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Abstract

With the explosive growth of medical information, it is almost impossible for

healthcare providers to review and evaluate all relevant evidence to make the best

clinical decisions. Meta-analyses, which summarize all existing evidence and

quantitatively synthesize individual studies, have become the best available evidence

for informing clinical practice. This article introduces the common methods, steps,

principles, strengths and limitations of meta-analyses and aims to help healthcare

providers and researchers obtain a basic understanding of meta-analyses in clinical

practice and research.
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1 | INTRODUCTION

With the explosive growth of medical information, it has become almost

impossible for healthcare providers to review and evaluate all related evi-

dence to inform their decision making.1,2 Furthermore, the inconsistent and

often even conflicting conclusions of different studies can confuse these

individuals. Systematic reviews were developed to resolve such situations,

which comprehensively and systematically summarize all relevant empirical

evidence.3 Many systematic reviews contain meta-analysis, which use statis-

tical methods to combine the results of individual studies.4 Through meta-

analyses, researchers can objectively and quantitatively synthesize results

from different studies and increase the statistical strength and precision for

estimating effects.5 In the late 1970s, meta-analysis began to appear regu-

larly in the medical literature.6 Subsequently, a plethora of meta-analyses

have emerged and the growth is exponential over time.7 When conducted

properly, a meta-analysis of medical studies is considered as decisive

evidence because it occupies a top level in the hierarchy of evidence.8

An understanding of the principles, performance, advantages and

weaknesses of meta-analyses is important. Therefore, we aim to

provide a basic understanding of meta-analyses for clinicians and

researchers in the present article by introducing the common

methods, principles, steps, strengths and limitations of meta-analyses.

2 | COMMON META-ANALYSIS METHODS

There are many types of meta-analysis methods (Table 1). In this

article, we mainly introduce five meta-analysis methods commonly

used in clinical practice.

2.1 | Aggregated data meta-analysis

Although more information can be obtained based on individual

participant-level data from original studies, it is usually impossible

to obtain these data from all included studies in meta-analysisXiao-Meng Wang and Xi-Ru Zhang contributed equally to this work.
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because such data may have been corrupted, or the main investi-

gator may no longer be contacted or refuse to release the data.

Therefore, by extracting summary results of studies available in

published accounts, an aggregate data meta-analysis (AD-MA) is

the most commonly used of all the quantitative approaches.9 A

study has found that > 95% of published meta-analyses were

AD-MA.10 In addition, AD-MA is the mainstay of systematic

reviews conducted by the US Preventive Services Task Force, the

Cochrane Collaboration and many professional societies.9 More-

over, AD-MA can be completed relatively quickly at a low cost,

and the data are relatively easy to obtain.11,12 However, AD-MA

has very limited control over the data. A challenge with AD-MA is

that the association between an individual participant-level covari-

ate and the effect of the interventions at the study level may not

reflect the individual-level effect modification of that covariate.13 It

is also difficult to extract sufficient compatible data to undertake

meaningful subgroup analyses in AD-MA.14 Furthermore, AD-MA is

prone to ecological bias, as well as to confounding from variables

not included in the model, and may have limited power.15

2.2 | Individual participant data meta-analysis

An individual participant data meta-analysis (IPD-MA) is considered

the “gold standard” for meta-analysis; this type of analysis collects

individual participant-level data from original studies.15 Compared

with AD-MA, IPD-MA has many advantages, including improved data

quality, a greater variety of analytical types that can be performed and

the ability to obtain more reliable results.16,17

It is crucial to maintain clusters of participants within studies in

the statistical implementation of an IPD-MA. Clusters can be retained

during the analysis using a one-step or two-step approach.18 In the

one-step approach, the individual participant data from all studies are

modeled simultaneously, at the same time as accounting for the clus-

tering of participants within studies.19 This approach requires a model

specific to the type of data being synthesized and an appropriate

account of the meta-analysis assumptions (e.g. fixed or random

effects across studies). Cheng et al.20 proposed using a one-step

IPD-MA to handle binary rare events and found that this method was

superior to traditional methods of inverse variance, the Mantel–

Haenszel method and the Yusuf-Peto method. In the two-step

approach, the individual participant data from each study are analyzed

independently for each separate study to produce aggregate data for

each study (e.g. a mean treatment effect estimate and its standard

error) using a statistical method appropriate for the type of data being

analyzed (e.g. a linear regression model might be fitted for continuous

responses, or a Cox regression might be applied for time-to-event

data). The aggregate data are then combined to obtain an summary

effect in the second step using a suitable model, such as weighting

studies by the inverse of the variance.21 For example, using a two-

step IPD-MA, Grams et al.22 found that apolipoprotein-L1 kidney-risk

variants were not associated with incident cardiovascular disease or

death independent of kidney measures.

Compared to the two-step approach, the one-step IPD-MA is rec-

ommended for small meta-analyses23 and, conveniently, must only

specify one model; however, this requires careful distinction of

within-study and between-study variability.24 The two-step IPD-MA

is more laborious, although it allows the use of traditional, well-known

meta-analysis techniques in the second step, such as those used by

the Cochrane Collaboration (e.g. the Mantel–Haenszel method).

2.3 | Cumulative meta-analysis

Meta-analyses are traditionally used retrospectively to review existing

evidence. However, current evidence often undergoes several

updates as new studies become available. Thus, updated data must be

continuously obtained to simplify and digest the ever-expanding liter-

ature. Therefore, cumulative meta-analysis was developed, which

adds studies to a meta-analysis based on a predetermined order and

then tracks the magnitude of the mean effect and its variance.25 A

cumulative meta-analysis can be performed multiple times; not only

can it obtain summary results and provide a comparison of the

dynamic results, but also it can assess the impact of newly added

studies on the overall conclusions.26 For example, initial observational

studies and systematic reviews and meta-analyses suggested that fro-

zen embryo transfer was better for mothers and babies; however,

recent primary studies have begun to challenge these conclusions.27

Maheshwari et al.27 therefore conducted a cumulative meta-analysis

TABLE 1 Meta-analysis methods

Methods Definitions

Aggregate data meta-

analysis

Extracting summary results of studies

available in published accounts

Individual participant

data meta-analysis

Collecting individual participant-level data

from original studies

Cumulative meta-

analysis

Adding studies to a meta-analysis based on

a predetermined order

Network meta-analysis Combining direct and indirect evidence to

compare the effectiveness between

different interventions

Meta-analysis of

diagnostic test

accuracy

Identifying and synthesizing evidence on

the accuracy of tests

Prospective meta-

analysis

Conducting meta-analysis for studies that

specify research selection criteria,

hypotheses and analysis, but for which

the results are not yet known

Sequential meta-

analysis

Combining the methodology of cumulative

meta-analysis with the technique of

formal sequential testing, which can

sequentially evaluate the available

evidence at consecutive interim steps

during the data collection

Meta-analysis of the

adverse events

Following the basic meta-analysis

principles to analyze the incidences of

adverse events of studies
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to investigate whether these conclusions have remained consistent

over time and found that the decreased risks of harmful outcomes

associated with pregnancies conceived from frozen embryos have

been consistent in terms of direction and magnitude of effect over

several years, with an increasing precision around the point estimates.

Furthermore, continuously updated cumulative meta-analyses may

avoid unnecessary large-scale randomized controlled trials (RCTs) and

prevent wasted research efforts.28

2.4 | Network meta-analysis

Although RCTs can directly compare the effectiveness of interven-

tions, most of them compare the effectiveness of an intervention

with a placebo, and there is almost no direct comparison between

different interventions.29,30 Network meta-analyses comprise a

relatively recent development that combines direct and indirect

evidence to compare the effectiveness between different interven-

tions.31 Evidence obtained from RCTs is considered as direct

evidence, whereas evidence obtained through one or more common

comparators is considered as indirect evidence. For example, when

comparing interventions A and C, direct evidence refers to the esti-

mate of the relative effects between A and C. When no RCTs have

directly compared interventions A and C, these interventions can be

compared indirectly if both have been compared with B (placebo or

some standard treatments) in other studies (forming an A–B–C

“loop” of evidence).32,33

A valid network meta-analysis can correctly combine the relative

effects of more than two studies and obtain a consistent estimate of

the relative effectiveness of all interventions in one analysis.34 This

meta-analysis may lead to a greater accuracy of estimating

intervention effectiveness and the ability to compare all available

interventions to calculate the rank of different interventions.34,35 For

example, phosphodiesterase type 5 inhibitors (PDE5-Is) are the first-

line therapy for erectile dysfunction, although there are limited

available studies on the comparative effects of different types of

PDE5-Is.36 Using a network meta-analysis, Yuan et al.36 calculated the

absolute effects and the relative rank of different PDE5-Is to provide

an overview of the effectiveness and safety of all PDE5-Is.

Notably, a network meta-analysis should satisfy the transitivity

assumption, in which there are no systematic differences between the

available comparisons other than the interventions being compared37;

in other words, the participants could be randomized to any of the

interventions in a hypothetical RCT consisting of all the interventions

included in the network meta-analysis.

2.5 | Meta-analysis of diagnostic test accuracy

Sensitivity and specificity are commonly used to assess diagnostic

accuracy. However, diagnostic tests in clinical practice are rarely

100% specific or sensitive.38 It is difficult to obtain accurate estimates

of sensitivity and specificity in small diagnostic accuracy studies.39,40

Even in a large sample size study, the number of cases may still be

small as a result of the low prevalence. By identifying and synthesizing

evidence on the accuracy of tests, the meta-analysis of diagnostic test

accuracy (DTA) provides insight into the ability of medical tests to

detect the target diseases41; it also can provide estimates of test per-

formance, allow comparisons of the accuracy of different tests and

facilitate the identification of sources of variability.42 For example, the

FilmArray® (Biomerieux, Marcy-l'Étoile, France) meningitis/encephali-

tis (ME) panel can detect the most common pathogens in central ner-

vous system infections, although reports of false positives and false

negatives are confusing.43 Based on meta-analysis of DTA, Tansarli

et al.43 calculated that the sensitivity and specificity of the ME panel

were both > 90%, indicating that the ME panel has high diagnostic

accuracy.

3 | HOW TO PERFORM A META-ANALYSIS

3.1 | Frame a question

Researchers must formulate an appropriate research question at the

beginning. A well-formulated question will guide many aspects of the

review process, including determining eligibility criteria, searching for

studies, collecting data from included studies, structuring the synthe-

ses and presenting results.44 There are some tools that may facilitate

the construction of research questions, including PICO, as used in clin-

ical practice45; PEO and SPICE, as used for qualitative research ques-

tions46,47; and SPIDER, as used for mixed-methods research.48

3.2 | Form the search strategy

It is crucial for researchers to formulate a search strategy in advance

that includes inclusion and exclusion criteria, as well as a standard-

ized data extraction form. The definition of inclusion and exclusion

criteria depends on established question elements, such as publica-

tion dates, research design, population and results. A reasonable

inclusion and exclusion criteria will reduce the risk of bias, increase

transparency and make the review systematic. Broad criteria may

increase the heterogeneity between studies, and narrow criteria

may make it difficult to find studies; therefore, a compromise should

be found.49

3.3 | Search of the literature databases

To minimize bias and reduce hampered interpretation of outcomes,

the search strategy should be as comprehensive as possible,

employing multiple databases, such as PubMed, Embase, Cochrane

Central Registry of Controlled Trials, Scopus, Web of Science and

Google Scholar.50,51 Removing language restrictions and actively

searching for non-English bibliographic databases may also help

researchers to perform a comprehensive meta-analysis.52
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3.4 | Select the articles

The selection or rejection of the included articles should be guided by

the criteria.53 Two independent reviewers may screen the included

articles, and any disagreements should be resolved by consensus

through discussion. First, the titles and abstracts of all relevant

searched papers should be read, and inclusion or exclusion criteria

applied to determine whether these papers meet. Then, the full texts

of the included articles should be reviewed once more to perform the

rejection again. Finally, the reference lists of these articles should be

searched to widen the research as much as possible.54

3.5 | Data extraction

A pre-formed standardized data extraction form should be used to

extract data of included studies. All data should be carefully converted

using uniform standards. Simultaneous extraction by multiple

researchers might also make the extracted data more accurate.

3.6 | Assess quality of articles

Checklists and scales are often used to assess the quality of articles.

For example, the Cochrane Collaboration's tool55 is usually used to

assess the quality of RCTs, whereas the Newcastle Ottawa Scale56

is one of the most common method to assess the quality of

non-randomized trials. In addition, Quality Assessment of Diagnostic

Accuracy Studies 257 is often used to evaluate the quality of diagnos-

tic accuracy studies.

3.7 | Test for heterogeneity

Several methods have been proposed to detect and quantify hetero-

geneity, such as Cochran's Q and I2 values. Cochran's Q test is used to

determine whether there is heterogeneity in primary studies or

whether the variation observed is due to chance,58 but it may be

underpowered because of the inclusion of a small number of studies

or low event rates.59 Therefore, p < 0.10 (not 0.05) indicates the

presence of heterogeneity given the low statistical strength and insen-

sitivity of Cochran's Q test.60 Another common method for testing

heterogeneity is the I2 value, which describes the percentage of varia-

tion across studies that is attributable to heterogeneity rather than

chance; this value does not depend on the number of studies.61 I2

values of 25%, 50% and 75% are considered to indicate low, moderate

and high heterogeneity, respectively.60

3.8 | Estimate the summary effect

Fixed effects and random effects models are commonly used to

estimate the summary effect in a meta-analysis.62 Fixed effects models,

which consider the variability of the results as “random variation”, sim-

ply weight individual studies by their precision (inverse of the variance).

Conversely, random effects models assume a different underlying effect

for each study and consider this an additional source of variation that is

randomly distributed. A substantial difference in the summary effect

calculated by fixed effects models and random effects models will be

observed only if the studies are markedly heterogeneous (heterogeneity

p < 0.10) and the random effects model typically provides wider

confidence intervals than the fixed effect model.63,64

3.9 | Evaluate sources of heterogeneity

Several methods have been proposed to explore the possible reasons

for heterogeneity. According to factors such as ethnicity, the number

of studies or clinical features, subgroup analyses can be performed

that divide the total data into several groups to assess the impact of a

potential source of heterogeneity. Sensitivity analysis is a common

approach for examining the sources of heterogeneity on a case-

by-case basis.65 In sensitivity analysis, one or more studies are

excluded at a time and the impact of removing each or several

studies is evaluated on the summary results and the between-study

heterogeneity. Sequential and combinatorial algorithms are usually

implemented to evaluate the change in between-study heterogeneity

as one or more studies are excluded from the calculations.66

Moreover, a meta-regression model can explain heterogeneity based

on study-level covariates.67

3.10 | Assess publication bias

A funnel plot is a scatterplot that is commonly used to assess publica-

tion bias. In a funnel plot, the x-axis indicates the study effect and the

y-axis indicates the study precision, such as the standard error or

sample size.68,69 If there is no publication bias, the plot will have a

symmetrical inverted funnel; conversely, asymmetry indicates the

possibility of publication bias.

3.11 | Present results

A forest plot is a valid and useful tool for summarizing the results of a

meta-analysis. In a forest plot, the results from each individual study

are shown as a blob or square; the confidence interval, usually rep-

resenting 95% confidence, is shown as a horizontal line that passes

through the square; and the summary effect is shown as a diamond.70

4 | PRINCIPLES OF META-ANALYSIS
PERFORMANCE

There are four most important principles of meta-analysis perfor-

mance that should be emphasized. First, the search scope of meta-

4 of 8 WANG ET AL.



analysis should be expanded as much as possible to contain all rele-

vant research, and it is important to remove language restrictions and

actively search for non-English bibliographic databases. Second, any

meta-analysis should include studies selected based on strict criteria

established in advance. Third, appropriate tools must be selected to

evaluate the quality of evidence according to different types of pri-

mary studies. Fourth, the most suitable statistical model should be

chosen for the meta-analysis and a weighted mean estimate of the

effect size should be calculated. Finally, the possible causes of hetero-

geneity should be identified and publication bias in the meta-analysis

must be assessed.

5 | STRENGTHS OF META-ANALYSIS

Meta-analyses have several strengths. First, a major advantage is their

ability to improve the precision of effect estimates with considerably

increased statistical power, which is particularly important when the

power of the primary study is limited as a result of the small sample

size. Second, a meta-analysis has more power to detect small but clini-

cally significant effects and to examine the effectiveness of interven-

tions in demographic or clinical subgroups of participants, which can

help researchers identify beneficial (or harmful) effects in specific

groups of patients.71,72 Third, meta-analyses can be used to analyze

rare outcomes and outcomes that individual studies were not

designed to test (e.g. adverse events). Fourth, meta-analyses can be

used to examine heterogeneity in study results and explore possible

sources in case this heterogeneity would lead to bias from “mixing

apples and oranges”.73 Furthermore, meta-analyses can compare the

effectiveness of various interventions, supplement the existing evi-

dence, and then offer a rational and helpful way of addressing a series

of practical difficulties that plague healthcare providers and

researchers. Lastly, meta-analyses may resolve disputes caused by

apparently conflicting studies, determine whether new studies are

necessary for further investigation and generate new hypotheses for

future studies.7,74

6 | LIMITATIONS OF META-ANALYSIS

6.1 | Missing related research

The primary limitation of a meta-analysis is missing related research.

Even in the ideal case in which all relevant studies are available, a fau-

lty search strategy can miss some of these studies. Small differences

in search strategies can produce large differences in the set of studies

found.75 When searching databases, relevant research can be missed

as a result of the omission of keywords. The search engine

(e.g. PubMed, Google) may also affect the type and number of studies

that are found.76 Moreover, it may be impossible to identify all

relevant evidence if the search scope is limited to one or two

databases.51,77 Finally, language restrictions and the failure to search

non-English bibliographic databases may also lead to an incomplete

meta-analysis.52 Comprehensive search strategies for different

databases and languages might help solve this issue.

6.2 | Publication bias

Publication bias means that positive findings are more likely to be

published and then identified through literature searches rather than

ambiguous or negative findings.78 This is an important and key source

of bias that is recognized as a potential threat to the validity of

results.79 The real research effect may be exaggerated or even falsely

positive if only published articles are included.80 For example, based

on studies registered with the US Food and Drug Administration,

Turner et al.81 reviewed 74 trials of 12 antidepressants to assess pub-

lication bias and its influence on apparent efficacy. It was found that

antidepressant studies with favorable outcomes were 16 times more

likely to be published than those with unfavorable outcomes, and the

apparent efficacy of antidepressants increased between 11% and

69% when the non-published studies were not included in the analy-

sis.81 Moreover, failing to identify and include non-English language

studies may also increase publication bias.82 Therefore, all relevant

studies should be identified to reduce the impact of publication bias

on meta-analysis.

6.3 | Selection bias

Because many of the studies identified are not directly related to the

subject of the meta-analysis, it is crucial for researchers to select

which studies to include based on defined criteria. Failing to evaluate,

select or reject relevant studies based on stricter criteria regarding the

study quality may also increase the possibility of selection bias. Miss-

ing or inappropriate quality assessment tools may lead to the inclusion

of low-quality studies. If a meta-analysis includes low-quality studies,

its results will be biased and incorrect, which is also called “garbage in,

garbage out”.83 Strictly defined criteria for included studies and scor-

ing by at least two researchers might help reduce the possibility of

selection bias.84,85

6.4 | Unavailability of information

The best-case scenario for meta-analyses is the availability of

individual participant data. However, most individual research

reports only contain summary results, such as the mean, standard

deviation, proportions, relative risk and odds ratio. In addition to the

possibility of reporting errors, the lack of information can severely

limit the types of analyses and conclusions that can be achieved in

a meta-analysis. For example, the unavailability of information from

individual studies may preclude the comparison of effects in

predetermined subgroups of participants. Therefore, if feasible, the

researchers could contact the author of the primary study for

individual participant data.
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6.5 | Heterogeneity

Although the studies included in a meta-analysis have the same

research hypothesis, there is still the potential for several areas of het-

erogeneity.86 Heterogeneity may exist in various parts of the studies’
design and conduct, including participant selection, interventions/

exposures or outcomes studied, data collection, data analyses and

selective reporting of results.87 Although the difference of the results

can be overcome by assessing the heterogeneity of the studies and

performing subgroup analyses,88 the results of the meta-analysis may

become meaningless and even may obscure the real effect if the

selected studies are too heterogeneous to be comparable. For exam-

ple, Nicolucci et al.89 conducted a review of 150 published random-

ized trials on the treatment of lung cancer. Their review showed

serious methodological drawbacks and concluded that heterogeneity

made the meta-analysis of existing trials unlikely to be constructive.89

Therefore, combining the data in meta-analysis for studies with large

heterogeneity is not recommended.

6.6 | Misleading funnel plot

Funnel plots are appealing because they are a simple technique used

to investigate the possibility of publication bias. However, their objec-

tive is to detect a complex effect, which can be misleading. For exam-

ple, the lack of symmetry in a funnel plot can also be caused by

heterogeneity.90 Another problem with funnel plots is the difficulty of

interpreting them when few studies are included. Readers may also be

misled by the choice of axes or the outcome measure.91 Therefore, in

the absence of a consensus on how the plot should be constructed,

asymmetrical funnel plots should be interpreted cautiously.91

6.7 | Inevitable subjectivity

Researchers must make numerous judgments when performing meta-

analyses,92 which inevitably introduces considerable subjectivity into

the meta-analysis review process. For example, there is often a certain

amount of subjectivity when deciding how similar studies should be

before it is appropriate to combine them. To minimize subjectivity, at

least two researchers should jointly conduct a meta-analysis and reach

a consensus.

7 | SUMMARY

The explosion of medical information and differences between indi-

vidual studies make it almost impossible for healthcare providers to

make the best clinical decisions. Meta-analyses, which summarize all

eligible evidence and quantitatively synthesize individual results on a

specific clinical question, have become the best available evidence for

informing clinical practice and are increasingly important in medical

research. This article has described the basic concept, common

methods, principles, steps, strengths and limitations of meta-analyses

to help clinicians and investigators better understand meta-analyses

and make clinical decisions based on the best evidence.
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