equilibrium values
among MA, PA and MCS. The MCS was conducted 100 times for each given parameter set;
(a). βS = 10 andmI = 0* 30, (b). βS = 30 andmI = 0* 30, (c).mI = 15 and βS = 0* 25 in
Fig 2. We used a two-dimensional square lattice torus and calculated an average value of 100
trials at each parameter value (Fig 2). The result indicated that there are several discrepancies
with respect to the equilibrium values and threshold values among them: MA and PA overesti-
mate the equilibrium values and the periodic solution is observed in PA under higher parame-
ter values compared with MCS. In Fig 2, the discrepancy of the threshold value between MCS

Fig 2. Comparison of the simulation results frommean-field approximation (MA), pair approximation
(PA) andMonte Carlo simulation (MCS), depending onmortality cost and growth rate; (a). βS = 10, (b).
βS = 30, (c).mI = 15. (i) equilibrium density of healthy individuals (r�

S) (ii) equilibrium density of infected
individuals (r�

I ). The dots, solid line and dashed line indicate the results of MA, PA and MCS, respectively.
These results show that whenmI is low, both approximation methods present similar trend to MCS, although
these methods overestimate the equilibrium value. (iii) The variance among 100 trials in MCS. A high
variance means the oscillatory solution is observed.

doi:10.1371/journal.pone.0154883.g002
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and MA (PA) is large when the mortality cost is large ((a), (b)) or the growth rate is low ((c)).
The use of these approximation methods, in which we neglected the effect from far sites, is
probably the cause of the discrepancies. However, the periodic solution was observed in the
result of PA and MCS [35], which was differently fromMA. Thus, PA could explain the basic
behavior of the system better than MA.

Multiple-strain models
We examined four models (n = 3, 4, 11, and 26) in GM (Eq (2)); however, the analysis was
too complex to obtain the analytical result because of too many variables (e.g. MA and PA
require at least n and Sn

i¼1i� 1 variables, respectively). Therefore, we derived the
equilibrium value by MA in the 2-strain and 3-strain models, and analyzed all the models
through computer simulations (MCS and numerical simulation of MA and PA). We set
mi =mi−1+Δmi,i−1(i = 2, 3,. . ., n−1), s = 0, 0.5, 1.0, 1.5 and vary the βS in the simulations. In
this paper, we assumed that Δm: = Δmi,i−1 was constant just for the simplicity of the model.
As a result of the numerical simulations of MA and PA, the healthy individuals did not
become extinct in all models. However, the healthy and infected individuals did become
extinct in MCS, especially when n is large and βS is small. From the comparison among MA,
PA and MCS, discrepancies became large as the number of strains increased.

The 2-strain model (n = 3). We obtained five equilibrium states by MA (Table 1 in detail):
E1: extinction (r�

0 ¼ 1), E2: disease-free (r�
I1
¼ 0, r�

I2
¼ 0), E3: occupation of a strain with high

cost (r�
I1
¼ 0, r�

I2
> 0), E4: occupation of a strain with low cost (r�

I1
> 0, r�

I2
¼ 0), E5: coexis-

tence (r�
I1
> 0, r�

I2
> 0). In particular, in the (equilibrium) phase of coexistence (i.e. E5 is sta-

ble), the dominant strain changes depending on the plant growth rate.
When s> 0, Figs 3 and 4 show the equilibrium density of each state depending on the

growth rate (βS) for a given superinfection rate (s) and the difference in mortality cost (Δm),
respectively, in the simulation of MA (panels (a)), PA (panels (b)) and MCS (panels (c)) and
transition of equilibrium phase (panels (d)). As a result, when βS is small, the strain with a high
cost is dominant, then the dominant strain shifts to strain with a low cost as βS increases and
the strain occupies the pathogen population on a large βS. The increase in s and decrease in Δm
lead to lower threshold values of the phase transition (panels (d) in Figs 3 and 4); thus, when s
is small or Δm is large, the parameter range of the phase of coexistence increases. Notably,
when Δm is large (moderate competition), multiple strains are more likely to coexist, like ‘lim-
iting similarity of niche’ proposed by competition theory [39, 40]. For the healthy individuals,
they increase their density at the coexistence phase and decrease it at other phases in PA. Thus,
if the growth rate is out of the range value of the coexistence phase, healthy individuals do not
increase their population.

Table 1. Equilibria of the 2-strain model in MA.

E1 (1, 0, 0, 0)

E2 (0, 1, 0, 0)

E3 m2�1

bSþm2
; 1

m2
; 0; bSðm2�1Þ

m2ðbSþm2Þ

� �
E4 m1�1

bSþm1
; 1

m1
; bSðm1�1Þ

m1ðbSþm1Þ ; 0
� �

E5 m2�m1

sbSm1
; m1ðsbSþ1Þ�m2

bSðm2þm1ðs�1ÞÞ ;
sbSm1ðm2�1Þ�ðm2�m1ÞðbSþm2Þ

sbSm1ðm2þm1ðs�1ÞÞ ; m1ðm2�m1ÞþbSðm2�m1�sm1ðm1�1ÞÞ
sbSm1ðsm1þm2�m1Þ

� �

E � ðr�
0; r

�
S; r

�
I1
; r�

I2
Þ.

doi:10.1371/journal.pone.0154883.t001
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Fig 3. The equilibrium value of each state and transition of the equilibrium phase depending on the
superinfection rate in the 2-strain model.We setm1 = 5 and Δm = 5. The I, II and III differ in the value of s
(=0.5, 1.0, 1.5). (a)–(c) show the variation of the equilibrium density of each state (“0”, “S”, “I1” and “I2”. Σσ ρσ =
1) with growth rate in each simulation: (a) MA, (b) PA, (c) MCS. (d) shows the transition of the equilibrium
phase with βS in MA, PA, and MCS.

doi:10.1371/journal.pone.0154883.g003
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Fig 4. The equilibrium value of each strain and transition of the equilibrium phase depending on the
difference of mortality cost in the 2-strain model.We setmI1 = 5 and Δm = 5 in all figures. The I, II and III
differ in the value of s (=0.5, 1.0, 1.5). (a) MA, (b) PA, (c) MCS, (d) the transition of equilibrium phase.

doi:10.1371/journal.pone.0154883.g004
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When s = 0 (no superinfection), the shift of the equilibrium phase along the gradient of βS is
different from the case of s> 0 in MCS. For example, when βS is large, the strain with the high-
est mortality cost occupies and coexists with healthy plants (i.e. strains with lower cost become
extinct). In addition, the range of the coexistence phase decreases compared with the case of
when s> 0 (Fig 5(i)). In MA and PA, the strain with a high cost always occupies regardless of
other parameter values (panels (a) and (b) in Fig 5(i)). Thus, when s = 0 and βS is large, the
pathogen population is occupied by the strain with highest cost, contrary to the case of s> 0.

From the comparison of numerical simulations (MA and PA) with MCS, when βS is small,
the result is at extreme variance with MCS. Thus, in the parameter range, the approximation
method cannot apply. When βS is large enough, the discrepancy between them increases with
the decrease in s (Fig 3) and Δm (Fig 4). However, MA and PA can explain the transition pro-
cess of the equilibrium phase (panels (d) in Figs 3 and 4). In addition, the oscillatory solution,
which means the solution is oscillating for a long time although unproven, is not observed in

Fig 5. The case of no superinfection (s = 0) in the 2-strain and 3-strain model by MA, PA andMCS.We
plotted the global density of each strain of the pathogen at the equilibrium state depending on βS. The black
circles and triangles indicate I1 and I2, respectively, and squares indicate I3 in (b). The parameter values are
(a) n = 3,mI1 = 5, Δm = 10, (b) n = 4,mI1 = 5, Δm = 5.

doi:10.1371/journal.pone.0154883.g005
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the coexistence phase (Fig 6). However, in the occupation phase of a strain, the oscillatory solu-
tion is observed because the behavior of the model follows the 1-strain model in that phase.

The 3-strain model (n = 4). We obtained nine equilibrium states by MA (Table 2 in
detail): E1: extinction, E2: disease-free, E3−5: occupation of a strain (r�

Ii
> 0, r�

Ij
¼ 0, r�

Ik
¼ 0),

E6−8: coexistence of two strains (r�
Ii
> 0, r�

Ij
> 0, r�

Ik
¼ 0), E9: coexistence of all strains (r�

Ii
> 0,

r�
Ij
> 0, r�

Ik
> 0).

When s> 0, Figs 7 and 8 show the equilibrium density of each state depending on βS in a
given s and the difference in mortality costs (Δm), respectively, by the numerical simulation of
MA (panels (a)), PA (panels (b)) and MCS (panels (c)). Among them, the occupation phase of
a strain and the coexistence phase of two strains showed a generally similar response to the
parameter values in the 1-strain and 2-strain models. The effect of s and Δm on equilibrium
values, threshold values and discrepancies among simulation results were similar to the

Fig 6. Time development in the 2-strain model.We plotted the equilibrium value of the global density of
each state. In all figures, we set s = 1.0 and Δm = 15. I.mI1 = 5, II.mI1 = 30 and (a) βS = 10, (b) βS = 15, (c) βS =
25.

doi:10.1371/journal.pone.0154883.g006

Table 2. Equilibria of the 3-strain model in MA.

E1 (1, 0, 0, 0, 0)

E2 (0, 1, 0, 0, 0)

E3 m1�1

bSþm1
; 1

m1
; bSðm1�1Þ

m1ðbSþm1Þ ; 0; 0
� �

E4 m2�1

bSþm2
; 1

m2
; 0; bSðm2�1Þ

m2ðbSþm2Þ ; 0
� �

E5 m3�1

bSþm3
; 1

m3
; 0; 0; bSðm3�1Þ

m3ðbSþm3Þ

� �
E6 m2�m1

sbSm1
; m1ðsbSþ1Þ�m2

bSðm2þm1ðs�1ÞÞ ;
sbSm1ðm2�1Þ�ðm2�m1ÞðbSþm2Þ

sbSm1ðm2þm1ðs�1ÞÞ ; m1ðm2�m1ÞþbSðm2�m1�sm1ðm1�1ÞÞ
sbSm1ðsm1þm2�m1Þ ; 0

� �
E7 m3�m1

sbSm1
; m1ðsbSþ1Þ�m3

bSðm3þm1ðs�1ÞÞ ;
sbSm1ðm3�1Þ�ðm3�m1ÞðbSþm3Þ

sbSm1ðm3þm1ðs�1ÞÞ ; 0; m1ðm3�m1ÞþbSðm3�m1�sm1ðm1�1ÞÞ
sbSm1ðsm1þm3�m1Þ

� �
E8 m3�m2

sbSm2
; m2ðsbSþ1Þ�m3

bSðm3þm2ðs�1ÞÞ ; 0;
sbSm2ðm3�1Þ�ðm3�m2ÞðbSþm3Þ

sbSm2ðm3þm2ðs�1ÞÞ ; m2ðm3�m2ÞþbSðm3�m2�sm2ðm2�1ÞÞ
sbSm2ðsm2þm3�m2Þ

� �
E9 m1m3�m2

bSm2þm1m3
; m2

m1m3
; bSm2ðsðm1m3�m2Þ�m3þm2Þ�m1m3ðm3�m2Þ

sm1m3ðbSm2þm1m3Þ ;
�
m2ðm3�m1Þ�sm1ðm2þm1m3Þ

sm1m3ðbSm2þm1m3Þ ; m1m3ðsbSm1�m2þm1Þ�bSm2ðsm1þm2�m1Þ
sm1m3ðbSm2þm1m3Þ

�

E � ðr�
0; r

�
S; r

�
I1
; r�

I2
; r�

I3
Þ.

doi:10.1371/journal.pone.0154883.t002
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Fig 7. The equilibrium value of each strain depending on the superinfection rate in the 3-strain model.
We setmI1 = 5 and Δm = 5 in all figures. The I, II and III differ in the value of s (=0.5, 1.0, 1.5). (a) MA, (b) PA,
(c) MCS.

doi:10.1371/journal.pone.0154883.g007
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2-strain model. Thus, the increase or decrease of the density of healthy individuals depends on
βS in PA, which is different fromMA (i.e. the growth rate negatively affects the density of
healthy individuals in MA). However, when s and Δm are both large, the transition of the equi-
librium phase in MA (PA) was different from the MCS, because the strain with highest cost

Fig 8. The equilibrium value of each strain depending on the difference in the mortality cost in the
3-strain model.We setmI1 = 5 and s = 1.5 in all figures. The I, II and III differ in the value of Δm (=5, 10, 15).
(a) MA, (b) PA, (c) MCS.

doi:10.1371/journal.pone.0154883.g008
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(I3) became extinct in the MCS. In addition, the oscillatory solution was observed in a parame-
ter range (Fig 9) and the strain with the middle cost (I2) was dominant, similar to the results of
the previous studies [17–21](Figs 7 and 8). In addition, when s = 0 (Fig 5(ii)), the response to
βS was the same as in the 2-strain model (i.e. the range of the coexistence phase decreased and
pathogen population was occupied by strain with the highest cost at a large βS).

Multiple-strain models. In the multiple-strain models, there are many equilibrium states:
extinction, disease-free, occupation of a strain, coexistence of various strains, and coexistence
of all strains.

We plotted the results of the 10-strain (Fig 10) and 25-strain models (Fig 11) at Δm = 5 with
varying βS and s. As a result, a smaller value of βS or s led to the dominance of the strain with
higher cost (Figs 10 and 11) and the cost of the dominant strain shifted to a lower value as
these parameter values increased, similar to the 2-strain and 3-strain model. In addition, when
the βS was small, the oscillatory solution was observed (e.g. Fig 12), and when the s was also
small, there was a possibility of extinction in MCS when the n was too large (Fig 11).

Discussion
The physical connection through ramets, especially through the vascular system of plants, is
important to spread pathogens within a clonal plant population [25]. Viruses are able to spread
through the vascular system [41], and fungal pathogens are able to grow their hyphae through
the intercellular spaces of vascular vessels [42]. By contrast, plants have evolved to increase the
clonal growth rate to escape from disease when (systemic) pathogens invade the population [8,
9, 26–28]. Thus, clonal plants and pathogens have been mutually affected in the course of
evolution.

Several studies have analyzed the pathogen spread process by an approximation method on
the lattice space [34–36] and the superinfection process using mathematical models without
spatial structures [18]. Sato et al. (1994) studied the case of ds = 1 in our 1-strain model. Their
model had three equilibrium states, (disease-free, endemic and epidemic), and they derived
equilibrium values at two states (disease-free and endemic) and their local stability condition,
explicitly. However, they did not obtain the epidemic equilibrium value and its local stability.
Haraguchi and Sasaki (2000) considered that there is no trade-off between the infection rate

Fig 9. Time development of global density of each state in the 3-strain model.We plotted the equilibrium
value of the global density of each state. We set the parameter values; I. s = 1.0,mI1 = 10, Δm = 15, II. s = 1.5,
mI1 = 10, Δm = 20 and (a) βS = 3, (b) βS = 5, (c) βS = 7. In the 3-strain model, the oscillatory solution was
observed in a particular parameter range at the coexistence phase (panel(b)).

doi:10.1371/journal.pone.0154883.g009
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and the virulence of a pathogen and assumed that multiple pathogens have different virulences.
They examined the ESS of the infection rate by numerical simulation and discussed the evolu-
tion of the infection rate of the pathogen. Their simulation suggested that pathogens evolve to
an intermediate infection rate. Satulovsky and Tomé (1994) considered a transition rule similar
to our model and assumed the correlation between the transition rates of each state (i.e. βS +
mI + dI = 1). According to their results of PA and MCS, there are four equilibrium phases
(three stationary and one oscillation phase), and if the transition rate to state 0 (dI) is small, the
Hopf bifurcation occurs. Nowak and May (1994) examined the superinfection events using
ODE (Ordinary Differential Equation). As a result, superinfection leads to maintenance of the
polymorphism of a parasite strain, and the oscillatory solution (i.e. competition among plants
and pathogens) is observed when there is more than one strains. However, they did not con-
sider the spatial structure and host reproductive dynamics (they assumed that the host
increases constantly).

To consider the effect of spatial structures, we analyzed plant reproduction and pathogen
propagation dynamics with superinfection in a clonal plant population on the lattice space. We
analyzed five models (the 1-strain model and four multiple-strain models), including interac-
tion among plant and several strains of pathogen, and adopted the MA and PA to analyze the
dynamics of the models. In addition, we checked the validity of the approximation methods in
comparison with MCS.

Fig 10. The equilibrium density distribution of strains in 10-strain model. The left, center and right
panels show the result in simulation by MA, PA and MCS, respectively. We setmI1 = 5, Δm = 5 and other
parameter values are: I. s = 0.5, βS = 25, II. s = 1.0, βS = 25, III. s = 1.5, βS = 25, IV. s = 1.5, βS = 5.

doi:10.1371/journal.pone.0154883.g010
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Using the 1-strain model (n = 2), the value of the epidemic threshold depended only on the
mortality cost, which means that to establish a pathogen within a plant population depends
only on the ability of the pathogens, regardless of plants. In addition, the density of healthy
individuals decreases with increasing growth rate and mortality cost (panels (i) in Fig 2). By
contrast, the density of infected individuals increases with the growth rate and decreases with
the increase in mortality cost (panels (ii) in Fig 2). Therefore, plants should not increase their
growth rate to maintain a large population size when infected by a systemic pathogen, and the

Fig 11. The equilibrium density distribution of strains in the 25-strain model. The left, center and right
panels show the result in simulation by MA, PA and MCS, respectively. We setmI1 = 5, Δm = 5 and other
parameter values are: I. s = 0.5, βS = 5, II. s = 0.5, βS = 25, III. s = 1.0, βS = 25, IV. s = 1.5, βS = 25.

doi:10.1371/journal.pone.0154883.g011

Fig 12. Time development in the 25-strain model.We plotted the equilibrium value of the global density of
each state. In the all figures, we setmI1 = 5, Δm = 5 and βS = 5, and (a) s = 1.5, (b) s = 0.5.

doi:10.1371/journal.pone.0154883.g012
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pathogen should evolve a low mortality cost that is higher than the epidemic threshold to
maintain their population and that of their hosts.

In addition, if the parameter values exceed the bifurcation threshold, the Hopf bifurcation
occurs and the periodic solution, which means plants and pathogens continue to compete for-
ever, is observed in PA and MCS, which is different fromMA. Thus, considering the effect of
local interaction is important to express the dynamics of the pathogen propagation process.
However, MA (which neglect the local interaction) is useful to analyze the dynamics in a mea-
sure such as the number of equilibrium states in the model.

In the multiple-strain models (n> 2), we assumed that multiple strain of a pathogen had
different mortality costs, and that the already-infected individuals are superinfected by strains
with lower mortality costs. The analytical result of MA showed that there are a lot of equilib-
rium states: extinction, disease-free, occupation of a strain, coexistence of various strains, and
coexistence of all strains (Tables 1 and 2). From the results of the simulation of MA, PA and
MCS, the equilibrium phase and the dominance of a strain in the coexistence phases depend
on parameter values and the oscillatory solution is observed in the coexistence phases, except
for the 2-strain model in PA and MCS (Figs 6 and 9).

In addition, the genetic diversity of a pathogen is maintained by a decrease in superinfection
events. In fact, the parameter range of the coexistence phase increases with the decrease in
superinfection rates, even when the difference in mortality cost is small. This is because a
superinfection event is conducive to the strong competition among strains from a decrease in
the difference of spread-speed among them by additional transmission routes. But, if superin-
fection does not occur (s = 0), the range of the coexistence phase decreases (Fig 5), thus super-
infection is important to maintain genetic diversity. However, when the plant growth rate
increases, the pathogen population is occupied by a strain eventually, regardless of the superin-
fection rate. (Figs 3, 5 and 7). That is, the increase in the growth rate causes a decrease in the
genetic diversity of pathogen. For healthy individuals, too high a growth rate provides them
with no benefit. Healthy individuals can increase their abundance via the growth rate in the
coexistence phase of several strains; however, if the growth rate is too high, an equilibrium
phase shifts to the phase of occupation of one strain, and the density of healthy individuals
then decreases with increasing growth rate. The dynamics of the model follows the 1-strain
model in this phase.

In summary, pathogens maintain their genetic diversity through superinfection events and
a moderate mortality cost relative to growth rate; thus they evolve their mortality cost and
superinfection rate depending on plant growth ability to maintain their population. By con-
trast, the number of healthy individuals (plants) increases in (all and several strains) coexis-
tence phases with the growth rate. Thus, when systemic pathogens invade the plant
population, plants evolve the growth rate to be slightly lower than a threshold value at which
the equilibrium phase shifts to the phase of occupation of a strain to increase their population.

In this paper, we constructed simple models to express the relationship between clonal
growth and pathogen spread through superinfection, considering the spatial structure. We
showed that: (i) The strain with an intermediate cost becomes dominant, similar to the previ-
ous studies [17–21], when both the superinfection rate and the growth rate are low. However, a
high superinfection rate or growth rate leads to dominance of the strain with lowest cost in our
model. Actually, pathogen gets more benefit due to low mortality cost when hosts grow rapidly
[3]. (ii) The competition among strains occurs in the coexistence phase of various strains by
PA and MCS in the model of n> 3. (iii) Too high a growth rate leads to occupation of the
strain with lowest cost. Thus, the competition between the strain and the hosts occurs, thereby
the host population decreases in all models. (iv) Pathogens easily maintain their genetic diver-
sity with a low superinfection rate. However, if they do not superinfect, such maintenance
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becomes difficult. (v) When the growth rate of a plant is low, an individual at a local site is
strongly interconnected by distant individuals because MA and PA do not apply in this case. In
conclusion, the superinfection is one of the important factors to evolution of virulence by
maintenance of genetic diversity, and the spatial structure plays a more important role in a
slowly growing plant relative to the speed of spread of the pathogen. In addition, too high a
growth rate disadvantages clonal plants, because the rapid growth of the plant assists the spread
of the pathogen due to the increase in susceptible individuals, and leads to lower mortality
costs of the dominant strain. However, from a biological requirement, we will have to construct
and analyze more complicated models to express the dynamics of real plants. In the future,
more details will have to be analyzed, such as the bifurcation condition, the values of the equi-
librium, and stability of the equilibrium state. In addition, to analyze real pathogens, it is neces-
sary to change the assumption for the mortality cost, such as a more complex relationship
between infection rate and virulence, and we will estimate the parameter value, notably differ-
ence in morality costs among strains (Δm), by comparison between our result and available
quantitative data.
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