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Abstract
Background: Although DNA microarray technologies are very powerful for the simultaneous
quantitative characterization of thousands of genes, the quality of the obtained experimental data
is often far from ideal. The measured microarrays images represent a regular collection of spots,
and the intensity of light at each spot is proportional to the DNA copy number or to the expression
level of the gene whose DNA clone is spotted. Spot quality control is an essential part of
microarray image analysis, which must be carried out at the level of individual spot identification.
The problem is difficult to formalize due to the diversity of instrumental and biological factors that
can influence the result.

Results: For each spot we estimate the ratio of measured fluorescence intensities revealing
differential gene expression or change in DNA copy numbers between the test and control
samples. We also define a set of quality characteristics and a model for combining these
characteristics into an overall spot quality value. We have developed a training procedure to
evaluate the contribution of each individual characteristic in the overall quality. This procedure uses
information available from replicated spots, located in the same array or over a set of replicated
arrays. It is assumed that unspoiled replicated spots must have very close ratios, whereas poor
spots yield greater diversity in the obtained ratio estimates.

Conclusion: The developed procedure provides an automatic tool to quantify spot quality and to
identify different types of spot deficiency occurring in DNA microarray technology. Quality values
assigned to each spot can be used either to eliminate spots or to weight contribution of each ratio
estimate in follow-up analysis procedures.

Background
In comparative DNA microarray experiments compared
test and control samples are labeled with different fluores-
cent dyes (typically the red-fluorescent Cy5 and the green-
fluorescent Cy3), mixed up and co-hybridized with the
DNA clones regularly spotted on the microarray. The array
is scanned at a high spatial resolution at the correspond-
ing fluorescent wavelengths, and the fluorescence intensi-

ties are recorded in two color channels (Cy5 and Cy3) for
each pixel. The ratio of the measured intensities (Cy5/
Cy3) for each microarray spot reveals either differential
gene expression (cDNA technology [1]) or change in DNA
copy numbers (comparative genome hybridization
(CGH) technology [2]) between the test and control sam-
ples for the corresponding gene. Each ratio estimate
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should be accompanied by some measure of quality dem-
onstrating the level confidence in the obtained ratios.

The main components of the microarray image analysis
pipeline for spots include localization, quantification and
quality control. Among these, quality control is the least
formalized and least developed. To determine spot qual-
ity we need to have a clear definition of a good spot, or a
list of all possible distortions that may spoil the spot. The
diversity of instrumental platforms and instrumental and
biological factors that may influence the result makes for-
malization difficult and unlikely to be universal.

In this paper, we consider the problem of quantifying spot
quality in comparative DNA microarray experiments. Sev-
eral attempts have been made to approach the problem
[3-7]. Generally a number of parameters characterizing
the spot, such as signal-to-noise ratio, size, circularity, etc.,
are introduced. These parameters have to be combined
into an overall quality value to be used as a confidence
level in the follow-up analysis. There are different meth-
ods for deriving such a parameter. For example, in two
studies [5,6], it was assumed that individual quality scores
contribute equivalently to the composite quality score.
This may not be true, depending on the instrumental
setup and experimental design. Therefore we need an
approach that allows us to evaluate the weights that con-
trol the input of each of the marginal quality characteris-
tics into the overall score. For that, different training
procedures, in which the user classified a set of represent-
ative spots into three (accepted, rejected or intermediate
spots) [3] or four (bad, close to bad, close to good or good
spots) [7] groups, were proposed. This requires an expert
to evaluate at least a couple of hundred spots to achieve a
good approximation, which is a difficult and time-con-
suming task.

Here, we develop an automatic training procedure to eval-
uate the contribution (or weight) of each marginal quality
characteristic into the overall quality score, together with
an original set of quality characteristics and a model that
maps this set into an overall quality value. This procedure
is based on information from replicated spots, located on
the same array or over a set of replicated arrays, and
assumes that unspoiled replicated spots must have very
close intensity ratios, whereas poor spots yield greater
diversity in the obtained ratio estimates. The obtained
weights can then be used to establish a critical limit for
each quality characteristic, such that if a spot's characteris-
tic exceeds its critical limit, the spot can be declared a
"bad" spot.

We demonstrate the applicability of the developed algo-
rithms using simulated artificial images and experimental
images of different array designs used within our Institute
and CGH images obtained from the UCSF Cancer Center.

Results
We assume that the spots are identified and well localized
[8], (Novikov E, Barillot E: unpublished data)] in squares
(called spot cells). This involves: (i) identifying the posi-
tion of each spot on the array to associate it with the spot-
ted clone; and (ii) establishing the borders between the
neighboring spots to allow further independent data
processing (extracting quantitative information) for each
spot. Visually this results in the generation of a grid cover-
ing the microarray image.

Example of a spot with a low DW parameter (0.45)Figure 1
Example of a spot with a low DW parameter (0.45). 
Although the coefficient of determination of the linear 
regression plot (red line) is relatively high (0.92), it is obvious 
that the linear regression model is not appropriate in this 
case. It is possible that there are contributions (blue lines) 
from two different species occurring within the given spot, 
leading to two different Cy5/Cy3 ratios. The background pix-
els are grouped near the origin of the linear regression plot 
(cyan circle).
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Ratio estimation
We have implemented [8,9] two approaches for calculat-
ing the Cy5/Cy3 ratio for the spot: (i) based on spot seg-
mentation and (ii) based on linear regression.

Spot segmentation
In the spot segmentation approach a direct arithmetic
ratio of the background-corrected fluorescence intensity
estimates in the two color channels is evaluated. This
approach requires the identification of both the fore-
ground – the measured spot – and the background – typ-
ically the level of non-specific hybridization. The
segmentation procedure, in our implementation, is based

on the k-means adaptive pixel-clustering algorithm [10]
modified to explicitly take into consideration the geomet-
rical constraints on the spots and to improve identifica-
tion of the background areas for the spots with smooth
edges.

Linear regression estimation
In the linear regression approach, the ratio is represented
as the slope of the linear regression fit of the pixel intensi-
ties in two color channels (Figs. 1 and 2). As measured flu-
orescence intensities are statistically distorted in both
color channels, orthogonal regression [11,12] is used to
estimate the slope. In this method spot segmentation is
unnecessary, as background pixels are concentrated at the
origin of the linear regression plot and do not influence
the slope of the regression line (Fig. 1). However, outlier
or aberrant pixels within the spot cells, even in small
numbers, can strongly influence the regression line, thus
biasing the ratio. We have improved [8,9] the linear
regression approach by developing a statistical filtering
procedure that systematically searches and removes aber-
rant or outlier pixels.

Briefly, this procedure can be outlined as follows. Suspi-
cious pixels are examined by evaluating the quality of the
linear regression fit with and without the suspicious pixel.
We quantify the fit quality by the residual variance, s2 [13].
The smaller s2 is, the closer the linear regression line is to
the experimental data. The ratio of the s2 values is calcu-
lated for the fit with the tested pixel and for the fit with-
out. If this ratio is larger than a critical value of the F-
distribution at a user-defined confidence level, the pixel
will be marked as aberrant. We select pixels with the high-
est intensity in either of two channels first and then select
pixels having the largest deviation from the fitted regres-
sion line. To take into account the fact that the distortions
caused by pixels from the top of the intensity scale and by
pixels lying off of the linear regression line, may be differ-
ent, we apply different confidence levels for the F-statistics
for these pixels.

For the high-intensity pixels we also perform another test
to determine how far their intensities are from the aver-
aged intensity of the other pixels within the spot cell. This
detects pixels, far away from the other pixels, that do not
distort the linear regression line. Although these pixels
may not change the Cy5/Cy3 ratio, they could be consid-
ered as aberrant pixels, as we expect to see an almost con-
tinuous distribution of pixels intensity.

The procedure performs iteratively until no more aberrant
pixels are detected. An example of the outlier detection is
presented in Fig. 2. Note that the regression approach is
capable of detecting contamination pixels that are geo-
metrically inseparable from the spot. Therefore, the devel-

Example of a spot with contaminationFigure 2
Example of a spot with contamination. The filtering 
procedure removes aberrant pixels (dots with the red con-
tours), improving the Cy5/Cy3 ratio estimation and increas-
ing the coefficient of determination of the linear regression 
plot. Before filtering (red line): CD = 0.86; linear regression 
ratio is 1.41; segmentation ratio is 0.712. After filtering (black 
line): CD = 0.91; linear regression ratio is 0.275; segmenta-
tion ratio is 0.273. However, larger amounts of aberrant pix-
els may result in a less reliable estimation.
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oped procedure can be considered not only as a procedure
for correcting ratio recovery, but also as a procedure to
repair the spot and to improve the quality of experimental
material. It requires, however, that the contamination
clearly deviates from the straight regression line, which is
defined by the majority of "good" pixels from the spot.

Although this procedure gives a high level of confidence
in the linear regression ratio estimates, we still apply spot
segmentation, because linear regression estimates may be
biased when there is a high level of statistical noise (low
correlation between the Cy3 and Cy5 color channels).
However, after removing aberrant pixels, the segmenta-
tion algorithm also gives more robust estimates, and there
is a greater agreement in the ratio values obtained with
both methods.

As well as the Cy5/Cy3 ratio estimates, each of these
approaches generates a series of parameters that can be
used to evaluate the spot quality.

Quality characteristics
We define a set of quality parameters, characterizing dif-
ferent features of the spot. These parameters are scaled
between 0 (bad spot) and 1 (good spot) to facilitate fur-
ther quality analysis.

First, we use the characteristics from the linear regression
approach. The coefficient of determination (CD = r2,
where r is the correlation coefficient) of linear regression
signifies the degree of linear relationship between the
intensities in the Cy3 and Cy5 channels. High values of
CD (approaching 1) are expected for good spots. Low val-
ues suggest either relatively bright but non-correlated con-
tamination, or strong statistical noise normally
characterizing low-level (or missing) spots. Although the
removal of aberrant pixels increases the CD of linear
regression, it can still be low for noisy spots. These spots
must be either flagged out or assigned a lower quality
value. This parameter takes the range [0;1]: q1(CD) = CD.

The Durbin-Watson statistic (DWS) [14] evaluates the
presence of the first-order autocorrelation in the residuals
of the linear regression fit. It ranges from 0 to 4, 0 being a
positive correlation and 4 being a negative correlation. A
DWS value close to two indicates that the residuals are
uncorrelated and the model is appropriate. Large devia-
tions from two, resulting from systematic patterns in the
residuals plot suggest that the spot cannot be modeled in
terms of a simple linear regression. Low DWS values typi-
cally imply strong contamination that was not removed
by filtering (Fig. 1). The Durbin-Watson quality parameter
(q2 ∈ [0;1]) is obtained from the DWS value by the follow-
ing transformation: q2(DWS) = 1 - |DWS - 2|/2.

One more indicator of the quality directly available from
the linear regression is the number (N) of the aberrant
pixels flagged out by the filtering procedure. Although
aberrant pixels can be found everywhere within the spot
cell, we count only those pixels within the spot contours.
This value can be used as a quantitative measure of spot
contamination. Small numbers of aberrant pixels do not
influence intensity ratio estimates, whereas the removal of
large numbers of pixels from the spot may indicate incon-
sistency with the linear regression model (Fig. 2). We scale
N to fit the range [0;1] as: q3(N) = 1 - N/S, where S is the
number of pixels within the spot contour.

We now define three quality parameters from the analysis
of the contoured spot. The diameter of the spot is calcu-
lated as D = 2(S/π)1/2. As the true value for the spot diam-
eter may be difficult to establish, we use a typical value
taken as the median diameter over all spots on the array.
Spots with exceptionally small diameters should normally
be penalized. We define the diameter quality parameter as
q4(D) = exp{D-T}, if D <T and q4(D) = 1, if D > T, where T
is the typical diameter.

The geometrical symmetry parameter measures deviation
of the contoured spot from the ideal circle. The center and
the diameter of the ideal circle correspond to the center
and the diameter of the real spot. We divide both the real
spot and the ideal circle into eight segments (pie slices

defined as [kπ/4;(k + 1)π/4], k = 0,...,7) and we count the
number of pixels belonging to the spot (Nsi, i = 1,...,8) and

to the circle (Nci, i = 1,...,8) for each segment. The sum of

the absolute relative differences 

is then taken as an indicator of quality. For ideal circular
spots GS should approach 0, whereas highly deformed
(un-circular) spots can be recognized by high GS values
(Fig. 3A). We transform the GS values as q5(GS) = exp(-GS)

to fit the range [0;1].

Using the same partition of the spot into eight segments,
we can also calculate the mean intensities for each of the
segments (Ii, i = 1,...,8). The intensity symmetry of the

spot is defined as , where I is the mean

intensity within the spot. We scale the IS values in the
range [0;1] as q6(IS) = exp(-IS). Although a spot may have

perfect circular shape, it may contain very bright (or dark)
and highly concentrated groups of pixels originating from
pieces of dust or other contamination (Fig. 3B). IS is cal-
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culated for each of two channels (Cy3 and Cy5) and the
maximal value is taken as a final estimate.

We estimate two Cy5/Cy3 ratios; one by the linear regres-
sion approach (RR), and the other by the segmentation
algorithm (RS). Despite the different methods of estima-
tion, the variation between the two obtained ratios should
be as small as possible. Consistent results should be
expected, as most of the contaminating pixels have been
removed by the filtering procedure. Large variations
between the two estimates may indicate a problematic
spot. Therefore, we use the coefficient of variation of two
ratio estimates CVR = 21/2|RR-RS|/(RR+RS) as a character-
istic of quality. The CVR quality parameter is defined as
q7(CVR) = exp(-CVR) fitting the range [0;1]. This measure
of quality is the least explicit of all the quality characteris-
tics: we can only determine that there is big discrepancy
between the estimates but not why there is a big discrep-
ancy, unless it is accompanied by lower values in any of
the other quality parameters.

Finally, we introduce two parameters evaluating the qual-
ity of the background estimates. The first is the uniformity
of the background (UB) around the spot, more precisely,
along the grid lines separating neighborhood spots. We
divide the grid line surrounding the spot into eight seg-
ments and calculate the mean intensity in each segment
(Bi, i = 1,...,8). The UB parameter is defined as:

, where B is the mean intensity for the

whole grid line around the spot. Normally we would not
expect to observe a big variability in the fluorescence
intensity in the background areas. Large UB values may
discover presence of relatively bright contamination
around the spot, large variability in the background or
merged neighboring spots (Fig. 3C). UB is rescaled to the
range [0;1] by the exponential transformation: q8(UB) =

exp(-UB).

The second background quality characteristic is the abso-
lute level of the background (AB). We calculated this
from the local area around the spot. As for the spot diam-
eter D, there is no predefined ideal value for the absolute
background. Therefore, as a benchmark for comparisons,
we take the typical value as the median background level
over all spots on the array. Spots with exceptionally high
AB values should be treated with care or discarded. Of two
background estimates obtained in two-color microarray
experiments, we use one that gives the highest value as the
most indicative of possible problems. We define the AB
quality parameter as q9(AB) = exp{-(AB-B)/B}, if AB > B

and q9(AB) = 1, if AB <B, where B is the typical back-
ground level.

We cannot claim that the developed quality parameters
are the optimal. However, they have led to reasonable
results for most of the experimental and simulated situa-
tions we tested. Of course, there may be a possibility to
formalize some of these parameters more precisely and/or
to develop new parameters accounting for other types of
distortions.

Spot quality analysis
We consider two aims of spot quality analysis. The first is
to combine the nine marginal quality parameters into an
overall quality value. This value can be used either to flag
out directly spots with a quality lower than a user-defined
threshold, or, in the follow-up image analysis procedures
(normalization, classification, clustering, etc.) as a param-
eter characterizing the level of confidence in the obtained
Cy5/Cy3 ratios. The second aim is to identify a critical
range (a sort of a confidence interval) for each quality
characteristic. If a certain quality characteristic of the spot
falls in this range, the corresponding spot could be classi-
fied as a "bad" spot.

Overall quality
We used the following definition for the overall quality
value:

where qi = qi(xi) ∈ [0;1], i = 1,...,9 are the marginal quality

parameters for x1 = CD, x2 = DWS, x3 = N, x4 = D, x5 = GS,

x6 = IS, x7 = CVR, x8 = UB, x9 = AB, and wi are the weights

that control the input of the corresponding quality com-
ponents into the overall quality value. A link between the

weight wi and the critical value  can be established for

each quality characteristic i = 1,...,9:

where Qlim ∈ [0;1] is the user-defined overall quality

threshold, and qi( ) is the quality parameter calculated

for . The critical value  sets up the limit such that

if a certain characteristic i exceeds this limit, the corre-

sponding quality parameter qi( ) will become lower
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than Qlim. The correspondence between xi, , qi(xi),

qi( ), wi, Q and Qlim is demonstrated in Fig. 4.

Quality weights wi

The experimental quality parameters qi, i = 1,...,9 are

directly available from the quantification procedure,

whereas the weights wi (or the critical values ) are

unknown and are not easily guessed or derived from the-
ory. Therefore, the problem of spot quality analysis
becomes a problem of weights (wi) estimation. This can

only be solved if additional information is available. Here
we consider three possibilities:

1. The additional information may come, for example,
from the user expertise. The user has to classify the spots
manually [3,7] and assign a quality value to each spot
from a representative subset. These values are then used
for training the model (1) leading to a combination of the
weights (wi) such that the overall quality values reproduce
the user classification reasonably well.

2. We can manually apply different combinations of the
weights wi and visually appreciate, which spots have been
flagged out. The trials must be continued until most of the
user classified "bad" spots are eliminated by the chosen
combinations of the weights.

3. The weights can be estimated automatically using infor-
mation available from replicated spots on the same array
or over a set of replicated arrays. Unspoiled replicate spots
should have very similar estimated Cy5/Cy3 ratio values.
Large differences between the observed ratios in the repli-

cate spots would signal that some spots from this replicate
were irregular. We formalize this approach by first defin-
ing the quality value for the replicate:

where k indicates the replicates, n is the number of spots
in a replicate and Qkj is a spot quality value given by Eq.
(1). Substituting Eq. (1) into (3) yields

where qkji is the i-th quality parameter of the j-th replicated
spot in the k-th replicate. The weights wi, i = 1,...,9 are the
parameters that ensure the best fit of the experimental
quality values (Qk versus Vk) to a user-defined ideal quality
curve f(Vk), where Vk is the intensity ratio variation coeffi-
cient in the k-th replicate. The best fit of Qk(Vk) to f(Vk)
can be achieved by minimizing the sum of squared differ-
ences between Qk(Vk) and f(Vk) (least-squares fit):

where ψk are the weights of the contribution of each repli-
cate into the sum (5). The quality weights wi can be esti-
mated by minimization of Eq (5) using one of the
algorithms for non-linear fitting [15].

Ideal quality curve f(Vk)

f(Vk) defines how fast the overall quality of the replicates

should decrease with increasing ratio variation. The shape
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Examples of spots with different types of distortionsFigure 3
Examples of spots with different types of distortions. A) Large deviation from the circular shape (GS = 1.6); B) Bright 
piece of contamination within a larger circular spot, resulting in a low value of the IS parameter (IS = 1.71); C) Merged spots 
(UB = 2.98).
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of the ideal quality curve f(Vk) is somewhat arbitrary; the

only requirement is that it should demonstrate monot-
onic decay. Further formalization for f(Vk) is hardly possi-

ble until more information regarding the ideal quality
behavior becomes available. Therefore we have to look for
empirical approaches to define f(Vk). For example, f(Vk)

The correspondence between the quality characteristics, quality parameters and overall quality valueFigure 4
The correspondence between the quality characteristics, quality parameters and overall quality value.

Marginal quality characteristics:
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can be implemented as a non-parametric function, which
can be constructed by the user through the properly
designed user interface. f(Vk) can also be represented as a

function (such as f(Vk) =  exp{-βVk} with two adjusta-

ble parameters α and β), which can yield different shapes
depending on the parameters values. Finally, a library of
different functional shapes for f(Vk) can be created. In our

work we follow the third approach: three shapes were
implemented for testing:

and for each shape only the characteristic ratio variation

coefficient  must be predefined. A typical example of
the quality plot with the exponential f(Vk) (Eq. (6),a) is

shown in Fig. 5.

In our quality analysis algorithm, user participation is
limited to the definition of the ideal quality curve shape
f(Vk). This is somewhat simpler than deciding on the qual-
ity of several hundred spots, which is used to teach the
algorithm in the manual approach. However, as with
other solutions, this algorithm requires representative
images to train the model. It is impossible to evaluate con-
fidently the weight of the contribution of the diameter
quality parameter, for example, if all spots in the array
have the same diameter. Therefore, a careful selection of
training images containing a realistic diversity of all possi-
ble distortions and artifacts is needed.

Fitting weights ψk
An important issue of the minimization of Eq (5) is rea-
sonable selection of the fitting weights ψk. The easiest way
is to set all ψk equal to one. However, most of the repli-
cates are often observed in the initial part of the quality
plot (high-quality spots), whereas there may be only a few
replicates in the tail of the plot (poor-quality spots). In
this case, equalized weights would give a very accurate fit
for the initial part of the quality curve while ignoring the
tail. However, mainly the tail contains the relevant infor-
mation (spots with different distortions and artifacts) for
identifying the quality weights. Therefore, we try to
increase the input from regions with a smaller number of
replicates by defining the weights ψk in the following way:

1. All replicates are sorted according to their ratio varia-
tion Vk.

2. The set of sorted replicates is divided into bins with ten
replicates in each bin. The difference λj between the small-
est and the largest ratio variation coefficients in each bin j
is calculated. The larger this difference, the smaller the
concentration of the replicates in the given region of the
quality plot.

3. The weights ψk for Eq. (5) are then calculated as ψk =

ψj*10+i = , i = 0,...,9. That is, they are equalized for ten

replicates from the same bin j.

Follow-up image analysis
As it was mentioned earlier, the overall quality value, Q
(Eq. (1)), can be used as a parameter characterizing the
level of confidence in the obtained Cy5/Cy3 ratios. If, for
example, n ratios should be averaged, the weighted mean
would ensure a more robust estimate for the average:

where Rl is the Cy5/Cy3 ratio and Ql, is the corresponding
overall quality value (l = 1,...,n). The weighted coefficient
of variation is defined as

Note that the ratio variation coefficient Vk from Eq. (5)
can be determined from Eq. (8), if we set Ql = 1, l = 1,...,n,
with n being the number of spots in the k-th replicate.

Image simulation
In [9] we have described the Monte-Carlo simulation
model for generating artificial microarray images. The
advantage of using artificial images is that we always
know the exact Cy5/Cy3 ratio values. This allows us to test
and compare objectively different image analysis algo-
rithms. The general model for the two-color (Cy3, Cy5)
microarray image is given by [9]:

where N is the number of spots and M is the number of

dust clusters,  and  are the coordinates of the center
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of a spot,  and  are the coordinates of the center of

a dust cluster, rs and rd are the approximate radiuses of the
spot and dust cluster, respectively, Is and Id are the fluores-
cence intensity in the center of the spot in the Cy3 color
channel and in the center of the dust cluster, respectively,
and R is the ratio of the test and control samples for each
spot. Dust is represented by the random distribution over
the array of clusters of pixels of varying brightness. We
consider that these pixel clusters have an identical shape
to the spots and therefore the same analytical representa-
tion is used for an ideal spot shape and dust cluster:

The parameters characterizing the spots ( , , rs, Is and

R) are user-defined. For example, the coordinates  and

, the radius rs and the ranges for x and y for each spot

are defined from a user-defined array design. The user
should also specify the number of dust clusters M on the
array. The other parameters characterizing the dust are
random variables, and the probability laws for their gen-
eration is a matter of choice. We use uniform distributions
for rd (in the interval 0 to rm) and Id (in the interval 0 to Im),

where rm and Im are a user-defined maximal dust cluster

radius and maximal dust intensity, respectively. We also

assume that  and  are uniformly distributed over

the array. Statistical laws of the dust characteristics can
generally be different in the two (Cy3, Cy5) channels.

In the developed simulation model we also account for
the nonspecific hybridization and statistical noise:

where i represents either Cy3 or Cy5,  and ηBi are the

user-defined average and noise-to-signal ratio of nonspe-

cific fluorescence intensity in the color channel i, σ(x,y) is
the standard deviation of the pixel statistical noise, and GB

and GS are independent Gaussian random variables with

zero mean and unit standard deviation. The exact repre-

sentation for σ(x,y) is defined by the experimental set-up.

There are currently three possibilities: σ(x,y) can be (i)
constant, (ii) proportional to the signal, or (iii) propor-
tional to the square root of signal. The type and quantita-
tive characteristics of the statistical noise are defined by
the user.

Discussion
Software
The developed algorithm for quality control is included in
the software package MAIA, which offers a complete solu-
tion for DNA microarray image analysis, including auto-
matic spot localization and spot quantification
procedures. A demo version of the software can be down-
loaded from [8].
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Quality plots (Qk versus Vk) for image 7AFigure 5
Quality plots (Qk versus Vk) for image 7A. Green dots – 
using only the CD quality parameter; red dots – using only the 
CRV quality parameter; blue dots – using overall quality 
parameter Q. The black solid line is the exponential ideal 
quality curve f(Vk) (Eq. (6),a). Three triplicates showing poor 
quality (outlined by circles) are given in the insets. The main 
characteristics of the spots from the selected triplicates are 
given in Table 3.
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Artificial images

All artificial images were generated using the same array
design: 4 × 4 blocks and 21 × 21 spots within each block
with the inter-spot distance of 15 pixels. For all spots in
the generated arrays the spot radius, r, was about 4 pixels,
the intensity, I, in the Cy3 color channel was 5000 and the
ratio, R, of the Cy5 and Cy3 channels was 3. Non-specific

hybridization was generated using  = 1000 and ηBi =

0.5. The standard deviation of the statistical noise, σ(x,y),
at each pixel was proportional to the signal at the corre-
sponding pixel with the noise-to-signal ratio of 0.1. The
three generated images (Fig. 6 (insets)) differed in the
number of dust clusters. The percentages of dust clusters
with respect to the number of good spots were: 0% (image
6A), 5% (image 6B) and 25% (image 6C). In all cases the
maximal dust cluster radius, rm, was set to 8, and maximal

dust intensity, Im, to 64000.

As all spots have the same theoretical ratio (R = 3), they
can be considered as replicates and therefore we can use
the quantitative characteristics defined in Eqs. (7) and (8)
to characterize the performance of the algorithm. We
expect the best estimators to provide the averaged Cy5/
Cy3 ratio closer to the true ratio (R = 3) with the least
spread around this value.

For each artificial array we compared the weighted statis-

tical characteristics for the average  (Eq. (7)) and for the
ratio variation coefficient V (Eq. (8)) with the un-
weighted ones. The un-weighted characteristics were
obtained from Eqs. (7) and (8) by setting all Ql, l = 1,...,n

to 1. The weighted characteristics were calculated with the
overall quality values Ql available from the quality analy-

sis algorithm. As all spots from the simulated image can
be considered as replicates, we artificially split up the total
number of spots into the groups of three closely placed
spots. These groups, regarded as independent triplicates,
can be used to calculate the experimental quality values
Qk (Eq. (4)) and to build up the corresponding quality

plot (Qk versus Vk). Three functional shapes (Eq. (6)) for

the ideal quality curve f(Vk) were tested.

The results are collected in Table 1. The weighted statisti-
cal characteristics with the developed quality control elim-
inated bias in the average Cy5/Cy3 ratio estimates and
reduced the ratio variation coefficient. Note that for
"ideal" image 6A (no dust clusters) the applied quality
measures retained the estimates unchanged.

The three compared ideal quality shapes f(Vk) (Eq. (6))
demonstrated similar performance. A small advantage
(slightly smaller V) of the Gaussian-like function (Eq.
(6),b) for image 6B (5% of dust clusters) was compen-
sated by the lowest performance for image 6C (25% of
dust clusters). The difference between the three shapes can
be seen from Fig 6, where the corresponding quality plots
are drawn for the three generated images. The inverse
shape (Eq. (6),c) is the least stringent whereas the Gaus-
sian-like shape is the most stringent with respect to the
replicates variability. This means that the inverse shape
does not require the replicates with higher variability to
have lower quality values (and correspondingly the repli-
cates with smaller variability to have higher quality val-
ues) as strictly as the Gaussian-like one. Although it seems
that the Gaussian-like shape is the best choice, there is still
a drawback. Due to its relatively abrupt decrease it is diffi-
cult to keep the balance in fitting weights ψk between the
head and the tail of the shape. Despite the adaptive selec-
tion of the fitting weights ψk (see section Spot quality
analysis), the fitting procedure, trying to ensure the high-
est quality for the replicates with the lowest variability,
may still overlook the replicates with the higher variabil-
ity. This depends on the image quality (replicate variabil-
ity) and can explain why the Gaussian-like shape yielded
the greatest ratio variation for image 6C. This also indi-
cates that more work is needed to find out an optimal
combination of the ideal quality curve and the fitting
weights ψk to be used in the training procedure.

The results of simulation study and our experience with
the experimental images suggest that the exponential
shape (Eq. (6),a) offers a reasonable compromise
between the fitting weights used and stringency with
respect to the replicates variability. Therefore in the fur-
ther quality analysis we will apply exponential f(Vk).

Experimental images
We performed quality analysis of two experimental
images with different array designs and signal-to-noise
levels.

One image (Fig. 7A) (image 7A) was provided as a dem-
onstration example for UCSF Spot 2.0 (downloadable
from [16]). It contains 4 × 4 blocks with 21 × 21 spots in
each block, with a spot cell size of about 10 pixels. Cy3
and Cy5 color channels are strongly correlated, with the
average correlation coefficient for the spots being about
0.97. Bright contamination spots can be seen irregularly
scattered over the array. The magnified image of one such
spot is shown in Fig. 2 (inset). Each clone was spotted in
triplicate. The replicated spots are placed as neighbors in
a row (see Fig. 7A).

Bi

R

Page 10 of 18
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:293 http://www.biomedcentral.com/1471-2105/6/293
The second image (from the Institute Curie) (image 7B)
contains 12 × 4 blocks with 12 × 12 spots in each block
(Fig. 7B), with a spot cell size of about 30 pixels. The aver-
age correlation between the channels for the spots is
about 0.85. This is lower than for the first image, although
this image has no obvious contamination spots. Each
clone was prepared in triplicate, with the replicated spots
in three vertically distributed sub-arrays (see Fig. 7B).

We expect the Cy5/Cy3 ratios from the replicates to be
similar. Therefore it is reasonable to take the coefficient of

variation (Eq. (8)) of the replicates as a quantitative meas-
ure of the ratio estimation consistency. However, this
measure may not be totally objective: (i) the estimates
may be consistent, but systematically biased (the true val-
ues of the ratios are unknown); (ii) three replicated spots
of very poor quality may give very similar ratio values just
by chance (the number of replicates is low).

The average over all replicates at the given array coefficient
of variation is taken as a global indicator of the Cy5/Cy3
ratio consistency of the array.

Table 1: The average  (Eq. (7)) and the coefficient of variation V (Eq. (8)) of the Cy5/Cy3 ratios over all spots for three artificial 
images A, B, and C from Fig 6

Image A B C

V V V

No quality control 3.00 0.028 2.96 0.20 2.84 0.35

f(Vk ) =exp{-Vk/ }
3.00 0.028 2.99 0.041 2.99 0.089

f(Vk ) =exp{- / 2}
3.00 0.028 2.99 0.038 2.99 0.097

f(Vk ) =1/{1 +  Vk/ }
3.00 0.028 2.99 0.042 2.99 0.094

R

R R R

V

Vk
2 V

V

Quality plots (Qk versus Vk) for artificial imagesFigure 6
Quality plots (Qk versus Vk) for artificial images. Three generated images differed in the percentage of dust clusters with 
respect to the number of good spots: A) 0%, B) 5% and C) 25%. For the further details see the text. The solid lines represent 
the user-defined ideal quality curves f(Vk): Red – exponential (Eq. (6),a); Blue – Gaussian-like (Eq. (6),b); Black – inverse (Eq. 
(6),c).
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We compared two quality characteristics (the coefficient
of determination CD (q1) and the coefficient of variation

of two ratio estimates CVR (q7), applied separately) and

the overall quality parameter Q (Eq. (1)) to the case when
no quality control was applied. The weights of the mar-

ginal quality parameters for Q were identified using the

exponential ideal quality curve (Eq. (6),a) with  ≈ 0.08

for image 7A, and with  ≈ 0.2 for image 7B. The results
are summarized in Table 2.

V

V

Experimental imagesFigure 7
Experimental images. A) 4 × 4 blocks with 21 × 21 spots per block, spot cell size is about 10 pixels; B) 12 × 4 blocks with 
15 × 15 spots per block, spot cell size is about 30 pixels. The locations of triplicates are indicated.

A triplicate

A triplicate

A)

B)
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We found a greater improvement for image 7A than for
image 7B after applying the quality measures. This was
not a surprise, as image 7B is characterized by a reasona-
bly high signal-to-noise level, and it does not contain any
obvious contaminated spots. However, even in this case
the quality measures cannot be ignored, as there are still a
few low-intensity spots that need to be specially treated
(probably rejected). By contrast, image 7A has obvious
randomly distributed pieces of dust, and the developed
quality measures proved to be powerful enough to disre-
gard the contaminated spots, thus increasing the consist-
ency of the Cy5/Cy3 ratio estimates.

The comparison of the different quality measures has
shown that they are array-specific. For image 7B, CD, CVR
and Q gave almost equivalent performance, whereas for
image 7A, CD was much better than CVR, and Q gave a
slightly better ratio consistency than both of these. How-
ever, the gain from Q was not much greater, so that it
would be reasonable to assume that only a single quality
measure (such as CD or CVR) could always give good
results. Unfortunately, this is not the case. Although we
have found that CD and CVR are indeed the most power-
ful quality measures they cannot cover every type of dis-
tortion.

We demonstrate this with image 7A. There remained, after
applying the individual quality measures, several tripli-
cates with high coefficients of variation that were not cor-
rectly suppressed. Three such replicates are shown in Fig.
5, and the main quantitative characteristics of the corre-
sponding spots are listed in Table 3. Note that Table 3
contains the quality characteristics from section Quality
characteristics, which do not need to reside in the interval
[0;1].

In triplicate A, one spot is clearly contaminated; however,
this contamination is highly correlated in the two chan-
nels (CD = 0.97) and the spots cannot be filtered out
using CD. A more powerful parameter for this type of
problem is CVR (0.11), perhaps in combination with IS
(1.02). Triplicate B includes low-intensity spots. Although
CVR quality characteristic does not detect any deficiency
in this case, the difference between the estimated intensity
ratios (within the triplicate) is large, meaning that CVR

alone is not sufficient to eliminate the outlier spots. CD
seems to be more indicative in this case. Triplicate C can-
not be confidently recognized either by CD or CVR quality
measures. This problem (contamination penetrating into
the spot from the outside area) can be figured out by
applying either the uniformity of the background quality
parameter (UB = 0.99) or the Durbin-Watson quality
parameter (DWS = 0.58).

This type of analysis leads to the refined critical values

 for each of the quality characteristics. These  val-

ues are then recalculated into the corresponding weights
wi for the user-selected overall quality threshold Qlim,

using Eq. (2) (see Fig. 4). In general, however, the weights
are derived automatically from Eq. (5) by the non-linear
fitting procedure. If certain quality factors do not influ-
ence the shape of the experimental quality curve QE (Eq.

(4)), the corresponding weights will be set close to 0. If a
certain effect shows up in only a small number of spots, it
may be neglected by the optimization procedure, and the
corresponding weight will be erroneously small. In this
case, manual correction of the weights would be neces-
sary.

The quality value of three bad replicates from Fig. 5
(insets), as well as of many others demonstrating larger
deviations in the obtained Cy5/Cy3 ratio estimates (Fig.
5), were decreased using the combined criteria Q, whereas
the quality of replicates with smaller variations remained
almost unaffected.

xi
lim xi

lim

Table 3: The main characteristics of the spots from three 
triplicates (see Fig. 5 (insets)), demonstrating excessive 
variability in the Cy5/Cy3 ratio estimates

Triplicate Quality Parameter Spot 1 Spot 2 Spot 3

A Ratio 0.27 0.26 0.12
CD 0.98 0.98 0.97
CVR 0.016 0.014 0.11
IS 0.17 0.21 1.02
UB 0.060 0.10 0.31

B Ratio 0.19 0.13 0.072
CD 0.85 0.60 0.33
CVR 0.010 0.014 0.012
IS 0.15 0.072 0.041
UB 0.041 0.030 0.042

C Ratio 0.29 0.30 0.44
CD 0.97 0.97 0.93
CVR 0.010 0.011 0.0052
IS 0.12 0.15 0.36
UB 0.24 0.11 0.99

Table 2: The average over all replicates coefficients of variation V 
(Eq. (8)) for two experimental images A and B from Fig. 7

Quality Control A B

No control 0.066 0.120
CD 0.019 0.105
CVR 0.028 0.102

Overall Q 0.017 0.101
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Quality plots (Qk versus Vk) using replicated arraysFigure 8
Quality plots (Qk versus Vk) using replicated arrays. Black dots – three replicated images (insets) are combined without 
normalization and the default quality weights are used; red dots – three replicated images (insets) are combined after the global 
normalization; blue dots – triplicate spots from the first array are used. The solid lines represent the exponential ideal quality 

curves f(Vk) (Eq. (6),a): Red line (for the red dots) –  ≈ 0.125; Blue line (for the blue dots) –  ≈ 0.08.
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Quality analysis of poor-quality (A) and good-quality (B) imagesFigure 9
Quality analysis of poor-quality (A) and good-quality (B) images. A: (a) Poor-quality image; (b) Image A with the "bad" 
spots identified by the quality analysis based on its own triplicates. B: (a) Image B with the bad spots identified by the quality 
analysis based on the triplicates from image A; (b) Image B with the bad spots identified by the quality analysis based on its own 
triplicates. "Bad" spots are the spots with the overall quality below 0.3. "Bad" spots are indicated by the white crosses.
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Quality measures can signal some of the replicates to be
bad despite there being no big difference in the ratios.
With a small number of replicated spots all spots from a
replicate may indeed have very close ratios, but several of
them may be really deficient. Therefore, it is more impor-
tant to consider those replicates demonstrating unusually
high diversity in the obtained ratio estimates. This clearly
suggests problems in the spots. Algorithmically, this can
be achieved by assigning larger weights ψk to these repli-
cates in the non-linear fitting procedure (Eq. (5)). The fit-
ted parameters wi are then used to flag out all deficient
spots, even those that belong to the replicates with the
consistent ratio estimates. However, if all spots from a
consistent replicate demonstrate poor quality, this can
also be an indication that this replicate is actually good,
but it was erroneously flagged out by the quality analysis
procedure. This would require user intervention to correct
for the selected set of quality characteristics and/or for the
corresponding quality weight wi. Additional procedures
for automatic analysis of the replicates with consistent
ratios but low quality values can be envisaged.

The fact that overall Q does not show up much better per-
formance (Table 2) is due to rather good general quality
of the images, and a few problematic triplicates cannot
influence very much the averaged coefficients of variation.
For example, in image 7A, we have less than 9% of tripli-
cates with the ratio variation coefficients larger that the

selected  (~0.08), and 7% for image 7B (  ≈ 0.2).

Replicated arrays
Quality analysis can also be performed with replicated
spots from different arrays. Three replicated images (Fig. 8
(insets)) were used for quality analysis. Although each
image contains three replicated spots placed as neighbors
in a row (similar to image A from Fig. 7), we pretended
that there were no replicates within each array. Therefore
we made available only replicated spots from different
arrays for quality analysis. In Fig. 8 we present three qual-
ity plots. Black dots correspond to the case when the three
replicated images were combined without normalization
and the default quality weights were used. Relatively large
coefficients of variation are due to the bias in the obtained
Cy5/Cy3 ratio estimates between the three images. To
apply our algorithm of quality analysis in this case the
ideal quality curve should account for this bias, i.e. it
should implicitly incorporate image normalization
model. A simpler way would be to separate the normali-
zation and quality analysis procedures: the image normal-
ization should precede the quality analysis, or we can also
envisage an iterative procedure where the steps of normal-
ization and quality analysis are performed in turn. Taking
into account that a variety of normalization methods [17]

are currently available, we leave the detailed development
of the quality analysis strategy in this case for the future.

As an example, we applied a global normalization algo-
rithm [18]. It is assumed that most genes are not differen-
tially expressed and therefore the expected averaged over
all spots of the array Cy5/Cy3 ratio should be close to one.
The normalization constant a for each array can be calcu-

lated as , where n is the number of

spots and Ri is the ratio estimate for the i-th spot. Red dots

in Fig 8 represent the quality curve using the replicated
arrays after the global normalization. For comparison,
blue dots show the quality curve using the triplicates from
the first array. The red-dot cloud spreads wider, because,
even after normalization, the variability of replicates from
different arrays is higher than from the same array (where
replicates were closely placed). Despite this replicated
arrays can be used in the quality analysis since the
required tendency – the decrease of the overall quality
with the increase of the replicate variability – can be
ensured. To account for higher levels of inter-array statis-
tical variability in replicates, we have to apply less strin-
gent ideal quality curve. This can be achieved by selecting

larger values for the parameter  in Eq. (6).

Quality weight extrapolation
We demonstrate here a possibility to apply quality
weights obtained from the analysis of one training image,
which should contain replicated spots, to other arrays,
which may not contain replicates. We used two images
(Figs. 9A and 9B) of the same design as before: each image
contains three replicated spots placed as neighbors in a
row. Image 9A has obvious deficiencies (large amount of
absent spots, scratches, contamination), whereas image
9B is less problematic.

The quality weights were estimated from the triplicates of
image 9A, as it contains a wider diversity of possible arti-
facts and distortions. Using the obtained weights the
"bad" spots were identified in image 9A. A spot was clas-
sified as a bad spot if its overall quality was below 0.3. Fig.
9A(b) shows the same image with the "bad" spots indi-
cated by the white crosses.

To eliminate the "bad" spots (Q < 0.3) from image 9B, we
first applied the quality weights obtained for image 9A.
The result is shown in Fig. 9B(a). Then we performed
quality analysis for image 9B using its own triplicates. The
spots flagged out by this approach are indicated in Fig.
9B(b). Comparing Figs. 9B(a) and 9B(b), one can con-
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clude that the results are very similar, although not iden-
tical, of course.

This example attempts to reproduce an important possi-
bility of designing microarray experiments. A small
number of training arrays with replicated spots and repre-
sentative diversity of possible artifacts can be measured
and analyzed. The obtained results can then be used to
evaluate the quality of other arrays of similar design,
which may not contain replicated spots.

Conclusion
We have described an algorithm for quantitative spot
quality evaluation in DNA microarray image analysis that
allows the automatic identification of the weights for the
marginal quality parameters within the model combining
these parameters into an overall spot quality value. The
algorithm relies on the assumption that unspoiled repli-
cated spots should have higher levels of consistency in the
obtained Cy5/Cy3 ratio estimates than "bad" spots. The
user is only required to define an ideal quality curve f(Vk)

establishing how fast the overall quality of the replicates
must decrease with increasing ratio variation in the corre-
sponding replicates. For simple models from Eq. (6) only
one parameter – the characteristic ratio variation coeffi-

cient  – must be specified. In this paper the functional
shape for f(Vk) was empirically selected through numer-

ous experiments with artificial and experimental images.
This, however, may not be an optimal choice and further
improvements can be expected, preferably using more
theoretical approaches. A complementary perspective is to
further elaborate the algorithm for estimating the fitting

weights ψk, which may be implicitly dependent on the

ideal quality curve.

We use nine marginal quality characteristics, which cover
a broad range of different deviations from a normal
(good) spot. Therefore, it is possible that some of these
parameters will not be relevant for a certain image. For
example, if there are no clearly un-circular spots, the cor-
responding parameter (GS) can be omitted. The optimiza-
tion procedure will however report this, assigning a very
low weight to the corresponding quality characteristic.
These weights are then converted into the critical levels

 using Eq. (2), which will tolerate a big diversity in the

possible values of the corresponding parameter. Thus, the
developed procedure both searches for the weights and
implicitly reports on the relevance of the quality parame-
ters to each particular image. However, if the images used
to train the model (that is to identify the weights) are not

representative enough and do not contain enough spots
with certain types of artifacts, some important sources of
spot deficiency may be overlooked. In this case, manual
adjustment of the weights may be necessary.

Another problem is that generally a very small number of
replicated spots (rarely more than 3) are available for the
analysis. Therefore it is possible that all spots from a rep-
licate, being defective, demonstrate consistent Cy5/Cy3
ratio values. However, we expect that is less probable than
to observe unusually high diversity in the ratio estimates
for these replicates. If all spots from a consistent replicate
are actually good, but they are erroneously assigned low
quality values, this is an indication of some problems in
the quality analysis itself. This situation would possibly
require user participation to correct for the selected set of
quality characteristics and/or for the corresponding qual-
ity weights wi.

We have demonstrated a possibility to carry out the qual-
ity analysis using replicated spots from different arrays. An
additional procedure of the image normalization should
precede the quality analysis in this case.
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