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Adolescents at risk for depression show increased white matter 
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A B S T R A C T   

Maternal history of depression is a strong predictor of depression in offspring and linked to structural and 
functional alterations in the developing brain. However, very little work has examined differences in white 
matter in adolescents at familial risk for depression. In a sample aged 9–14 (n = 117), we used tract-based spatial 
statistics (TBSS) to examine differences in white matter microstructure between adolescents with (n = 42) and 
without (n = 75) maternal history of depression. Microstructure was indexed using fractional anisotropy (FA). 
Threshold-free cluster enhancement was applied and cluster maps were thresholded at whole-brain family-wise 
error < .05. There was no significant main effect of risk status on FA. However, there was a significant interaction 
between risk status and age, such that large and diffuse portions of the white matter skeleton showed relatively 
increased FA with age for youth with a maternal history of depression compared to those without. Most tracts 
identified by the interaction were robust to controlling for sex, youth internalizing, in-scanner motion, neigh-
borhood SES, and intra-cranial volume, evidence that maternal depression is a unique predictor of white matter 
alterations in youth. Widespread increases in FA with age may correspond to a global pattern of accelerated brain 
maturation in youth at risk for depression.   

1. Introduction 

Depression is one of the most debilitating psychological disorders, 
yet relatively little is known about the neuro-structural mechanisms that 
may contribute to disorder onset. Diffusion weighted imaging has 
permitted examination of how depressive phenotypes are associated 
with divergent white matter architecture, and broad-ranging alterations 
in white matter microstructure have been observed in both depressed 
adults and depressed adolescents. However, comparisons of youth with 
and without depression does not address whether observed differences 
in white matter precede depression onset or are correlates of the dis-
order. To date, relatively little is known about white matter deviations 
that may predispose youth to depression. A better understanding of the 
white matter alterations that may underlie depression onset is needed to 
inform mechanistic models of depression etiology. Early/pre- adoles-
cence is a critical window for examining potential white matter mech-
anisms underlying depression onset, as this developmental period is 
prior to the sharp increases in depression symptoms seen in mid- 
adolescence and the peak onset for depressive disorders seen in late 

adolescence (Solmi et al., 2022). Thus, we examined differences in white 
matter microstructure that may be associated with depression onset by 
investigating youth with and without a high-risk for depression. 

White matter microstructure is a broad term referring to the myeli-
nation, axon density, fiber coherence, etc. of white matter tracts, and 
metrics reflecting these microstructural properties can be extracted from 
diffusion weighted imaging. The most commonly reported diffusion 
metric is fractional anisotropy (FA), a measure that represents the 
directionality of water molecule diffusion in tissue, with higher values 
found in white matter (compared to grey matter and cerebrospinal fluid) 
where water diffusion is directionally constrained along axons. The FA 
metric is influenced by a number of factors (Beaulieu, 2002; Curran 
et al., 2016); however, greater FA is generally interpreted as repre-
senting greater structural coherence of white matter tracts (but see 
Figley et al., 2022 for a more thorough discussion). Across development, 
FA shows normative increases across childhood and adolescence (Lebel 
and Beaulieu, 2011; see Lebel et al., 2017 for review), peaking in late 
adolescence through early adulthood and decreasing through old age 
(Lebel et al., 2012; Schilling et al., 2022). While FA was our primary 
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dependent variable of interest, we also examined mean diffusivity (MD), 
another common diffusivity metric that represents overall diffusion 
unconstraint in tissue and is generally inversely related to FA (Lebel 
et al., 2017; Schilling et al., 2022). Across adolescence, lower diffusivity 
(higher FA and lower MD) generally corresponds to increasing structural 
coherence of white matter seen in neural maturation. 

Despite a growing number of studies examining the relationship 
between white matter and depression, relatively little is known about 
how alterations in white matter microstructure might be related to the 
etiology of depression. Across different developmental periods, depres-
sion has been associated with relatively reduced FA across a range of 
white matter tracts, including the corpus callosum, superior longitudinal 
fasciculus, inferior fronto-occipital fasciculus, forceps major, and ante-
rior limb of the internal capsule (ALIC), with many of these tracts 
showing alterations across both human and animal studies of depression 
(for review, see Abraham et al., 2022). A large-scale study by van Velzen 
et al. (2020) examining 1305 depressed adults and 1602 healthy con-
trols found depression was associated with global reductions in FA. 

In children and adolescents with depression, findings largely mirror 
the associations between depression and reduced FA found in studies of 
adults (e.g., LeWinn et al., 2014; Vilgis et al., 2017; Vulser et al., 2018). 
Using the ABCD dataset, Shen et al. (2021) found associations between 
depression in youth (aged 9–11) and global reductions in FA, with sig-
nificant differences between healthy control youth (n > 6000) and those 
with both youth-reported (n = 180) and caregiver-reported (n = 194) 
youth depression diagnosis. Further, Shen and colleagues found an as-
sociation between global reductions in FA and caregiver-reported 
depressive symptoms in youth. However, another relatively large-scale 
study conducted by van Velzen et al. (2020), that drew upon a much 
wider age-range of adolescents (aged 12–21), did not find differences in 
FA between those with depression (n = 372) and healthy controls (n =
290); however, given the sample’s heterogeneity in age, it is possible 
this study was underpowered to find a main effect. 

While the pattern of reduced FA in depression is relatively consistent 
across studies, comparisons of those with and without depression does 
not address whether reduced FA precedes depression or is a correlate of 
the disorder. To examine white matter deviations associated with the 
risk for depression, high-risk study designs are needed. In infants and 
children exposed to maternal depression in-utero, findings are mixed. 
Some studies report reduced white matter coherence (Dean et al., 2018; 
El Marroun et al., 2018; Graham et al., 2020; Hay et al., 2020; Posner 
et al., 2016; Rifkin-Graboi et al., 2013), other studies have found no 
differences in white matter (Jha et al., 2016; Roos et al., 2022), and yet 
other studies found increased white matter coherence in young children 
exposed to maternal depression in-utero (Lebel et al., 2016; Roos et al., 
2022). Thus, it remains unclear how exposure to depression in-utero 
may affect white matter. 

To interrogate processes specific to risk for depression, high-risk 
study designs with samples of pre- / early- adolescents offer two pri-
mary advantages. First, as those with a family history of depression have 
a three-times higher risk of developing depression (Weissman et al., 
2016), studies utilizing samples with a familial history of depression 
offer the opportunity to examine vulnerability factors in a population at 
known risk for experiencing depression. Second, studying high-risk 
offspring before the peak age of risk provides necessary temporal 
sequencing to identify risk factors before disorder onset. Depression has 
a low incidence before puberty, but prevalence begins to rise in early 
adolescence (Maughan et al., 2012), with first symptoms showing a peak 
onset of 15.5 years and depressive disorder showing a peak onset of 19.5 
years (Solmi et al., 2022). Thus, investigating the pre- / early- adolescent 
developmental period offers an essential window for examining pro-
cesses specific to risk for depression, before the critical onset period for 
depression. 

To date, there are few studies of youth at high familial risk and white 
matter microstructure, and those studies have shown mixed results. 
Hung et al. (2017) compared youth ages 8–14 with (n = 20) and without 

(n = 20) parental history of depression and did not find a main effect of 
parental history of depression on FA, but found an interaction whereby 
FA was inversely related to age for the high-risk youth in frontal-limbic 
tracts. In an older sample of 66 adolescents aged 12–16, Jones et al. 
(2019) found that greater aggregation of family history of psychopa-
thology (including depression, anxiety, substance use, and anti-social 
personality disorder) was associated with reduced FA at baseline but 
increasing FA with age across several tracts in dorsal regions, such that 
by age 18, there was no association between risk status and age in these 
regions. The same study also found that at-risk youth showed persis-
tently lower FA across the study period in the posterior limb of the in-
ternal capsule. Examining adolescents at risk for developing depression 
(n = 18) and control adolescents (n = 13) ranging in age from 12 to 20, 
Huang et al., (2012) found that a parental history of depression was 
associated with reduced FA across a number of tracts. In a sample 
ranging in age from 12 to 25, Shakeel et al. (2021) examined healthy 
controls (n = 36), those with diagnosed depression (n = 70), those at 
high-risk due to familial history of serious mental illness (n = 30), and 
other groups with sub-syndrome levels of symptom severity (combined 
n = 120). They found lower FA only in the depressed group, suggesting 
that reductions in microstructure coherence occurred following 
depression onset, rather than being present in those at high-risk or 
pre-morbid states. Across studies of high-risk youth, most have relied on 
small samples and/or wide age ranges, have produced mixed findings 
regarding the directionality of associations between risk status and FA, 
and have also shown associations across discrepant white matter tracts. 
Thus, further research is needed to define patterns in white matter 
microstructure in youth that may be associated with a predisposition to 
depression. 

We examined differences in white matter microstructure between 
adolescents at high- and low- risk for depression. As maternal history of 
depression is among the strongest predictors of depression in offspring 
(Goodman et al., 2011; Klein et al., 2005), high-risk status was oper-
ationalized by maternal lifetime history of depression. Our sample was 
comprised of adolescents aged 9–14 years old, a developmental period 
prior to the peak age of depression onset. Given that previous studies of 
risk have produced mixed results of in terms of the directionality of 
effects and specific tracts identified, we choose to use tract-based spatial 
statistics (TBSS; Smith et al., 2006), a whole-brain, data-driven 
approach to examine FA differences within the white matter skeleton 
between the high- and low- risk groups. Because white matter undergoes 
relatively rapid change during the adolescence (Lebel and Beaulieu, 
2011; Lebel et al., 2012), we examined whether associations between FA 
and age and FA and puberty (Herting et al., 2012; Herting and Sowell, 
2017) differed by offspring risk status. Additionally, to isolate effects in 
white matter microstructure that were associated with risk for depres-
sion rather than effects related to depression itself, we examined 
whether effects of offspring risk status persisted when controlling for 
youth internalizing symptoms. As the TBSS method offers 
hypothesis-free, whole-brain analysis, we outlined two primary aims for 
this study, without a priori hypotheses regarding the direction of effects. 
First, we examined the main effect of white matter microstructure in 
youth with a high- versus low- risk for depression. Second, we examined 
whether the two risk-status groups showed differences in age-related 
increases in white matter microstructure. Finally, to test the robust-
ness of findings, we conducted sensitivity analyses including child 
internalizing, socio-economic status, in-scanner motion, and intracra-
nial volume as covariates. 

2. Method 

2.1. Participants and samples 

Participants were drawn from the Temple Adolescent Development 
Study, a prospective longitudinal study of reward function development. 
This study was approved by the Institutional Review Board at Temple 

H. Sullivan-Toole et al.                                                                                                                                                                                                                        



Developmental Cognitive Neuroscience 64 (2023) 101307

3

University. English-speaking children aged 9–14 years old at baseline 
who had at least one biological parent living in the home were invited to 
participate. Exclusion criteria included child or parental history of bi-
polar disorder or psychotic spectrum disorder and child diagnosis of 
serious neurological illness, head injury, learning disabilities, or devel-
opmental disabilities, including autism spectrum disorders. Youth were 
also excluded if they had a history of neurological or cardiovascular 
diseases that affected central nervous system blood flow or if they were 
taking any psychotropic medications at the time of recruitment or scan. 
General intellectual function was assessed at baseline, and participants 
with an IQ falling two standard deviations or more below the mean were 
excluded from participation (Kaufman Brief Intelligence Test – Second 
Edition [KBIT-2] Full Scale IQ < 70; Kaufman and Kaufman, 2004). 
Finally, youth who could not participate in imaging assessments were 
not eligible for inclusion (e.g., individuals with non-removable metallic 
implants, braces, or with conditions such as uncorrectable vision or 
claustrophobia that would make completing MRI assessments unsafe). 
Parents provided written informed consent for their child to participate 
in the study, and all youths provided written assent. 

One hundred and fifty-seven children completed a diffusion- 
weighted scan at study baseline, and these data were included in the 
preprocessing pipeline prior to quality control exclusions. Of the 119 
child participants whose diffusion weighted data passed quality control, 
maternal history of depression data was available for 117 child partic-
ipants, comprising the full sample (girls = 59.8%; minorities = 57% of 
the 68% reporting race; mean age = 11.76, std dev of age = 1.5). Of 
these 117 participants, data on child internalizing symptoms was 
available for 91 participants, comprising the CBCL subsample (girls =
56.0%; minorities = 59% of the 69% reporting race; mean age = 11.7, 
std dev of age = 1.5). Child age reflects the youth’s age at the time of 
scanning. 

2.2. Clinical and other psychosocial covariates 

2.2.1. Structured clinical interview for DSM disorders (SCID) 
Mothers completed the Structured Clinical Interview for DSM-V 

(SCID-V-RV; First et al., 2015), to assess clinical diagnoses of various 
mental disorders. Maternal history of depression was operationalized as 
lifetime history of major depression or persistent depression. In primary 
analyses, maternal history of depression was present in 35.9% (n = 42) 
of mothers. 

2.2.2. Child behavior checklist (CBCL) 
Mothers completed the Child Behavior Checklist (CBCL; Achenbach, 

2009) to provide dimensional assessments of their child’s current 
behavioral and emotional problems. The CBCL contains 119 items on 
problem behaviors in childhood scored as 0 = Not True, 1 = Somewhat 
or Sometimes True, and 2 = Very True or Often True. To quantify the 
child’s own internalizing symptoms, we used the internalizing scale, 
including 32 items reflecting anxiety and depression symptoms (see 
Supplemental Method for details regarding computation of the inter-
nalizing variable). CBCL data was available for 91 subjects. 

2.2.3. Pubertal development scale 
Youth pubertal development was assessed using the Pubertal 

Development Scale (PDS; Petersen et al., 1988). This measure has been 
extensively used in studies of pubertal development and validated 
against Tanner stages (Coleman and Coleman, 2002). The PDS assesses 
pubertal development across adrenal and gonadal hormone systems. In 
this study, we relied on an overall index of pubertal development across 
both systems, developed to correspond to the Tanner stages (Shirtcliff 
et al., 2009; code for computing the overall puberty index available from 
these authors). Pubertal data was available for 91 subjects. Pubertal 
stage scores were used in lieu of age in supplemental analyses. 

2.2.4. Neighborhood SES 
SES data is available at the census tract level through the American 

Community Survey (ACS; United States Census Bureau, 2013–2017). 
Census tract-level SES variables were linked to individual participants 
via geocoding of individual household address. Participant address was 
collected during an initial phone screen. Using data from the 2013–2017 
ACS Five Year Estimates (United States Census Bureau, 2013–2017), we 
computed a neighborhood SES composite variable of the average z- 
scores of the percent of individuals within the census tract who (1) had 
high school degree or greater, (2) had a bachelor’s degree or greater, (3) 
were receiving food stamps (reverse coded), (4) were below the poverty 
line (reverse coded); the percent of families within the census tract who 
(5) were below the poverty line (reverse coded); and the (6) median and 
(7) mean income within the census tract. 

2.3. Diffusion weighted imaging 

2.3.1. Diffusion image acquisition 
Diffusion imaging data were acquired using single-shot pulsed 

gradient spin-echo echo-planar imaging sequence on a 3 T Philips 
Ingenia scanner. The following acquisition parameters were used: flip 
angle = 90◦; TR = 6.4 s; TE = 1.2 s; FOV = 240 mm x 240 mm x 121; 
matrix = 96 × 96; voxel size = 2.5 mm × 2.5 mm× 2.75 mm; 44 
interleaved axial slices. Acquired volumes included 19 volumes without 
diffusion weighting (b = 0 s/mm2) and 30 volumes with diffusion gra-
dients (b = 800 s/mm2) applied in 30 directions. A SENSE factor of 2.3 
was used to speed data acquisition. 

2.3.2. Preprocessing 
The imaging data were converted to NIfTI format and preprocessed 

using the MRtrix3 package (Tournier et al., 2019) and the FMRIB Soft-
ware Library (FSL v6.0.2; Smith et al., 2004). MRtrix3 was used to 
extract and average the b0 volumes and non-brain tissue was removed 
from the averaged b0 image using FSL’s automated brain extraction tool 
(BET; Smith, 2002). Several corrections were applied to the imaging 
data. First, denoising and degibbing corrections were applied using 
MRtrix3. Next, the FMRIB Diffusion Toolbox’s eddy tool was used to 
correct for eddy current-induced distortions and in-scanner head 
movements, with registration of the diffusion-weighted images to the 
first b0 volume and adjustment of the gradient table to account for 
registration (Andersson and Sotiropoulos, 2016). Within eddy correc-
tion, outlier detection and replacement of outlier volumes was per-
formed (Andersson et al., 2016). Following eddy correction, images 
were screened for intensity artifacts, motion, and other quality-related 
issues by several trained analysts. Subjects with greater than five 
problematic volumes and/or truncation of the white matter skeleton 
from the field of view were excluded from further analyses. Consensus 
across multiple analysts was sought when there was uncertainty about 
data-quality. In total, 38 subjects were excluded, leaving 119 subjects 
for further analyses. Using FSL’s dtifit program, a diffusion tensor was fit 
at each voxel to generate the principal eigenvectors and fractional 
anisotropy (FA) maps and mean diffusivity (MD) maps for each subject 
in native anatomical space. 

2.3.3. Tract-based spatial statistics (TBSS) 
Individual subject FA maps were fed into FSL’s Tract-Based Spatial 

Statistics (TBSS) tool (Smith et al., 2006). The TBSS procedure included 
nonlinear registration of all FA images to the 1×1x1mm standard 
FMRIB58_FA template (which is in MNI152 1-mm standard space), 
creation of a mean FA map averaged across all subjects, and creation of a 
mean white matter skeleton, representing the center of major white 
matter fibers, common to all subjects. The mean skeleton image was 
thresholded at .2 to suppress low mean FA values and/or high variability 
in FA across subjects. Next, each subject’s FA data was projected onto 
the mean FA skeleton, to produce an FA skeleton map for each subject 
where the mean FA skeleton voxels were replaced with FA values from 
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the local center of the subject’s nearest relevant tract. Mean whole-brain 
FA was extracted from each subject and compared between the high- 
and low- risk groups. 

2.3.4. Voxelwise GLMs and contrasts across skeletonised FA data 
Using FSL’s randomise tool for nonparametric permutation inference 

(Winkler et al., 2014), a series of general linear models (GLMs) were 
estimated to test for voxel-level effects within the 4D skeletonized FA 
data (see Table 1 for summary of all GLMs and contrasts). In the full 
sample (n = 117), three GLMs were estimated. Within model one, we 
examined the main effects of family risk status (MatHxDepr n = 42, 
NoMatHxDepr =75), age, and sex assigned at birth. Each effect was 
considered as a positive and negative association, controlling for the 
other variables. Model 1b was estimated with the same set of predictors 
but with the puberty index replacing age. Within model 2, we examined 
the interaction between offspring risk-status and age, with sex included 
as a covariate. Model 2b was estimated with the same set of predictors 
but with the puberty index replacing age, such that model 2b examined 
the interaction of offspring risk-status and puberty. Within model 3, we 
examined the interaction between family risk status and sex, with age 
included as a covariate. While FA was our primary dependent variable of 
interest, models 1, 2, and 3 were also estimated with mean diffusivity 
(MD) as the dependent variable as a supplementary analysis. In an 
exploratory analysis within the full sample, maternal history of 
depression was coded in terms of course specifiers, with mothers who 
had not experienced depression (n = 75), mothers who had only expe-
rienced a single episode of any type of depressive disorder (n = 16), and 
mothers who met criteria for either chronic or recurrent depression (n =
26). 

Additional models were estimated within the CBCL subsample (n =
91). First, specific contrasts that produced significant effects in the full 
sample were re-estimated in the CBCL subsample to determine whether 
effects survived. Model 4 examined main effects of child internalizing, 
controlling for age, sex, and family risk status. Finally, models 5 and 6 
examined the sensitivity of the risk-status by age interaction results. 
Specifically, model 5 examined the interaction between offspring risk- 
status and age, with sex and child internalizing included as a cova-
riates; and model 6 further added neighborhood SES, mean relative in- 
scanner motion, and intra-cranial volume to the covariates included in 
model 5 (see below for a description of how neuroimaging covariates 
were calculated). 

In all models, threshold-free cluster enhancement (TFCE; Smith and 
Nichols, 2009) was applied to detect significant clusters, accounting for 
both the height and spatial extent of signal. Voxel-wise p-values were 
calculated and corrected for whole-brain family-wise error (FWE) with 
permutation testing (5000 permutations). The resulting TFCE-corrected 
cluster maps were thresholded at a FWE < .05, and a binarized mask was 
created for each set of supra-thresholded results. 

2.3.5. Identifying tracts and presentation of results 
FSL’s atlasquerry command was used with the John Hopkins Uni-

versity ICBM-DTI-81 Atlas (Mori et al., 2008) to identify tracts within 
each supra-thresholded results mask. For follow-up analyses, 
subject-level FA values were extracted from masks using FSL’s fslstats 
command and plotted using ggplot2 in R (Wickham, 2016). For 
improved visualization, FSL’s tbss_fill command was applied for 
improved visualization of overlaid results (Fig. 1 in orange). 

2.3.6. Complementary tract-based analyses 
While our primary analysis approach was whole-brain, as a com-

plementary set of analyses, FA was also extracted from ROIs generated 
from the 50 tracts and regions available in the JHU ICBM-DTI-81 atlas 
(Mori et al., 2008). See the Supplemental for additional details of the 
method used and a summary of the results. 

Table 1 
Specific general linear models and contrasts estimated to test for voxel- 
level effects within the 4D skeletonized FA data. All GLMs tested for both 
positive (greater FA) and negative (reduced FA) effects. As the extracted clusters 
were not very informative (see Supplemental Table 2), voxel-wise p-values were 
calculated across the full set of tracts and regions resulting from each analysis 
and were corrected for whole-brain family-wise error (FWE) with permutation 
testing (5000 permutations).  

Specific Contrasts Interpretation p- 
value 

in Full Sample (n = 117)   

GLM 1: Main Effects of 
Offspring Risk Status, Age, 
Sex, Controlling Other 
Variables    

FA (pos) ~ offspring risk status more FA MatHxDepress >
NoMatHxDepress  

.561 

FA (neg) ~ offspring risk status more FA NoMatHxDepress >
MatHxDepress  

.259 

*FA (pos) ~ age increasing FA with age  < .001 
FA (neg) ~ age decreasing FA with age  .803 
FA (pos) ~ sex more FA girls > boys  .100 
FA (neg) ~ sex more FA boys > girls  .865 
GLM 2: Interaction of Offspring 

Risk Status and Age, 
Controlling Sex        

*FA (pos) ~ offspring risk status x 
age 

increased FA (greater slope) with 
age for MatHxDepress >
NoMatHxDepress  

.003 

FA (neg) ~ offspring risk status x 
age 

increased FA (greater slope) with 
age for NoMatHxDepress >
MatHxDepress  

.986 

GLM 3: Interaction of Offspring 
Risk Status and Sex, 
Controlling Age    

FA (pos) ~ offspring risk status x 
sex 

increased FA (greater slope) for girls 
> boys for MatHxDepress >
NoMatHxDepress  

.805 

FA (neg) ~ offspring risk status x 
sex 

increased FA (greater slope) for girls 
> boys for NoMatHxDepress >
MatHxDepress  

.126  

in CBCL Subsample (n ¼ 91)       

Survival of Significant Results 
from Full Sample        

*FA (pos) ~ age increasing FA with age  < .001 
*FA (pos) ~ offspring risk status x 

age 
increased FA (greater slope) with 
age for MatHxDepress >
NoMatHxDepress  

.009 

GLM 4: Main Effects Child 
Internalizing, Controlling 
Offspring Risk Status, Age, 
Sex    

FA (pos) ~ youth internalizing increasing FA with greater 
internalizing  

.105 

FA (neg) ~ youth internalizing decreasing FA with greater 
internalizing  

.888 

Sensitivity Analyses: 
Replication of Interaction 
Effect (GLM 2), Adding 
Covariates        

*FA (pos) ~ offspring risk status x 
age, controlling sex + youth 
internalizing 

effect of increased FA with age for 
MatHxDepress > NoMatHxDepress 
is independent of covariates  

.012 

*FA (pos) ~ offspring risk status x 
age, controlling sex + youth 
internalizing + SES + motion +
ICV   

.007 

* Indicates a significant contrast, corrected for whole-brain family-wise error 
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Fig. 1. Tracts and regions showing increased FA in main effect and interaction analyses. The main effect of age identified diffuse tracts and regions in which FA 
was increased with age, as listed at the top of the chart (1a); white matter results are grouped according to pathway type (commissural, cerebellum and brainstem, 
projection, and association) or other white matter region, and are visualized in the brain image (1b) in blue. Many of these same tracts and regions were also 
identified by different interaction analyses (full sample, subsample, and controlling all covariates) and are indexed at the bottom of the chart (1a). Tracts and regions 
identified by the interaction of risk-status and age when controlling all covariates are visualized in the brain image (1b) in orange; these tracts and regions showed 
greater increases with age for high-risk youth compared to low-risk youth. While both main effect and interaction analyses were conducted within the narrow white 
matter skeleton, only the interaction results (in orange) have been inflated and are overlaid for better visualization. In the chart above, results for tracts and regions 
are bilateral unless otherwise noted. 
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2.4. Additional neuroimaging covariates 

2.4.1. Mean relative in-scanner motion 
Output from FSL’s eddy correction included motion parameters for 

the root-mean square of voxel displacement, relative to those of the 
previous volume. These volume-level parameters were averaged within 
subject to create a Mean Relative Motion covariate. 

2.4.2. Intra-cranial volume (ICV) 
Gross brain volume varies with height and biological sex so it is 

important to control for ICV in structural brain measurements. High- 
resolution T1-weighted structural images were acquired in the axial 
plane using an MPRAGE 3D sequence with the following acquisition 
parameters: flip angle = 9◦; TR = 7.1 s; TE = 3.2 s; FOV = 250 mm x 
250 mm x 135 mm; matrix = 512 × 512; voxel size = .49 mm x .49 mm 
x 1 mm; 135 axial slices. Data were processed with FreeSurfer 6.0. The 
processing pipeline involved motion correction (Reuter et al., 2010), 
skull stripping (Ségonne et al., 2004), Talairach transformation, seg-
mentation of subcortical grey and white matter (Fischl et al., 2002), 
surface tessellation, and determination of the grey matter/white matter 
and grey matter/cerebral-spinal fluid boundaries based on image in-
tensity gradients (Dale et al., 1999). ICV was computed using the pro-
cedure described by Buckner et al. (2004) and this variable was used as a 
covariate.  

3. Results 

3.1. Demographic and covariate summary statistics 

Summary statistics for participant demographics and other cova-
riates are presented in Table 2. High-risk and low-risk youth did not 
significantly differ on age, pubertal stage scores, percentages of racial 
minorities, neighborhood SES, mean in-scanner motion, intra-cranial 
volume, or whole-brain FA (see Table 2). There was a significantly 
greater proportion of girls in the high-risk than low-risk group within 
both the full sample and CBCL subsample. Finally, the high-risk youth 
had significantly higher levels of internalizing problems than the low- 

risk youth. 

3.2. Voxelwise GLMs and contrasts across skeletonised FA data 

Table 1 provides a summary of the specific GLMs and contrasts 
estimated and interpretation of effects, and Supplemental Table 2 pro-
vides the maximum t-stat and peak coordinates for individual clusters 
identified for each significant contrast. Named tracts and regions iden-
tified by primary analyses of interest are indexed in Fig. 1a. 

From model 1, the only significant effect was the positive association 
between FA and age (pFWE <.001 in full sample), and this effect survived 
in the subsample (pFWE <.001). As anticipated, FA increased with age 
(see Fig. 1a, top of chart; Fig. 1b, results in blue). There were no sig-
nificant associations between FA and sex assigned at birth. There were 
no main effects of offspring risk status in either the positive or negative 
direction (all pFWE >=.25). Model 1b, where pubertal stage replaced age 
as a predictor, did not find a main effect of pubertal stage, but did find a 
significant main effect of sex, such that girls had higher FA than boys 
when pubertal stage was accounted for (pFWE =.029; see Supplemental 
Table 3). 

Model 2 that examined the interactions between offspring risk status 
and sex did not produce any significant results. From model 3, which 
examined the interaction between offspring risk status and age, only the 
positive association between risk status and age was significant, such 
that the diffuse increases in FA seen with age were greater for those in 
the high-risk group, compared to low-risk group. This interaction effect 
was significant in both the full sample (pFWE =.003) and the subsample 
(pFWE =.009). Moreover, this interaction remained significant for many 
of the identified tracts and regions when controlling for all covariates 
including child internalizing, neighborhood SES, mean relative in- 
scanner motion, and intra-cranial volume (all pFWE <=.01). Model 2b, 
where pubertal stage replaced age as a predictor, did not find a signif-
icant interaction of between offspring risk status and pubertal stage (see 
Supplemental Table 3). See Fig. 1a (bottom rows of chart) for the named 
tracks and regions identified by the interaction when estimated in 
different samples and with different covariates included. The tracts and 
regions identified by the interaction when all covariates were included 

Table 2 
Participant demographic and covariate summary statistics.    

Full Sample CBCL Subsample   

MatHxDepr NoMatHxDepr    MatHxDepr NoMatHxDepr      

(n = 42) (n = 75)    (n = 31) (n = 60)      
Mean (SD) or Frequency Х2 t-stat p- 

value 
Mean (SD) or Frequency Х2 t-stat p- 

value 

Age 11.31 (1.49) 11.84 (1.48)   -1.83  .070  11.40 (1.61) 11.86 (1.48)   -1.35  .181 
Pubertal Stage 2.85 (.59) (of 

79% reporting) 
3.00 (.62) (of 77% 
reporting)   

-1.11  .269  2.84 (.57) (of 94% reporting) 2.97 (.62) (of 85% 
reporting)   

-0.95  .343 

Sex Assigned 
at Birth 
(Female) 

76% 51% 6.27 
*    

.012  74% 47% 5.22 
*    

.022 

Racial 
Minority 

62% (of 69% 
reporting) 

54% (of 67% 
reporting) 

.21    .644  60% (of 65% reporting) 58% (of 72% 
reporting) 

0.00    1 

CBCL 
Internalizing 

only available in subsample      38.72 (6.72)  35.19 (3.97)  3.15**  .002 

Neighborhood 
SES 
Composite 

.00 (.85) .00 (.95)   .02  .983  .08 (.87) -.03 (.95)   .55  .587 

Mean Relative 
In-Scanner 
Motion 

.38 (.27) .38 (.30)   .03  .977  .39 (.27) .39 (.33)   -.05  .958 

Intra-Cranial 
Volume in 
mm3 

1494,434 
(104,813) 

1504,221 
(114,128)   

-.46  .648  1517,243 (100,639) 1511,849 
(103,235)   

.24  .812 

Whole-Brain 
FA 

.42 (.02) 42 (.01)   -.50    .42 (.02) .42 (.02)   -.38  .705  

* Indicates p < .05 
** Indicates p < .01 
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in the model are shown in Fig. 1b (results in orange). See Fig. 2 for a 
visualization of the interaction effect. 

There were no main effects (positive or negative effects) of either sex 
assigned at birth or child internalizing symptoms, and no analyses 
produced a significant effect whereby any variable was associated with 
reduced FA (all pFWE >=.1). When models 1, 2, and 3 were estimated 
with mean diffusivity as the dependent variable, results were in line with 
(inverse to) the FA-based models, given that mean diffusivity is gener-
ally negatively correlated with FA (see Supplemental Table 4). The 
omnibus test examining the effect of the course specifiers of maternal 
history of depression (comparing those with no maternal depression, 
single-episode maternal depression, and chronic or recurrent maternal 
depression) was not significant (pFWE =.539), possibly due to the small 
size of the single-episode (n = 16) versus chronic/recurrent (n = 26) 
groups. 

3.3. Complementary tract-based analyses 

Results of the tract-based analyses are presented in Supplementary 
Table 5 and Supplementary Figure 1. As show in Supplementary 
Figure 1, differences between the high- and low- risk groups were 
generally less apparent when FA was extracted from tract-based ROIs 
and averaged across the aggregate of the tract-based ROI. 

4. Discussion 

Our overarching aim was to characterize patterns in white matter 
microstructure that may be associated with a predisposition for 
depression, before the critical period for depression onset, by comparing 
FA in youth with a high- versus low-risk for depression as indexed by a 
maternal history of depression. Consistent with known patterns of brain 
maturation during adolescence, FA was positively associated with age 
across diffuse areas of the brain (Lebel and Beaulieu, 2011; Lebel et al., 
2012). Importantly, we found a significant interaction whereby those in 
the high-risk, compared to low-risk, group showed a steep increase in FA 
with age across many of the same brain regions identified by the main 
effect of age (see Fig. 1b for a comparison of the main effect of age (in 
blue) versus regions with increased FA seen in the high-risk group in 
orange). When primary models were estimated with mean diffusivity as 
the dependent variable, results were inverse to the FA-based models. 
Given that mean diffusivity is negatively correlated with FA (Lebel and 

Deoni, 2018; Schilling et al., 2022), this provides evidence for the 
consistency of results across different indexes of diffusivity. Most tracts 
and regions identified by the interaction were robust to the inclusion of 
covariates including sex assigned at birth, youth internalizing symp-
toms, in-scanner motion, neighborhood SES, and intra-cranial volume. 
Controlling for all covariates, adolescents with a maternal history of 
depression showed steep increase in FA with age in a broad range of 
tracts and regions including commissural, projection, and association 
pathways, along with cerebellar and brainstem pathways and a number 
of other white matter regions. These widespread increases in FA with 
age may correspond to a global pattern of accelerated brain maturation 
in youth at risk for depression. 

Our results add to existing findings from studies of white matter 
microstructure in individuals at high-risk for depression. First, the cur-
rent study illustrates the importance of looking at interactions between 
risk-related variables of interest and age, particularly when probing the 
adolescent period. Given that adolescence is a time when neural white 
matter shows rapid changes (Lebel and Beaulieu, 2011; Lebel et al., 
2012) and given that we found a robust and spatially-extensive effect of 
age on microstructure in our sample, it is perhaps not surprising that our 
sample did not show a main effect of risk-status. This finding is consis-
tent with several other studies that found interactions between age and 
risk-related variables but did not find robust or wide-spread main effects 
of risk-related variables in adolescent samples (Hung et al., 2017; Jones 
et al., 2019; Shakeel et al., 2021; van Velzen et al., 2020). This study also 
adds to previous studies demonstrating that parental history (Hung 
et al., 2017; Huang et al., 2012) and familial history (Shakeel et al., 
2021) of psychopathology predicts microstructural alterations in unaf-
fected youth, and demonstrates that maternal history of depression, 
specifically, is a unique predictor of alterations in white matter, beyond 
the effects of covariates previously shown to have associations with 
white matter such as age (Lebel and Beaulieu, 2011; Lebel et al., 2012), 
intra-cranial volume (Eikenes et al., 2023) and biological sex (Simmonds 
et al., 2014). Further, our results demonstrate that maternal history of 
depression uniquely predicts alterations in white matter microstructure 
in early and pre-adolescents, beyond effects of the youth’s own 
depressive symptoms, which have been typically associated with 
reduced microstructure coherence (LeWinn et al., 2014; Vilgis et al., 
2017; Vulser et al., 2018; Shen et al., 2021). 

Differences in white matter microstructure between the high- and 
low- risk groups was generally less apparent in our tract-based compared 
to our voxelwise results. This is consistent with the findings from other 
developmental studies that have highlighted the importance of whole- 
brain, voxelwise analysis for detecting patterns in white matter devel-
opment that may not be apparent at the tract-level (e.g., Palmer et al., 
2022). There is evidence that white matter maturation occurs in a 
spatially graded manner (e.g., posterior to anterior) that may not 
correspond well to borders of specific white matter tracts (that may 
project across large spatial areas of the brain), and thus maturational 
patterns detected at the voxel-level may not correspond well to patterns 
that can be observed when scalars are extracted from and averaged 
across the aggregate of a whole white matter tract. A review of white 
matter development by Lebel et al. (2019) found evidence for spatial 
gradients of maturation across several studies. For example, two studies 
found evidence for a posterior-to-anterior maturational gradient (Colby 
et al., 2011; Krogsrud et al., 2016). Lebel and colleagues concluded that 
“gradients of change are difficult to establish in tractography or 
region-of-interest studies, as parameters are typically averaged over the 
tract, collapsing information across different brain areas”. Similarly, a 
large-scale study by Palmer et al. (2022) using the ABCD dataset found 
that “voxelwise age associations were highly variable within subcortical 
regions and WM fiber tracts” and concluded that “the heterogeneity of 
effects along tracts…highlights the importance of voxelwise analyses to 
provide a more fine-grained understanding of how the brain is changing 
with age”. The current study adds to work demonstrating the critical role 
of whole-brain, voxelwise analysis for detecting developmental patterns 

Fig. 2. Adolescents with a maternal history of depression showed an in-
crease in FA across age compared to adolescents without a maternal 
history of depression. Individual mean FA values were extracted from a mask 
comprised of all tracts and regions identified by the interaction, controlling for 
all covariates. Mean FA values (Y-axis) are plotted against cross-sectional age 
(X-axis) and fit lines represent zero-order correlations between FA and age for 
each group. 
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in white matter microstructure. 
Among previous high-risk study designs in youth, the two studies 

conducted in age ranges similar to the current study found interactions 
between risk-status and age, but in opposite directions. Hung et al. 
(2017) found that parental history of depression was associated with 
reductions in FA across age in 8–14 year olds, whereas Jones et al. 
(2019) found that the density of family history of psychopathology was 
associated with increases in FA across age in 12–16 year olds. Our 
findings align with those of Jones and colleagues, where familial risk 
was associated with stronger increases in FA across adolescence. Con-
trasting results across studies should each be interpreted against the 
known patterns in normative development of white matter as well as 
known patterns of white matter alteration seen in relation to 
psychopathology. 

Across normative development, white matter shows protracted 
maturation into adulthood, with relatively rapid changes during the first 
three years of life (Dubois et al., 2014; Qiu et al., 2015) and during 
adolescence (Lebel and Beaulieu, 2011; Lebel et al., 2012; Lebel et al., 
2017), as reflected in more steep increases in FA (and decreases in MD) 
during these developmental periods. While increases in FA during in-
fancy appear to be driven largely by increases in myelination and axonal 
packing (axonal density and axonal bundling), increased FA during the 
adolescent period may be primarily due to increased axonal packing 
(Lebel and Deoni, 2018), with increases in FA across both of these 
developmental periods generally reflecting maturation of white matter. 

Given that FA normatively increases across adolescence, our results 
showing steep increases in FA with age for the high- compared to low- 
risk group is consistent with accelerated brain maturation in those 
with a maternal history of depression. This interpretation is in line with 
life history theory (Belsky et al., 1991; Ellis et al., 2009; Ellis and Garber, 
2000), that posits that early experiences program an individual’s 
developmental course to allow them to effectively respond to their 
environment. In harsh and unpredictable environments, developmental 
trajectories are shifted towards earlier maturation, and research sup-
ports maternal depression as a substantial source of adversity in chil-
dren’s lives that may promote accelerated maturation. For example, a 
maternal history of depression predicted earlier pubertal timing in 
daughters, with this relationship fully mediated by stress in the mother’s 
romantic relationship (Ellis and Garber, 2000). Similarly, maternal 
depression during infancy predicted earlier age of adrenarche in 
daughters (Belsky et al., 2015). Maternal depression has also been linked 
specifically to altered neural maturation. Mareckova et al. (2020) found 
that young adults exposed to higher maternal depression symptoms 
in-utero showed an elevated ‘brain age gap’, or patterns of cortical 
thickness that were similar to those of older individuals, suggesting that 
maternal depression is linked to accelerated brain maturation. 

However, with regards to white matter specifically, the evidence for 
accelerated versus delayed maturity is mixed, with studies showing 
reduced (Dean et al., 2018; El Marroun et al., 2018; Graham et al., 2020; 
Hay et al., 2020; Posner et al., 2016; Rifkin-Graboi et al., 2013), 
increased (Lebel et al., 2016; Roos et al., 2022) and no differences (Jha 
et al., 2016; Roos et al., 2022) in white matter coherence in infants or 
children exposed to maternal depression in-utero, and studies showing 
reduced (Hung et al., 2017; Huang et al., 2012; Jones et al., 2019), 
increased (Jones et al., 2019), and no differences (Shakeel et al., 2021) 
in white matter coherence in youth and young adults with a familial 
history of psychopathology. Importantly, as demonstrated by Lebel 
et al., 2017 see Figure 4), when interrogating normative development of 
white matter, regions of white matter that typically show a curvilinear 
pattern of FA development across age, may yield a negative association 
between FA and age—depending on the specific age range sampled—-
even when the overall pattern across the more extensive age-range is 
positive. This apparent negative association between FA and age when 
the overall pattern is positive may manifest specifically during adoles-
cence. This finding by Lebel and colleagues may explain why some 
studies have observed decreased FA with age among at-risk adolescents. 

As future work seeks to determine whether maternal history of depres-
sion is indeed associated with speeded versus delayed microstructural 
maturity, larger samples with broader ages ranges will be critical in 
answering this question. 

Contrasting findings across high-risk design studies may also reflect 
early changes in white matter associated with depression itself, rather 
than risk for depression. While this study, Hung et al. (2017), and Huang 
et al. (2011) all controlled for offspring internalizing symptoms, it is 
nevertheless possible that differences in depression symptoms across 
samples may have influenced differences in observed microstructural 
patterns. Depression is robustly associated with reduced FA in adults and 
in adolescents (Abraham et al., 2022; Chen et al., 2016; LeWinn et al., 
2014; Shen et al., 2021; van Velzen et al., 2020; Vulser et al., 2018), and 
in adolescents, depression and anxiety symptoms have been associated 
with relatively reduced longitudinal increases in FA with age (Albaugh 
et al., 2017). While some authors have attributed lower microstructural 
coherence seen in adolescent depression to delayed maturation, the 
similar patterns of reduced FA seen in depressed adults suggests lower 
FA may alternatively be due to degenerative processes that co-occur 
with depression and undermine white matter microstructure. Thus, 
where research has found reduced white matter coherence in high-risk 
samples, it may be due to symptom onset rather than risk itself. 
Several studies support this notion. In a sample of adolescents and young 
adults (aged 12–25) including healthy controls, those with diagnosed 
depression, those at familial-risk, and those with sub-syndrome levels of 
symptom severity, lower FA was found only in the depressed group, 
suggesting that microstructural differences were related to disorder 
onset rather than risk for depression (Shakeel et al., 2021). Further, a 
large-scale study found that reductions in white matter microstructure 
between adults with and without depression was primarily driven by 
those with recurrent episodes of depression (van Velzen et al., 2020), 
again consistent with a degenerative process that co-occurs with 
depression, with effects accumulating across multiple episodes. While 
there may be multiple mechanisms through which depression and 
reduced FA co-occur, one likely mechanism is via neuroinflammatory 
insults to white matter. Higher concentrations of pro-inflammatory 
proteins linked to depression have been associated with reduced white 
matter microstructural coherence in both adults and adolescents (Ho 
et al., 2022; O’Donovan et al., 2021; Sugimoto et al., 2018; Thomas 
et al., 2021; Zheng et al., 2022). Systemic inflammation in the periphery 
promotes neuroinflammation (Murta et al., 2015; Silverman et al., 2014; 
Sun et al., 2022), and neuroinflammation has been shown to degrade 
white matter (Di Penta et al., 2013; Ji et al., 2017; Pang et al., 2003). 

This study had several notable strengths including a larger sample of 
youth with a familial history of depression than used in previous high- 
risk designs examining white matter alterations, a constrained focus 
on the pre- / early- adolescent period before peak depression onset, as 
well as controlling for youth internalizing symptoms to isolate white 
matter patterns related to risk rather than the influence of depression 
itself, semi-structured diagnostic interviews for mothers to robustly 
capture maternal history of depression, and over half of the sample 
comprised of racial minorities, a largely understudied demographic. 
This study also had several limitations. First, although we controlled for 
a number of covariates, the influence of risk factors versus symptom 
onset versus covariates would be better addressed in a very large lon-
gitudinal sample where between- versus within- individual effects could 
be parsed. Given contrasting results across studies of high-risk youth, it 
is critical to replicate the current findings in a large dataset while also 
examining the role of other important factors. Second, while the current 
results fit within known patterns of white matter development and 
findings of adversity-linked accelerated maturation in youth, it remains 
unclear whether our observed increases in FA indeed represent speeded 
maturation, particularly given the cross-sectional nature of the study 
and limited sample size. Future work could better assess this by exam-
ining, within the same sample, the influence of risk status on trajectories 
of white matter microstructure, along with risk status effects on other 
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known neural and/or physiological indicators of maturation. Another 
limitation is that the current data did not include information about the 
timing of maternal depression. Future work should consider more 
directly testing effects of maternal depressive episodes on youth white 
matter at different developmental stages. Finally, the current cross- 
sectional study cannot address whether increases in FA represent a 
pre-morbid state that contributes to depression onset or represents a 
compensatory state that may contribute to resilience to psychopathol-
ogy. Mixed findings support both hypotheses. Studies by Belsky et al. 
(2015) and Mareckova et al. (2020) found that exposure to maternal 
depression was associated with hormonal and neural markers, respec-
tively, of earlier maturation and that earlier maturation was associated 
with increased symptoms of psychopathology, suggesting that earlier 
maturation is a risk factor. On the other hand, studies in adults support 
the hypothesis that increased FA in those at-risk for depression may 
serve as a protective factor. Studies by Frodl et al. (2012) and Winter 
et al. (2022) both found that resilient adults with a family history of 
depression, compared to adults without a family history of depression, 
showed increased FA across a number of tracts. Further Winter and 
colleagues found that familial risk was not associated with differences in 
white matter among those with depression, and Frodl and colleagues 
found that FA was higher in resilient individuals with greater childhood 
adversity than resilient individuals with less childhood adversity. 
Together, these findings suggest that increased FA may be a protective 
factor among those with higher levels of risk. Future longitudinal work 
should explore this important open question to disentangle whether 
alterations in white matter of at-risk youth contribute to risk for or 
resilience against psychopathology. 
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