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Dysregulated host immune responses to infection often occur, leading to sepsis, multiple 
organ failure, and death. Some patients rapidly recover from sepsis, but many develop 
chronic critical illness (CCI), a debilitating condition that impacts functional outcomes and 
long-term survival. The “Persistent Inflammation, Immunosuppression, and Catabolism 
Syndrome” (PICS) has been postulated as the underlying pathophysiology of CCI. We 
propose that PICS is initiated by an early genomic and cytokine storm in response to 
microbial invasion during the early phase of sepsis. However, once source control, anti-
microbial coverage, and supportive therapies have been initiated, we propose that the 
persistent inflammation in patients developing CCI is a result of ongoing endogenous 
alarmin release from damaged organs and loss of muscle mass. This ongoing alarmin 
and danger-associated molecular pattern signaling causes chronic inflammation and a 
shift in bone marrow stem cell production toward myeloid cells, contributing to chronic 
anemia and lymphopenia. We propose that therapeutic interventions must target the 
chronic organ injury and lean tissue wasting that contribute to the release of endogenous 
alarmins and the expansion and deposition of myeloid progenitors that are responsible 
for the propagation and persistence of CCI.
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iNTRODUCTiON

Normal protective host responses to infection often become excessive, resulting in the systemic 
inflammatory response syndrome (SIRS) that can cause a clinical trajectory of refractory shock, 
fulminant multiple organ failure (MOF), and early in-hospital death. Until recently, this was a 
common clinical scenario (occurring in >35% of those with sepsis), and a tremendous effort has 
been directed at understanding and treating this response. Unfortunately, despite dramatic increases 
in our understanding of sepsis, more than 150 clinical trials testing biological response modifiers 
directed at SIRS have failed to improve sepsis-associated mortality (1–3). This undoubtedly occurred 
because the complexity of the human response to sepsis was underestimated, and previous pre-
clinical (bacterial administration and high-mortality peritonitis) (4–9) and early clinical [endotoxin 
lipopolysaccharide (LPS) administration] (10–13) models did not accurately recapitulate human 
pathobiology (14–16).
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FigURe 1 | Proposed hypothesis for the PICS. Abbreviations: SIRS, systemic inflammatory response syndrome; MDSC, myeloid-derived suppressor cell; sPDL-1, 
soluble programmed death ligand-1; LTAC, long-term acute care facility; PICS, persistent inflammation, immunosuppression, and catabolism syndrome.
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Despite these efforts, as the result of unprecedented quality 
improvement to identify sepsis early and provide rapid evidence-
based care (17–19), early in-hospital deaths after sepsis have 
decreased substantially over the last decade. The acute phase 
of sepsis has been characterized by both a “genomic storm” and 
“cytokine storm,” the activation of a plethora of genes that encode 
inflammatory cytokines, signal transducers, and cell adhesion 
molecules (20), and subsequent spike of inflammatory cytokines 
(21). In modern ICUs (Figure  1), severely septic patients are 
resuscitated through their “genomic storm” characterized by 
SIRS with organ dysfunction, but now relatively few (<10%) pro-
gress into the “MOF/early death” trajectory (18, 22). Our recent 
studies have shown that as SIRS resolves, roughly half of the 
sepsis survivors exhibit “rapid recovery” (RAP) from their organ 
dysfunction and achieve “immune homeostasis.” Unfortunately, 
the remainder develop “chronic critical illness” (CCI), char-
acterized by prolonged ICU stays (>14  days) and low-grade 
organ dysfunction (especially kidney injury). CCI encompasses 
multiple phenotypes, including chronic long-term inflammation 
as well as immunosuppression and catabolism. Chronically 
critically ill patients may exhibit either a predominantly pro-
inflammatory phenotype or the immunosuppressed phenotype 
or a combination of the two. CCI patients are often observed to 
have (a) persistent inflammation [elevated C-reactive protein 
and increased inflammatory cytokines interleukin (IL)-6 and 
IL-8] with myeloid-derived suppressor cell (MDSC) expansion, 
(b) immunosuppression (increased secondary and nosocomial 
infections and reactivation of latent viral reactivation), and (c) 
protein catabolism with muscle wasting and cachexia similar to 
cancer and other chronic inflammatory diseases. MDSCs are a 
heterogeneous population of immature myeloid cells that accu-
mulate during pathologic conditions such as cancer or sepsis (23).  

In sepsis survivors, MDSCs are persistently increased, function-
ally immunosuppressive, and are associated with adverse clinical 
outcomes (24). CCI patients are commonly discharged to long-
term acute care facilities (LTACs) for expensive care because there 
are no effective interventions (25) and their profound disabilities 
preclude home care. Here, they experience accelerated aging, 
induced frailty, sepsis recidivism (requiring re-hospitalization), 
physical and cognitive disabilities (resulting in dismal life qual-
ity), and a high rate of ongoing indolent death (~40% at 1 year) 
(26, 27). The personal and economic burdens to these patients 
and their families, as well as the immense costs of this exploding 
population to society, are immense (1, 28).

PeRSiSTeNT iNFLAMMATiON, 
iMMUNOSUPPReSSiON, AND 
CATABOLiSM SYNDROMe (PiCS)

In 2012, our group proposed the hypothesis that the underly-
ing pathobiology of CCI in sepsis survivors was a “Persistent 
Inflammation, Immunosuppression, and Catabolism Syndrome” 
(29). Since 2012, the PICS hypothesis has been validated (30, 31). 
We now propose, based on new information, that the underly-
ing pathobiology which drives PICS and CCI is a maladaptive 
self-perpetuating cycle of persistent inflammation involving 
reduced host protective immunity, continued organ injury and 
its sequelae, loss of muscle mass and function, changes in bone 
marrow (BM) function predominated by “emergency myelopoie-
sis,” and failure of metabolic adaptation (Figure 2) (22, 24, 27, 
32, 33). Organ injury results in the release of alarmins, which 
perpetuates expansion of immunosuppressive myeloid cells, 
which play a role in ongoing inflammation and muscle wasting 
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FigURe 2 | Proposed self-perpetuating cycle of persistent inflammation 
driving organ injury through a failure of metabolic adaptation, leading to 
release of endogenous alarmins and bone marrow changes. Three cycles 
drive CCI: muscle wasting (discussed in Section “Skeletal Muscle as a Target 
for Oxidant Injury and DAMP Release”), organ injury (discussed in Section 
“Role of AKI in CCI”), and emergency myelopoiesis (discussed in Section 
“Abnormal Myelopoiesis and MDSCs”).

FigURe 3 | Survival of CCI (n = 71) or RAP (n = 66) patients 6 months after 
sepsis. Trajectories were classified as early death (blue), RAP (green), and 
CCI (red). Kaplan–Meier analysis demonstrated significant differences 
(p < 0.01) in survival between groups. Abbreviations: CCI, chronic critical 
illness; RAP, rapid recovery.
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which all contribute to the progression of CCI. Recent studies 
by Bihorac and Segal from our center have shown that new or 
ongoing acute kidney injury (AKI) is a significant independent 
predictor of adverse outcomes in sepsis survivors. Not only is the 
kidney the most commonly injured organ in sepsis (34) but it is 
by far the most problematic for long-term recovery (29, 35, 36). 
AKI increases the likelihood of chronic kidney disease (CKD), 
which is both catabolic and inflammatory. These patients also 
experience profound muscle wasting with loss of up to 30% of 
lean body mass within weeks (37, 38).

Since proposing PICS in 2012, several observations have been 
notable. In regards to the three clinical trajectories (Figure  3), 
only 6% of septic patients died early (<14 days), 46% experienced 
rapid recovery (with 6-month survival of 98%), while a notably 
high 49% progressed into CCI (with 6-month survival of only 
63%) (27). Sepsis survivors who developed CCI were significantly 
older and had more hospital-acquired (rather than community-
acquired) infections (27). Importantly, these subjects exhibited not 
only persistent inflammation, as demonstrated by elevated plasma 
cytokine concentrations, but also increased immunosuppres-
sive proteins (sPD-L1 or IL-10) (Figure  4) (27). Most (~80%) 
were discharged to LTACs, developed recurrent infections, and 
had significant ongoing functional disabilities at 6  months.  
CCI patients reported worse quality of life and had significantly 
worse functional status at 6-month follow-up compared with 
patients who experienced rapid recovery. These results were based on 
detailed long-term follow-up of CCI patients using the EuroQol-5D 
weighted utility index (0  =  Death, 1  =  Full health), the Short 
Physical Performance Battery (0 = worst performance, 12 = best 
performance), and the Eastern Cooperative Oncology Group/
World Health Organization/Zubrod Scale (0  =  Asymptomatic, 
5 = Death) (Gardner and Brakenridge, in review).

THe CHALLeNge OF CCi

Traditionally, the lean tissue wasting and cachexia frequently 
observed in CCI has been viewed as a macro-endocrine and 
cytokine-driven injury stress response (39), and recent studies 
in CCI survivors have shown biopsy-proven defective mitochon-
drial biogenesis and myocyte necrosis associated with leukocyte 
infiltration (38). Inflammation, therefore, is likely causing direct 
mitochondrial and skeletal muscle myocyte injury, which in turn 
releases breakdown products that amplify ongoing inflammation.  
A number of known mitochondrial DAMPs (mitoDAMPs) from 
skeletal muscle include mitochondrial DNA (mtDNA), HMGB1, 
and transcription factor A, mitochondrial (TFAM) (40–42). We 
envision this as a complex, futile, self-perpetuating cycle driven by 
an inability of organs and tissues to adapt to persistent inflamma-
tion, fueled by a continuous release of endogenous alarmins and 
expansion of MDSCs that infiltrate not only secondary lymphoid 
organs but also tissues of the reticuloendothelial system. These 
complex interactions have not been studied systematically.

The current CCI epidemic represents a new and seemingly 
insurmountable scientific challenge. Sepsis-induced CCI and its 
bleak long-term outcomes occur in a diverse patient population 
whose characterization requires both in-hospital and long-term 
post-hospital discharge follow-up. While these detailed assess-
ments are essential in elucidating the debilitating outcomes asso-
ciated with CCI, CCI’s natural history is confounded by multiple 
co-morbid diseases, making a definitive, clinical, mechanistic 
investigation difficult.

This has made the study of sepsis-associated CCI in animal 
models challenging. Appropriate, validated laboratory models 
are required to develop a mechanistic framework describing the 
variable effects on outcomes in different organs and subgroups of 
patients (14, 43). Historically, most animal models of sepsis have 
focused on the early host immune responses in the first few days. 
This reflected the challenge of treating human sepsis during that 
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FigURe 4 | Biomarker concentrations in patients with CCI and RAP. Blood samples were collected at 0.5, 1, 4, 7, 14, 21, and 28 days after sepsis onset. 
Differences in concentrations between CCI (filled circles) and RAP (filled triangles) cohorts at individual time points are identified with an asterisk at a p value less 
than 0.05 using nonparametric tests. Patients with CCI had evidence of prolonged immunosuppression. Abbreviations: CCI, chronic critical illness; RAP rapid 
recovery; IL-10, interleukin-10; sPDL-1, soluble programmed death ligand-1.
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acute phase (5, 44). To better study the underlying mechanisms 
that drive CCI’s progression, continual calibration/validation and 
improvement of more chronic animal models through ongoing 
bidirectional bench-to-bedside research will be required. Several 
groups including ourselves have used a semi-lethal cecal ligation 
and puncture (CLP) model because it recapitulates the persistent 
inflammation, weight loss, and immune suppression seen in 
sepsis survivors (45–50). However, the mechanism(s) driving the 
process in mice are likely different from those seen in CCI and 
PICS, because survivors of CLP have a necrotic cecum in addition  
to an indeterminate nidus of infection. High-dose antibiotics have 
been attempted to sterilize the peritoneal cavity, but accomplish-
ment of sterility has rarely been demonstrated (51). With that 
said, some investigators have looked at the long-term outcomes 
in murine survivors of CLP sepsis, and demonstrating myeloid 
cell expansion, inflammation, and immune suppression (52–54).

In addition, most investigators have used juvenile or young 
adult in-bred mice; however, sepsis is a disease of the elderly. 
Efron et al. have used aged mice and clearly shown that not only 

do they differ from young mice at baseline but they also respond 
differently to sepsis (14). We are also beginning to understand 
the effects of comorbidities on the sepsis response. Delano has 
shown that preexisting diabetes exaggerates the host response to 
sepsis (55). This type of information will be crucial in the future 
development of multimodal interventional trials.

ALARMiNS AND DANgeR-ASSOCiATeD 
MOLeCULAR PATTeRNS (DAMPs) DRive 
THe PeRSiSTeNT iNFLAMMATiON
Alarmins have been identified as important mediators of per-
sistent inflammation in CCI. There are two sources of alarmins 
and both are recognized by the same pattern-recognition 
receptors on immune and parenchymal cells that perpetuate 
ongoing inflammation. The first source is exogenous pathogen-
associated molecular patterns elaborated during nosocomial 
infections and reactivation of latent viral infections (43). Our 
recent studies show that 61% of sepsis survivors suffering from 
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CCI experience one or more secondary nosocomial infections 
compared with 18% in RAP survivors (33). Hotchkiss reported 
that 100% of patients spending 14  days in the ICU show evi-
dence of viral reactivation (56). The second source of alarmins is 
the constant release of endogenous DAMPs from injured organs 
and inflammatory cells (57). These danger signals represent 
both nucleic acids and cellular proteins that are released upon 
cell death, as well as proteins or nucleic acids that are actively 
secreted in response to cellular stress (57, 58). Multiple stud-
ies have demonstrated that several of these DAMPs, including 
nuclear (nuc) DNA, HMGB1, and S100 are significantly elevated 
in sepsis survivors, especially during their entire hospitalization 
(59–62). We hypothesize that the two primary sources of these 
endogenous DAMPs are the kidney (with AKI progressing to 
CKD) and wasting of skeletal muscle, the largest and most labile 
protein reserve in the body.

ABNORMAL MYeLOPOieSiS AND MDSCs

Sepsis initiates an emergency myelopoiesis response (24, 63). 
Cytokine and chemokine release (64–66), along with adrenergic 
stimulation (67, 68), promotes the rapid release of myeloid popu-
lations from BM and secondary lymphoid organs. This release of 
both mature and immature neutrophils (PMNs) is an essential 
requirement for the initial control of an invading pathogen, but 
it can also cause collateral organ injury. This release also creates 
a void in the BM niche that stimulates expansion of hematopoi-
etic stem cells and other early progenitors (69). Myelopoiesis is 
favored at the expense of both lymphopoiesis and hematopoiesis, 
which explains in part the persistent lymphopenia and chronic 
anemia seen in sepsis survivors (66, 70).

In cases of CCI in which alarmin release continues unabated, 
however, emergency myelopoiesis persists and myeloid cells are 
released with an immature phenotype (71, 72). We have seen in a 
chronic murine CLP model that by 7 days post-sepsis, up to 95% 
of BM cells are myeloid cells, mostly immature and functional like 
MDSCs (53). Interestingly, McCall has shown that the phenotype 
of these cells evolves over time, and the myeloid cells become 
more immunosuppressive with time (73). These cells not only 
overwhelm the BM but also significantly infiltrate the spleen, 
lymph nodes, reticuloendothelial tissues (such as lung and liver), 
and likely also skeletal muscle and brain (53, 74). MDSCs are gen-
erally sorted into two phenotypes based on cell surface markers: 
granulocytic MDSCs are CD11b+Ly6G+Ly6Clow and monocytic 
MDSCs are CD11b+Ly6G−Ly6Chigh (75). MDSCs have been impli-
cated in immunosuppression in sepsis via IL-10 production and 
inhibition of T-cell response and proliferation (76). Not only are 
MDSCs potently immunosuppressive toward macrophages and 
CD4+ and CD8+ T-cells, they are also pro-inflammatory, produc-
ing oxidation, and peroxidation products, as well as nitric oxide, 
all of which are potentially damaging to parenchymal cells and 
promote inflammation (66, 76). We have recently demonstrated 
that in sepsis survivors, there is rapid and sustained appearance 
of MDSCs in the blood (24). More importantly, we have shown 
that CCI sepsis survivors have persistently elevated MDSCs that 
are strong independent predictors of nosocomial infection and 

hospital discharge to LTACs (24, 27, 33). Others have confirmed 
our results and demonstrated that sepsis survivors have elevated 
levels of MDSCs and similarly have a high incidence of secondary 
nosocomial infections (77, 78).

ROLe OF AKi iN CCi

The kidney is likely the most critical organ related to long-term 
recovery from sepsis. Our previous work found a strong associa-
tion between sepsis and AKI. Not only are patients with AKI more 
likely to develop sepsis (34, 79–81), but AKI progressing to CKD 
is a major factor that perpetuates organ dysfunction in sepsis, 
leading to CCI and decreased survival (29, 35, 36). Renal tubule 
epithelial cells are highly susceptible to intrinsic oxidative stress. 
During sepsis, necrotic tubule epithelial cells and PMNs release 
DAMPs that activate PPR toll-like receptors (TLRs). Others have 
shown that patients with sepsis and AKI have increased levels 
of urinary DAMPs (82). In addition, urinary cellular RNA from 
sepsis patients reveals overexpression of several DAMP receptors. 
The local and systemic influx of DAMPs leads to secretion of 
chemokines by renal parenchymal cells and dendritic cells (DCs) 
which promotes a further local PMN-dependent inflammatory 
response (83–85) as well as distant systemic effects on other 
organs (36, 86–90).

In addition to being constitutively expressed in renal tubule 
epithelial cells, TLRs are further upregulated in AKI via epigenetic 
remodeling which leads to an exaggerated cytokine production in 
response to LPS and lipoteichoic acid, causing a renal “hyper-
responsive” state (91). The cytokine efflux into the systemic 
circulation, together with the decrease in renal clearance, leads 
to exaggerated systemic inflammation and systemic organ injury. 
In trauma patients with AKI, we observed an increase in plasma 
levels of IL-8, chemokine (C-X-C motif) ligand 1 (CXCL1), 
monocyte chemoattractant protein-1, and macrophage inflam-
matory protein 1-beta (92). In both animal models and human 
studies, distant lung injury after AKI was associated with an 
increase in plasma levels of CXCL1, IL-6, and IL-8 within 2 h after 
AKI onset (93, 94). Our data demonstrate persistent elevation of 
both pro-inflammatory and immunosuppressive cytokines among 
patients with persistent AKI.

There is currently a dearth of knowledge explaining why 
the kidney is so susceptible to inflammatory injury and why 
CCI patients fail to recover from renal dysfunction. Large 
numbers of immune cells (such as DCs, macrophages, and few 
lymphocytes) reside in the kidney (95). We propose that during 
sepsis and CCI, the kidney is infiltrated by MDSCs that bring 
with them oxidative and immunosuppressive properties (24, 
30, 76). Each nephron selectively filters small molecules such 
as DAMPs and pathogenic antigens and together the kidneys 
filter approximately 180  l of fluid per day, filtering the entire 
blood volume over 30 times daily (96). Thus, renal DCs and 
renal lymph nodes are exposed to DAMPS, pathogens, and anti-
gens in the blood over 30 times more frequently than any other 
tissue. The kidney hosts many different cell types expressing a 
subset of TLRs (1–6) and can thus respond to DAMPs to induce 
innate immune responses (97).
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SKeLeTAL MUSCLe AS A TARgeT FOR 
OXiDANT iNJURY AND DAMP ReLeASe

The skeletal muscle system is the largest, most labile protein 
reserve in the body. Sepsis induces catabolism characterized by 
profound muscle wasting, reflecting breakdown of myofibrillar 
proteins, decreased protein synthesis, increased mitochondrial 
dysfunction, and the release of potential pro-inflammatory 
degradation products from the large numbers of myocyte mito-
chondria (40, 98, 99). In long-term follow-up studies, muscle 
atrophy has been shown to cause severe functional disabilities 
in CCI survivors (100, 101). Currently, it is unknown what the 
precise role is of mitochondrial dysfunction and inflammation in 
sepsis on skeletal muscle wasting and long-term outcomes.

A novel emerging role of skeletal muscle is its ability to 
regulate inflammation not only locally but also systemically. 
Increased catabolism of skeletal muscle during sepsis, either 
through oxidant injury-induced cellular apoptosis or autophagy, 
can stimulate an immune response via cellular constituents being 
released into the circulation and acting as DAMPs. Infiltration of 
skeletal muscle with myeloid cell populations, including poten-
tially MDSCs, is recognized in skeletal muscle injury and sepsis-
associated skeletal muscle wasting (38, 102–105). Fragments such 
as mtDNA, ATP, TFAM, N-formyl peptides, HMGB1, succinate, 
and cardiolipin are known mitoDAMPs and can function as 
endogenous alarmins to propagate chronic inflammation (40). 
These factors, which can act systemically, may be released during 
skeletal muscle injury or critical illness-associated muscle wast-
ing. TFAM, one of the potential alarmins released during skeletal 
muscle damage, has divergent local and systemic functions (106). 
Acting locally within tissues, TFAM binding to the D-loop in 
mtDNA is essential for upregulation of mtDNA replication, 
resulting in increased mtDNA copy number. In striking contrast, 
if mtDNA or TFAM is released into the cytosol or circulation, it 
can activate TLR9 pathway factors (41, 107). Animal models of 

sepsis-induced cardiac inflammation show that at least partially 
mtDNA–TLR9–RAGE pathway is involved and activated but can 
be inhibited by a TLR9 inhibitor (41).

CONCLUSiON

Sepsis induces a genomic and cytokine storm that can cause 
variable host responses in the long term. A substantial portion 
of sepsis survivors go on to develop CCI, a debilitating condition 
with profound personal and social costs. CCI is multifactorial and 
complex, and better understanding is necessary to improve long-
term outcomes from sepsis. We hypothesize that CCI is initiated 
by an early genomic storm, organ injury, and skeletal muscle wast-
ing that leads to a DAMP-driven pro-inflammatory expansion of 
immature myeloid cells, and infiltration of MDSCs in organs and 
tissues. The continual release of DAMPs from CKD or muscle 
wasting propagates the PICS response in sepsis survivors. We 
propose further work in developing appropriate animal models to 
study CCI, AKI, and CKD, and targeted interventions to alter the 
disrupted homeostasis of metabolic reprogramming after sepsis.
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