

The effects of aging on the BTBR mouse model of autism spectrum disorder

Joan M. Jasien^{1,2}*, Caitlin M. Daimon¹, Rui Wang¹, Bruce K. Shapiro², Bronwen Martin¹ and Stuart Maudsley^{3,4}*

¹ Metabolism Unit, Laboratory of Clinical Investigation, National Institutes of Health, National Institute on Aging, Baltimore, MD, USA

³ Receptor Pharmacology Unit, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD, USA

⁴ VIB-Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium

Edited by:

Fernanda Laezza, University of Texas Medical Branch, USA

Reviewed by:

Filippo Tempia, University of Turin, Italy Mark R. Emmett, UTMB Cancer Center USA

*Correspondence:

Joan M. Jasien, Department of Neurology, Johns Hopkins University School of Medicine, Kennedy Krieger Institute, 251 Bayview Blvd., Suite 100, 716 North Broadway, # 441, Baltimore, MD 21205, USA e-mail: jasien@kennedykrieger.org;

Stuart Maudsley, VIB-Department of Molecular Genetics, University of Antwerp, Antwerp 2610, Belgium e-mail: stuart.maudsley@ molgen.vib-ua.be Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder characterized by alterations in social functioning, communicative abilities, and engagement in repetitive or restrictive behaviors. The process of aging in individuals with autism and related neurodevelopmental disorders is not well understood, despite the fact that the number of individuals with ASD aged 65 and older is projected to increase by over half a million individuals in the next 20 years. To elucidate the effects of aging in the context of a modified central nervous system, we investigated the effects of age on the BTBR T + tf/j mouse, a well characterized and widely used mouse model that displays an ASD-like phenotype. We found that a reduction in social behavior persists into old age in male BTBR T + tf/j mice. We employed quantitative proteomics to discover potential alterations in signaling systems that could regulate aging in the BTBR mice. Unbiased proteomic analysis of hippocampal and cortical tissue of BTBR mice compared to age-matched wild-type controls revealed a significant decrease in brain derived neurotrophic factor and significant increases in multiple synaptic markers (spinophilin, Synapsin I, PSD 95, NeuN), as well as distinct changes in functional pathways related to these proteins, including "Neural synaptic plasticity regulation" and "Neurotransmitter secretion regulation." Taken together, these results contribute to our understanding of the effects of aging on an ASD-like mouse model in regards to both behavior and protein alterations, though additional studies are needed to fully understand the complex interplay underlying aging in mouse models displaying an ASD-like phenotype.

Keywords: ASD, autism, BDNF, aging, synaptic marker, neuroprotection, neurodevelopmental disorder, BTBR

INTRODUCTION

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by varying degrees of altered social functioning and engagement in repetitive, stereotyped behaviors accompanied by display of narrowed interests (American Psychiatric Association, DSM-V 2012). The most recent surveillance data collected in 2008 by the Center for Disease Control's Autism and Developmental Disabilities Monitoring Network indicates that approximately 1 in 88 children has an autism spectrum disorder (CDC, 2010). The United States Census Bureau in 2006 projected a doubling of the US population aged 65 and older by 2030. Assuming the life expectancy of individuals with ASD is similar to that of the general population, based on current prevalence rates in school aged children, this population increase would result in a prevalence of approximately 700,000 individuals with ASD aged 65 in the next 20 years (Piven and Rabins, 2011).

Abbreviations: BDNF, brain derived neurotrophic factor; BTBR, black and tan, brachyuric; ASD, autism spectrum disorder.

Despite the population statistics indicating a significant number of aged individuals with ASD, studies that investigate the effects of the neurodevelopmental disabilities including ASD, in an aged physiological context are lacking. Due to the paucity and limitations of studies and the expected increase in the aged individuals presenting ASD a multidisciplinary conference was held in March 2010 to identify gaps in knowledge regarding older adults with ASD. The panel concluded that descriptive studies of aging in humans and rodent models were needed (Piven and Rabins, 2011). A limited number of human studies have investigated the persistence of the ASD core deficits into adulthood (Ballaban-Gil et al., 1996; Seltzer et al., 2003; Shattuck et al., 2007), childhood factors that are associated with prognosis (Rumsey et al., 1985), and outcome studies (Rutter et al., 1967; Howlin et al., 2004; Renty and Roeyers, 2006). Major findings from these studies suggest that language development (Kanner et al., 1972) and Intelligence Quotient (IQ) predicts outcome (Lotter, 1974; Rumsey et al., 1985; Szatmari et al., 1989). The ASD diagnosis persists with inconsistent findings about which, if any, core deficits change (Ballaban-Gil et al., 1996; Piven et al.,

² Department of Neurology, Johns Hopkins University School of Medicine, Kennedy Krieger Institute, Baltimore, MD, USA

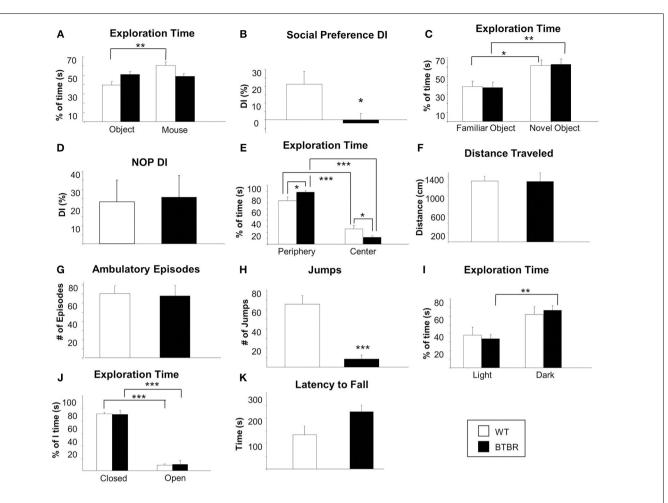
1996; Seltzer et al., 2003), and that the adults with ASD remain dependent on others (Rutter et al., 1967) even if they have a normal IQ (Howlin et al., 2004). Despite persistent dependence some studies found that individuals with ASD had improved symptoms over time (Szatmari et al., 1995; Piven et al., 1996; Seltzer et al., 2003). However, a few limitations hinder these early studies of aging in ASD, including study individuals being only 20–30 years old, small sample sizes, and an inability to completely generalize the study findings given the heterogeneity of the population examined (Rumsey et al., 1985; Gillberg and Wing, 1999; Fombonne et al., 2001; Howlin and Moss, 2012).

Given the heterogeneous nature of ASD, mouse models have proven to be particularly useful and reliable in elucidating the mechanism of these disorders (Crawley, 2007; Moy and Nadler, 2008). There are several approaches to ASD mouse models: targeted gene mutations, defects in neurotransmitters or brain regions, inbred strains, and models based on the comorbidity of other human diseases with autism (Crawley, 2007). One strain in particular, BTBR T + tf/j, has been shown to be an especially relevant animal model of ASD (Moy et al., 2007). Extensive behavioral characterization of the BTBR (black and tan, brachyuric) mouse model has revealed low sociability compared to wildtype strains (Bolivar et al., 2007; Moy et al., 2007), resistance to change (Moy et al., 2007; Moy and Nadler, 2008), increased display of self-grooming behavior (Pobbe et al., 2010), display of repetitive behaviors (Pearson et al., 2011), and reduced display of territorial scent marking (Wohr et al., 2011). Furthermore, unusual vocalizations have also been extensively characterized in BTBR mice (Scattoni et al., 2008, 2011), in addition to instances of social avoidance and gaze aversion (Defensor et al., 2011). While the autistic-like behavioral phenotype of the young male BTBR mouse has been studied extensively, the effects of age on this ASD-like mouse model have not been elucidated. As aged human autistic tissue samples are limited and the BTBR mouse model is well characterized and widely accepted, we selected this mouse model to study the nature of the ASD phenotype in an aged context. To enhance our understanding of the aged BTBR mouse and to gain further insight into the effects of aging of ASD, we followed our extensive behavioral characterization of the aged BTBR mouse with quantitative proteomic analyses on cortical and hippocampal tissues as these two brain regions have been strongly associated with ASD (Mundy, 2003; Nadler et al., 2006). We hypothesized that both the behavioral phenotype and proteomic profile would be different between the aged ASD-like mice [or mice with an abnormal central nervous system (CNS)] and the aged wildtype mice (or mice with a presumed normal CNS). Our results contribute to our understanding of the effects of aging on an ASD-like mouse model, and it is our hope that further research will enhance our understanding of aging in an abnormal CNS.

MATERIALS AND METHODS

EXPERIMENTAL ANIMALS

All experimental animal procedures were approved by the Animal Care and Use Committee of the National Institute on Aging, National Institutes of Health. Male BTBR T + tf/J mice (n = 8, 15


months of age) and male control wildtype (WT) C57BL6J (n = 5, 15 months of age) were housed in the NIA animal facility on a 12 h light and dark cycle from 6 am to 6 pm and received *ad libitum* access to food and water throughout the duration of the study. All behavioral testing described in detail below was performed between the hours of 9 AM and 5 PM. Prior to behavioral testing, animals were moved from the vivarium to an experimental room and given a minimum of 30 min to habituate to the new environment. Between each experimental animal, all apparatuses were wiped down with 70% ethanol followed by D. I. water to prevent any scent retention that could possibly bias the performances of later mice.

SOCIAL PREFERENCE ASSESSMENT

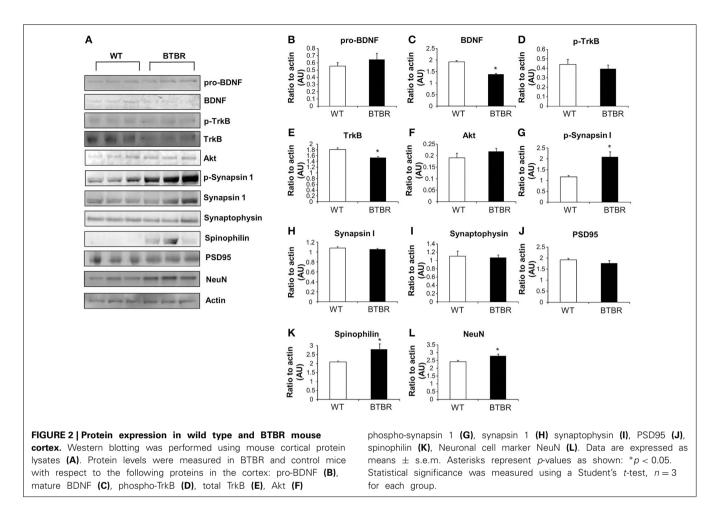
Social behavior was assessed using a three-chambered sociability apparatus with a protocol modeled after previously established methods (Crawley, 2007). In brief, animals were first habituated for 10 min to the three-chambered sociability apparatus (60 \times 40×22 cm, Stoelting, Wood Dale, IL) free of any stimuli and returned to their home cage for a minimum of 30 min. Prior to the return of the experimental mouse to the chamber for testing, another mouse of the same strain, age, and gender and an inanimate object both housed in identical wire mesh cylinders (15 cm tall, 7 cm in diameter) were placed in opposing compartments of the apparatus. Experimental animals were then returned to the center chamber of the apparatus and were free to choose to interact with either the mouse or object enclosed in the respective wire mesh containers. Interactions were recorded for 10 min and analyzed with ANY-Maze Video Tracking Software (Stoelting). A discrimination index (DI) was calculated that takes into account the relative exploration time spent with either the contained mouse or object: (animal time/total time—object time/total time) \times 100. As socially-normal mice show a robust preference for another mouse over an inanimate object, a high DI is reflective of sociallynormal behavior while a low DI is indicative of deficits in social functioning.

NOVEL OBJECT PREFERENCE TEST

The novel object preference test was performed as described previously (Dere et al., 2007; Park et al., 2010). In brief, mice were given 10 min to explore a 25 cm² opaque walled box with two identical objects placed equidistant from each other in the center of the box. After 10 min of habituation to the two identical objects was completed, animals were returned to their home cages for a minimum of 30 min. After the habituation task, trained experimenters replaced one of the identical objects with a novel object that had never been seen by the experimental mouse. Experimental animals were then returned to the opaque box and given 10 min in which they were free to interact with either the familiar or novel object. Both the habituation session and testing session were videotaped and the animal's behavior automatically tracked by ANY-Maze Video Tracking Software (Stoelting). Discrimination indices were again calculated: (novel time/total time-same time/total time) \times 100. A high discrimination index (DI) is indicative of an enhanced ability to preferentially recognize the novel object, suggesting intact memory functioning.

FIGURE 1 | Social function, cognitive ability, general behavior, anxiety and motor coordination in an aged ASD mouse model. Social preference was assessed using a three-chambered sociability apparatus in aged male BTBR T + tf/j mice and age-sex-matched control mice (**A**, **B**). Percentage of time spent exploring both the contained inanimate object and the contained mouse was measured for male BTBR (n = 8) and control mice (n = 5) (**A**). A discrimination index (DI) was calculated (**B**) which represents the degree to which experimental or control animals displayed a preference for exploring the contained mouse over the contained inanimate object. Cognitive functioning was assessed via the novel object preference task (NOP) (**C**, **D**). Percentage of time spent exploring either a familiar or a novel object was again measured for male BTBR (n = 8) and control mice (n = 5) (**C**) and a DI was calculated (**D**) with a higher DI indicating an increased ability to discern a novel object from a familiar object. Exploration of an open field apparatus was

OPEN FIELD TEST


A generalized view of the behavioral characteristics of both experimental and control mice was obtained via an open field test performed as described previously (Holmes et al., 2002). In brief, each mouse was placed in a square chamber approximately 0.14 m^2 in size (Med Associates Inc, St. Albans, VT) and given 10 min to freely explore. Activity Monitor software (Med Associates Inc) automatically recorded multiple parameters over the duration of the 10 min test. Individual data points were then compiled and subsequently analyzed to produce the following measurements: distance traveled, time spent in the peripheral areas of the chamber, time spent in the center area

assessed in male BTBR and control mice was measured with regard to the following parameters: time spent exploring the peripheral or central areas of the apparatus relative to the total amount of time spent exploring (**E**), total distance traveled (**F**), number of ambulatory episodes (**G**), and number of jumps (**H**). Exploration of the open field apparatus was repeated with a Light/Dark insert add-on and relative time spent in either the light half or the dark half of the chamber was recorded (**I**). General anxiety was assessed using the elevated plus maze task. For both BTBR T + tf/j mice and age-and sex-matched controls, relative spent in the closed vs. the open arm was recorded as a percentage of total time (**J**). Finally, motor coordination was assessed using a rotarod apparatus latency to fall was recorded in both BTBR T + tf/j and control mice (**K**, *n* = 5). Data are expressed as means ± s.e.m. Asterisks represent *p*-values as shown: **p* < 0.05, ***p* < 0.01, ****p* < 0.001. Statistical significance was measured using a Student's *t*-test.

of the chamber, number of ambulatory episodes, and number of jumping episodes. Relative time spent in the periphery vs. the center was calculated for each mouse by dividing the time spent in either the periphery or center by the total exploration time (600 s for all animals).

LIGHT/DARK EXPLORATION TEST

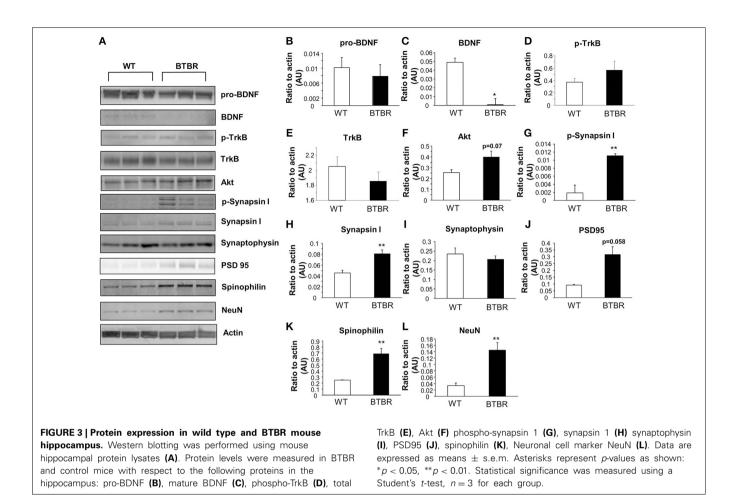
The light-dark exploration test was performed as previously described (Chadwick et al., 2011) as a means to assess general anxiety behavior. The same square chamber used in the Open field test was again used to complete the Light/Dark exploration test, with the additional insertion of a dark chamber taking up 50%

of the area of the entire apparatus (Dark box insert for mouse open field activity, Med Associates Inc). The dark chamber contains a small arched entrance to allow mice to access the dark environment; this entryway was placed toward the center of the apparatus so mice could easily access it. Time spent in either the light or dark compartment was automatically recorded by Activity Monitor software (Med Associates Inc). Relative time spent in the light chamber vs. the dark chamber was calculated for each mouse by dividing the time spent in either the light or the dark by the total exploration time (600 s for all animals).

ELEVATED PLUS MAZE

General anxiety behavior was also evaluated using an elevated plus maze test as described previously (Chadwick et al., 2011). In brief, animals were given 5 min to explore a plus shaped maze raised approximately 36 cm off of the ground. Two of the arms of the maze were enclosed on all sides; two arms remained open for the duration of the test. ANY-Maze Video Tracking Software (Stoelting) was used to record time spent in either the closed or open arms of the apparatus and the relative time spent in the closed or open arms was calculated by dividing the time spent in either arm by the total exploration time (300 s for all animals).

ROTA-ROD TEST

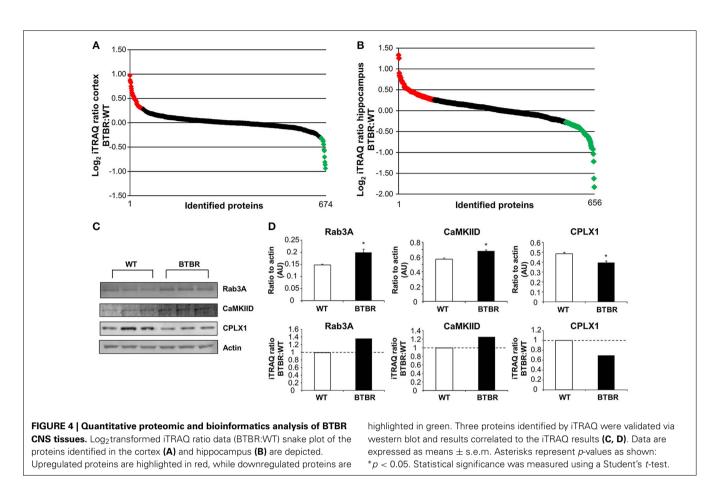

Motor coordination was evaluated using an accelerating Rota-Rod treadmill (Med. Associates, Inc) as described previously (Bohlen et al., 2009). Briefly, mice were given two training sessions on the spinning Rota-Rod apparatus on the day prior to the testing day (the first trial was administered in the morning and the second trial was administered in the afternoon). Each habituation training trial lasted 2 min [4 revolutions per minute (rpm)]. On the test day, the mice were placed on the Rota-Rod, which gradually accelerated from 4 to 40 rpm over a 5 min time interval. The test was performed twice per day and the latency to fall was measured and averaged.

ANIMAL EUTHANIZATION AND TISSUE COLLECTION

Following completion of behavioral analyses, animals were euthanized via isoflurane overdose (Butler Animal Health Supply, Dublin, OH) as described previously and in accord with approved animal procedures (Chadwick et al., 2011). Bodyweight data was collected immediately prior to euthanization for each animal. Hippocampal and cortical brain tissues were snap frozen on dry ice and stored at -80° C until used for further analyses.

PROTEIN DIGESTION, iTRAQ LABELING AND WESTERN BLOTTING

Protein digestion and iTRAQ labeling were processed according to the iTRAQ protocol (iTRAQ Reagents—8plex: amine-modifying Labeling Reagents for Multiplexed Relative and Absolute Protein Quantitation, ABSciex). All tissue samples (Hippocampus and Cortex; WT and BTBR) were prepared in parallel throughout the labeling procedures. Briefly, 100 µg


of protein in each condition was acetone precipitated and resuspended in 20 µL of iTRAQ dissolution buffer (0.5 M triethylammonium bicarbonate (TEAB), ABSciex) containing 0.1% ProteaseMAX detergent (Promega) to denature the proteins. The sample was then reduced by adding iTRAQ Reducing Reagent [Tris(2-carboxyethyl) phosphine (TCEP), ABSciex] to a final concentration of 5 mM and incubated at 60°C for 1 h. Subsequently, the sample was alkylated with iTRAQ Cysteine-Blocking Reagent (10 mM methyl methanethiosulfonate (MMTS), ABSciex) for 10 min at room temperature. The protein sample was then digested with 5µg sequencing-grade trypsin (Promega) per 100 µg protein at 37°C overnight. Labeling of the samples with iTRAQ 8-plex labels was performed at room temperature for 2 h. After labeling, the samples to be compared were mixed and underwent an off-line strong cation exchange (SCX) fractionation (ICAT Cation Exchange Buffer Pack, ABSciex) to 16 fractions to reduce sample complexity. After reversed-phase desalting (C18 tips, Pierce), the samples were re-constituted in water with 0.1% formic acid, then stored at -20°C until LC/MS/MS analysis. Western blotting procedures as described previously (Maudsley et al., 2007; Martin et al., 2009a), were performed using the same protein lysates employed for iTRAQ labeling. Antibodies used were as follows: rabbit anti-BDNF [(brain-derived neurotrophic factor) Santa Cruz Biotechnology, Santa Cruz CA], rabbit antiphosphorylated TrkB and TrkB, rabbit anti-phosphorylated Akt and Akt, rabbit antiphosphorylated synapsin 1 and synapsin 1, rabbit anti-spinophilin, rabbit anti-PSD95 and rabbit anti-synaptophysin (Cell signaling technology, Inc., Danvers, MA), mouse anti-NeuN (EMD Millipore Corporation, Billerica, MA) and mouse anti-beta actin (Sigma-Aldrich, St. Louis, MO). Results were quantified and statistical analysis was performed using an unpaired student *t*-test. p < 0.05 was considered statistically significant.

LC/MS/MS ANALYSIS

Samples were analyzed using an Eksigent NanoLC Ultra 2D (Dublin, CA) and Thermo Fisher Scientific LTQ Orbitrap XL (San Jose, CA). In brief, peptides were first loaded onto a trap cartridge (Agilent), then eluted onto a reversed phase PicoFrit column (New Objective, Woburn, MA) using a linear 120 min gradient of acetonitrile (2–62%) containing 0.1% formic acid at 250 nL/min flowrate. The eluted peptides were sprayed into the LTQ Orbitrap XL. The data-dependent acquisition mode was enabled, and each FTMS MS1 scan (60,000 resolution) was followed by 6 MS2 scans (alternating CID at unit resolution and HCD at 7500 resolution on 3 precursor ions). The spray voltage and ion transfer tube temperature were set at 1.8 kV and 180°C, respectively.

DATABASE SEARCH AND iTRAQ QUANTIFICATION

Proteome Discoverer 1.2 (Thermo Fisher Scientific) was used for protein identification and iTRAQ quantification using

Sequest algorithms. The following criteria were followed: SwissProt mouse database; enzyme: trypsin; miscleavages: 2; static modifications: methylthio (+45.988 Da on C), iTRAQ8plex (+304.205 Da on N-terminus and K); dynamic modifications: oxidation (+15.995 Da on M), deamidation (+0.984 Da on N and Q); peptide tolerance as 25 ppm; MS2 tolerance as 0.8 Da. Peptides reported via all search engines were accepted only if they met the false discovery rate of 5%. For iTRAQ quantification, the reporter ion intensities in MS2 spectra (m/z 113–121, integration width tolerance 50 mmu) were used to calculate the expression ratios among the different conditions (Hippocampus and Cortex; WT and BTBR).

BIOINFORMATICS ANALYSIS

Functional annotational clustering of our proteomic data, i.e., gene ontology (GO), KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis was performed using WebGestalt (http://bioinfo.vanderbilt.edu/webgestalt/, 3/2014) as previously described (Chadwick et al., 2010a, 2011). In addition Ingenuity Pathway Analysis (http://Ingenuity.com, 3/2014) was employed for Canonical Signaling Pathway enrichment investigations. In brief, GO analysis allows for broad clustering of genes into functional groups, while KEGG pathways analysis allows for more specific clustering into signaling pathways (Maudsley et al., 2011). Inclusion criteria were set as follows: pathway groups needed to meet a minimum population of two genes from the input experimental set, and also needed to

possess a probability significance of enrichment compared to a control background dataset of less than p < 0.05 (hypergeometric test of significance). In addition, Venn diagrams were also constructed to identify common and uniquely altered genes between hippocampus and cortex, using VennPlex (Cai et al., 2013), as described previously (Martin et al., 2009b).

TEXTROUS! LATENT SEMANTIC ANALYSIS-BASED INVESTIGATION

Textrous! latent semantic analysis was performed as described previously (Chen et al., 2013). In brief, corresponding gene symbols were uploaded into *Textrous!* (http://textrous.irp.nia.nih. gov/, 3/2014) and then the relevant output indices, i.e., Cosine Similarity, Z-score and *p*-value were extracted. In addition to the direct list-based semantic output both the Collective processing mode (generating hierarchical word-clouds), as well the Individual processing mode (generating symbol-word heatmaps) were applied to provide more nuanced informatic appreciation of the specific input datasets.

STATISTICAL ANALYSIS

All statistical analyses were conducted using a Student's *t*-test (two-tailed with equal variances: GraphPad Prism, version 5.02). p < 0.05 was considered statistically significant throughout the study. Error bars represent 95% confidence interval. All data represent means \pm s.e.m. (standard error of mean). *p < 0.05; **p < 0.01; ***p < 0.001.

Table 1 | GO term analysis for cortical protein alterations observed in aged BTBR compared to WT control.

GO group	GO term	GO ID	С	0	E	R	Ρ	н
Biological process	Endoplasmic reticulum tubular network organization	71786	4	2	0.02	126.12	0.0047	293.595
Biological process	Early endosome to late endosome transport	45022	21	3	0.08	36.03	0.0041	86.0114
Biological process	Vesicle-mediated transport	16192	909	14	3.6	3.88	0.0018	10.64954
Biological process	Secretion by cell	32940	693	11	2.75	4	0.0041	9.548865
Biological process	Secretion	46903	795	12	3.15	3.81	0.0037	9.265151
Biological process	Transmission of nerve impulse	19226	735	11	2.91	3.78	0.0047	8.79947
Biological process	Neurological system process	50877	1237	16	4.9	3.26	0.002	8.798642
Biological process	System process	3008	1695	19	6.72	2.83	0.002	7.638085
Biological process	Multicellular organismal signaling	35637	751	11	2.98	3.69	0.0087	7.603174
Biological process	Transport	6810	3338	30	13.23	2.27	0.0006	7.313597
Biological process	Establishment of localization	51234	3392	30	13.45	2.23	0.0006	7.184723
Biological process	Establishment of localization in cell	51649	1756	19	6.96	2.73	0.0027	7.012377
Biological process	Cellular localization	51641	1977	20	7.84	2.55	0.0035	6.262626
Biological process	Localization	51179	4167	31	16.52	1.88	0.0037	4.571781
Cellular component	Chaperonin-containing T-complex	5832	7	2	0.03	78.59	0.0039	189.3182
Cellular component	Pericentriolar material	242	12	2	0.04	45.84	0.0076	97.1435
Cellular component	Clathrin-sculpted vesicle	60198	12	2	0.04	45.84	0.0076	97.1435
Cellular component	Clathrin-coated vesicle membrane	30665	110	5	0.4	12.5	0.0011	36.98259
Cellular component	Filopodium	30175	55	3	0.2	15	0.0076	31.7878
Cellular component	Coated pit	5905	57	3	0.21	14.48	0.0082	30.20798
Cellular component	Coated vesicle membrane	30662	150	5	0.55	9.17	0.0032	22.87777
Cellular component	Lamellipodium	30027	121	4	0.44	9.09	0.0076	19.2634
Cellular component	Ruffle	1726	123	4	0.45	8.94	0.0076	18.94553
Cellular component	Neuron projection	43005	651	12	2.37	5.07	0.0002	18.75378
Cellular component	Cell leading edge	31252	257	6	0.93	6.42	0.0039	15.46537
Cellular component	Clathrin-coated vesicle	30136	207	5	0.75	6.64	0.0076	14.0714
Cellular component	Cell projection	42995	1230	16	4.47	3.58	0.0002	13.24231
Cellular component	Mitochondrion	5739	1525	18	5.54	3.25	0.0002	12.02165
Cellular component	Cytoplasmic part	44444	6772	44	24.62	1.79	7.70E-05	7.363182
Cellular component	Microtubule cytoskeleton	15630	863	10	3.14	3.19	0.0076	6.760205
Cellular component	Cytoskeleton	5856	1790	15	6.51	2.3	0.0093	4.672489
Cellular component	Cytoplasm	5737	9130	49	33.19	1.48	0.0007	4.669255
Cellular component	Cytosol	5829	2372	18	8.62	2.09	0.0093	4.245871
Cellular component	Intracellular	5622	12564	58	45.68	1.27	0.0012	3.70944
Cellular component	Intracellular part	44424	12237	55	44.49	1.24	0.0082	2.586871

GO term annotation of the cortical proteins possessing BTBR:WT iTRAQ expression ratios < 1.2 or <0.8 were created using WebGestalt. Each GO term group significantly populated (p < 0.05) by at least two independent proteins are depicted. For each GO Term group the specific GO term ID, number of total proteins in the curated GO term cluster (C), the number of observed experimental proteins in the GO term group (O), the expected number of proteins in the group based on whole-genome background frequency (E), the GO term group enrichment factor (R), the GO term enrichment probability (P) and the hybrid score ($R^* - \log_{10} P$) are indicated (H).

RESULTS

ASD-LIKE BEHAVIORAL PHENOTYPE PERSISTS IN AGED BTBR MICE

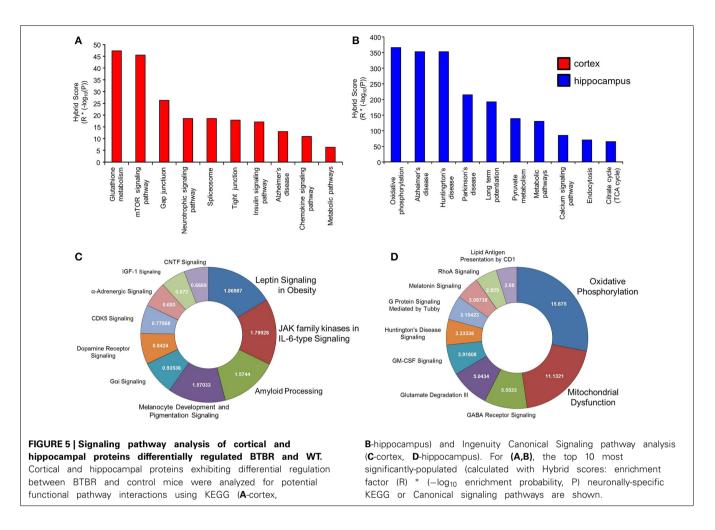
Commensurate with an extant ASD phenotype aged BTBR mice demonstrated no sociability preference between an object or another mouse, while WT controls spent significantly more time with another mouse compared to an object (**Figure 1A**). Relative percentage of time spent with either the mouse or the object was used to calculate a social discrimination index [DI: (novel time/total time-same time/total time) \times 100] (**Figure 2B**). WT and BTBR mice performed similarly in the novel object preference test of learning and memory, with both groups spending significantly more time with a novel object compared to a familiar object (Figures 1C,D). Both WT and BTBR mice significantly preferred to explore the peripheral areas of the chamber over the center of the chamber, though the BTBR mice did show a significantly higher preference for the periphery over the center (Figure 1E). No significant differences in total distance traveled (Figure 1F) or number of ambulatory episodes (Figure 1G) were found. BTBR mice however demonstrated significantly less jumping activity compared to WT (Figure 1H). In light-dark exploration tests BTBR mice spent significantly more time in the dark chamber compared to the lighted chamber, while WT control mice show no statistical difference in preference for either chamber (Figure 1I). In the elevated plus maze test of anxiety,

GO Class	GO Term	GO ID	С	Ε	0	R	Ρ	н
Biological process	Neurotransmitter secretion	7269	99	15	1.25	11.98	4.40E-10	112.0914
Biological process	Synaptic vesicle endocytosis	48488	22	6	0.28	21.57	8.46E-06	109.4166
Biological process	Regulation of neuronal synaptic plasticity	48168	47	9	0.59	15.14	4.14E-07	96.63861
Biological process	Synaptic vesicle transport	48489	68	11	0.86	12.79	5.71E-08	92.64262
Biological process	Regulation of synaptic plasticity	48167	96	13	1.21	10.71	1.68E-08	83.26694
Biological process	Neurotransmitter transport	6836	133	15	1.68	8.92	1.21E-08	70.62155
Biological process	Synaptic transmission	7268	651	41	8.23	4.98	8.14E-15	70.16509
Biological process	Regulation of neurotransmitter levels	1505	137	15	1.73	8.66	1.54E-08	67.65607
Biological process	Regulation of synaptic transmission	50804	186	18	2.35	7.65	3.76E-09	64.44981
Biological process	Regulation of neurological system process	31644	217	19	2.74	6.92	5.27E-09	57.28507
Biological process	Regulation of transmission of nerve impulse	51969	204	18	2.58	6.98	1.08E-08	55.6067
Biological process	Transmission of nerve impulse	19226	735	41	9.29	4.41	2.94E-13	55.26459
Biological process	Multicellular organismal signaling	35637	751	41	9.5	4.32	4.13E-13	53.4991
Biological process	Respiratory electron transport chain	22904	110	12	1.39	8.63	8.22E-07	52.51466
Biological process	Signal release	23061	344	23	4.35	5.29	8.37E-09	42.72878
Biological process	Generation of a signal involved in cell-cell signaling	3001	344	23	4.35	5.29	8.37E-09	42.72878
Biological process	Cellular respiration	45333	159	14	2.01	6.96	8.22E-07	42.35249
Biological process	Energy derivation by oxidation of organic compounds	15980	329	22	4.16	5.29	1.54E–08	41.32802
Biological process	Cell-cell signaling	7267	1099	48	13.9	3.45	3.98E-12	39.3304
Biological process	Generation of precursor metabolites and energy	6091	451	26	5.7	4.56	1.07E-08	36.34601
Biological process	Neurological system process	50877	1237	44	15.64	2.81	1.54E-08	21.95307
Biological process	Small molecule metabolic process	44281	2515	71	31.8	2.23	1.02E-09	20.05082
Biological process	Cell morphogenesis involved in neuron differentiation	48667	575	25	7.27	3.44	3.07E-06	18.96424
Biological process	Regulation of biological quality	65008	2511	70	31.75	2.2	2.49E-09	18.92836
Biological process	Neuron projection morphogenesis	48812	583	25	7.37	3.39	3.70E-06	18.4138
Biological process	Neuron development	48666	798	31	10.09	3.07	1.11E-06	18.28086
Biological process	Regulation of system process	44057	455	21	5.75	3.65	1.05E-05	18.17266
Biological process	Secretion by cell	32940	693	28	8.76	3.2	2.39E-06	17.98913
Biological process	Axonogenesis	7409	526	23	6.65	3.46	7.81E-06	17.67143
Biological process	Neuron projection development	31175	704	28	8.9	3.15	3.07E-06	17.36551
Biological process	Secretion	46903	795	30	10.05	2.98	3.07E-06	16.42833
Biological process	Neuron differentiation	30182	990	34	12.52	2.72	3.46E-06	14.85371
Biological process	Nervous system development	7399	1724	50	21.8	2.29	6.25E-07	14.20743
Biological process	Establishment of localization in cell	51649	1756	50	22.21	2.25	1.01E-06	13.49028
Biological process	Generation of neurons	48699	1073	35	13.57	2.58	6.71E-06	13.34706
Biological process	Cellular localization	51641	1977	53	25	2.12	2.31E-06	11.94914
Biological process	Establishment of localization	51234	3392	74	42.89	1.73	7.81E–06	8.835714
Biological process	Transport	6810	3338	73	42.21	1.73	8.58E-06	8.765067
Biological process	SinglE–multicellular organism process	44707	5612	106	70.97	1.49	4.87E-06	7.915582
Biological process	Multicellular organismal process	32501	5644	106	71.37	1.49	6.63E-06	7.715945
Molecular function	Malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) activity	4473	2	2	0.02	81.3	0.0023	214.4915
Molecular function	Malate dehydrogenase (oxaloacetate-decarboxylating) activity	16619	3	2	0.04	54.2	0.0039	130.5643

Table 2 | Continued

GO Class	GO Term	GO ID	С	E	0	R	Р	н
Molecular function	Thioredoxin peroxidase activity	8379	3	2	0.04	54.2	0.0039	130.5643
Molecular function	Malic enzyme activity	4470	4	2	0.05	40.65	0.0063	89.45681
Molecular function	Hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in cyclic amides	16812	10	3	0.12	24.39	0.0023	64.34746
Molecular function	NAD binding	51287	49	7	0.6	11.61	0.0001	46.44
Molecular function	Calmodulin-dependent protein kinase activity	4683	21	4	0.26	15.49	0.0017	42.90035
Molecular function	Proline-rich region binding	70064	15	3	0.18	16.26	0.0062	35.89571
Molecular function	Syntaxin binding	19905	38	5	0.47	10.7	0.0017	29.6342
Molecular function	NADH dehydrogenase (ubiquinone) activity	8137	44	5	0.54	9.24	0.0023	24.37763
Molecular function	NADH dehydrogenase (quinone) activity	50136	44	5	0.54	9.24	0.0023	24.37763
Molecular function	NADH dehydrogenase activity	3954	44	5	0.54	9.24	0.0023	24.37763
Molecular function	SNARE binding	149	45	5	0.55	9.03	0.0023	23.8236
Molecular function	Cofactor binding	48037	262	15	3.22	4.65	7.65E-05	19.14097
Molecular function	Actin filament binding	51015	72	6	0.89	6.77	0.0033	16.79966
Molecular function	Coenzyme binding	50662	186	11	2.29	4.81	0.0005	15.87795
Molecular function	Oxidoreductase activity, acting on NADH or NADPH, quinone or similar compound as acceptor	16655	58	5	0.71	7.01	0.0062	15.47533
Molecular function	Calmodulin binding	5516	164	10	2.02	4.96	0.0008	15.36067
Molecular function	Hydrogen ion transmembrane transporter activity	15078	101	7	1.24	5.63	0.0023	14.85347
Molecular function	Cytoskeletal protein binding	8092	638	25	7.85	3.19	3.90E-05	14.0645
Molecular function	Oxidoreductase activity	16491	711	24	8.75	2.74	0.0003	9.652688
Molecular function	Actin binding	3779	356	14	4.38	3.2	0.0017	8.862563
Molecular function	GTPase activity	3924	231	10	2.84	3.52	0.0057	7.899321
Molecular function	Identical protein binding	42802	863	25	10.62	2.36	0.0012	6.893132
Molecular function	Anion binding	43168	2402	54	29.55	1.83	0.0002	6.769115
Molecular function	Small molecule binding	36094	2630	58	32.35	1.79	0.0002	6.621156
Molecular function	Protein binding	5515	7337	126	90.25	1.4	2.47E-05	6.450224
Molecular function	Nucleoside phosphate binding	1901265	2437	53	29.98	1.77	0.0005	5.842823
Molecular function	Nucleotide binding	166	2436	52	29.96	1.74	0.0007	5.489529
Molecular function	Nucleoside-triphosphatase activity	17111	760	21	9.35	2.25	0.0039	5.420105
Molecular function	Pyrophosphatase activity	16462	794	21	9.77	2.15	0.0063	4.731418
Molecular function	Hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides	16818	797	21	9.8	2.14	0.0063	4.709411
Molecular function	Catalytic activity	3824	5371	94	66.07	1.42	0.0005	4.687463
Molecular function	Hydrolase activity, acting on acid anhydrides	16817	802	21	9.86	2.13	0.0063	4.687405
Molecular function	Purine ribonucleoside triphosphate binding	35639	1829	38	22.5	1.69	0.0063	3.719114
Molecular function	Purine nucleoside binding	1883	1841	38	22.65	1.68	0.0063	3.697108
Molecular function	Purine ribonucleoside binding	32550	1838	38	22.61	1.68	0.0063	3.697108
Molecular function	Ribonucleoside binding	32549	1842	38	22.66	1.68	0.0063	3.697108
Molecular function	Nucleoside binding	1882	1852	38	22.78	1.67	0.0068	3.61971
Molecular function	Purine ribonucleotide binding	32555	1864	38	22.93	1.66	0.0073	3.546884
Cellular component	Synapse	45202	489	28	5.45	5.14	3.35E-11	53.84127
Cellular component	Mitochondrial respiratory chain	5746	69	8	0.77	10.41	6.79E-06	53.80024

Table 2 | Continued


GO Class	GO Term	GO ID	С	Ε	0	R	Р	н
Cellular component	Neuron projection	43005	651	33	7.25	4.55	1.02E-11	50.01087
Cellular component	Synaptic vesicle	8021	105	10	1.17	8.55	2.14E-06	48.47496
Cellular component	Axon	30424	286	19	3.19	5.96	8.47E-09	48.10981
cellular component	Respiratory chain	70469	76	8	0.85	9.45	1.32E-05	46.11058
Cellular component	Clathrin-coated vesicle membrane	30665	110	10	1.23	8.16	3.21E-06	44.82692
Cellular component	Vesicle membrane	12506	355	21	3.96	5.31	8.47E-09	42.86294
Cellular component	Cytoplasmic vesicle membrane	30659	342	20	3.81	5.25	2.52E-08	39.89265
Cellular component	Cytoplasm	5737	9130	170	101.72	1.67	1.52E-24	39.77632
Cellular component	Cytoplasmic part	44444	6772	143	75.45	1.9	1.86E–21	39.38793
Cellular component	Clathrin-coated vesicle	30136	207	14	2.31	6.07	7.60E–07	37.14346
Cellular component	Cell projection	42995	1230	45	13.7	3.28	2.51E-11	34.76907
Cellular component	Coated vesicle membrane	30662	150	11	1.67	6.58	6.79E-06	34.0063
Cellular component	Cytoplasmic vesicle part	44433	401	21	4.47	4.7	6.16E-08	33.88897
Cellular component	Cytosol	5829	2372	69	26.43	2.61	4.11E-13	32.32787
Cellular component	Coated vesicle	30135	254	15	2.83	5.3	1.44E-06	30.96068
Cellular component	Mitochondrion	5739	1525	48	16.99	2.83	5.17E-10	26.28082
Cellular component	Synapse part	44456	370	18	4.12	4.37	1.46E-06	25.50178
Cellular component	Membrane-bounded vesicle	31988	883	32	9.84	3.25	4.82E-08	23.7801
Cellular component	Mitochondrial inner membrane	5743	354	17	3.94	4.31	3.58E-06	23.47276
Cellular component	Cytoplasmic membrane-bounded vesicle	16023	862	31	9.6	3.23	8.13E-08	22.90041
Cellular component	Mitochondrial part	44429	744	27	8.29	3.26	5.82E–07	20.32635
Cellular component	Organelle inner membrane	19866	384	17	4.28	3.97	1.01E-05	19.83284
Cellular component	Vesicle	31982	970	32	10.81	2.96	3.20E-07	19.22476
Cellular component	Cytoplasmic vesicle	31410	928	31	10.34	3	3.93E-07	19.21682
Cellular component	Intracellular part	44424	12237	179	136.34	1.31	2.42E-13	16.5272
Cellular component	Intracellular	5622	12564	180	139.98	1.29	1.32E-12	15.32446
Cellular component	Organelle membrane	31090	2373	57	26.44	2.16	8.13E-08	15.3142
Cellular component	Intracellular organelle part	44446	6725	120	74.93	1.6	5.80E-10	14.77852
Cellular component	Organelle part	44422	6812	120	75.9	1.58	1.42E-09	13.97938
Cellular component	Cytoskeleton	5856	1790	45	19.94	2.26	1.06E-06	13.50281
Cellular component	Protein complex	43234	3278	70	36.52	1.92	9.89E-08	13.44922
Cellular component	Cell part	44464	14643	189	163.15	1.16	1.90E-10	11.27665
Cellular component	Cell	5623	14644	189	163.16	1.16	1.90E-10	11.27665
Cellular component	Macromolecular complex	32991	3864	76	43.05	1.77	5.44E-07	11.08799
Cellular component	Intracellular organelle	43229	10636	155	118.5	1.31	8.09E-08	9.290587
Cellular component	Organelle	43226	10651	155	118.67	1.31	8.13E-08	9.287781
Cellular component	Intracellular membrane-bounded organelle	43231	9587	138	106.82	1.29	1.32E-05	6.29446
Cellular component	Membrane-bounded organelle	43227	9598	138	106.94	1.29	1.36E-05	6.277735

GO term annotation of the cortical proteins possessing BTBR:WT iTRAQ expression ratios < 1.2 or <0.8 were created using WebGestalt. Each GO term group significantly populated (p<0.05) by at least two independent proteins are depicted. For each GO Term group the specific GO term ID, number of total proteins in the curated GO term cluster (C), the number of observed experimental proteins in the GO term group (O), the expected number of proteins in the group based on whole-genome background frequency (E), the GO term group enrichment factor (R), the GO term enrichment probability (P) and the hybrid score ($R^* - \log_{10} P$) are indicated (H).

both WT and BTBR mice significantly preferred closed arms to open arms (**Figure 1J**). Motor coordination, assessed using a Rotarod test was similar in both groups (**Figure 1K**).

ALTERED PROTEIN EXPRESSION IN CNS OF AGED BTBR MICE

Cortical and hippocampal western blotting of proteins, selected for their ability to indicate alterations of neurosynaptic activity, was employed to detect potential expression differences between aged WT and BTBR mice. Our panel of neurosynaptic factors analyzed in cortical tissue is indicated in **Figure 2A**. No significant difference between WT and BTBR pro-BDNF (brain-derived neurotrophic factor) levels was detected (**Figure 2B**), whereas a significant decreased in BTBR mature BDNF was observed compared to WT (**Figure 2C**). Levels of phosphorylated TrkB receptor

were similar in WT and BTBR cortex (**Figure 2D**) while the total TrkB expression was significantly lower in BTBR mice compared to WT (**Figure 2E**). No significant differences in Akt1 expression was noted in the BTBR model compared to WT (**Figure 2F**). Levels of phosphorylated synapsin 1 (**Figure 2G**), but not total synapsin 1 (**Figure 2H**) were significantly elevated in BTBR mice compared to WT. Expression of both synaptophysin (**Figure 2I**) and PSD95 (**Figure 2J**) was not affected in BTBR mice, while both spinophilin (**Figure 2K**) and NeuN (**Figure 2L**) levels were significantly elevated in BTBR mice compared to WT.

In the hippocampus we again found no significant differences in the levels of pro-BDNF between BTBR and WT (**Figure 3B**) that was coincident with a significant reduction in extant BDNF levels (**Figure 3C**). Phosphorylated TrkB expression was unchanged in BTBR mice compared to WT (**Figure 3D**), while there was a trend, similar to that in the cortex, to reductions of total TrkB receptor expression in the BTBR mice (**Figure 3E**). As with the cortex no significant alterations in Akt1 were observed (**Figure 3F**). Significant potentiation of both phosphorylated (**Figure 3G**) and non-phosphorylated synapsin 1 (**Figure 3H**) expression levels was seen in the BTBR hippocampus. In accordance with the cortical data we found no significant BTBR-induced changes in the hippocampal expression of synaptophysin (**Figure 3I**) or PSD95 (**Figure 3J**). Levels of both spinophilin (**Figure 3K**) and NeuN (**Figure 3L**) were again significantly potentiated in the BTBR mice, mirroring our previous cortical data.

SYSTEMIC ANALYSIS OF BTBR CENTRAL NERVOUS PROTEIN EXPRESSION

To gain an unbiased appreciation of the multiple tissue protein expression pattern changes generated in the BTBR mice compare to WT we applied quantitative isobaric mass-tag labeling (iTRAQ) to cortical and hippocampal tissue extracts. In the cortex we identified and generated relative expression profiles for 674 proteins (**Figure 4A**: Table S1), while in the hippocampus 656 proteins were identified and quantified in BTBR mice (**Figure 4B**: Table S2). Log₂-transformed iTRAQ expression ratios were employed to generate snake plot graphs of individual proteins. To initially validate some of the iTRAQ data we chose three random proteins, Rab3A, CaMKIID and Cplx1 and found that at the western level of detection our results were comparable to our iTRAQ expression ratio data (**Figures 4C,D**).

GENE ONTOLOGY BIOINFORMATIC ANALYSIS OF BTBR-SPECIFIC ALTERED PROTEINS

Using a standard arbitrary cut-off of >1.2 (elevated in BTBR vs. WT) or <0.8 (reduced in BTBR vs. WT) for the iTRAQ

KEGG pathway	С	Ε	0	R	Р	н
Glutathione metabolism	50	2	0.07	27.38	0.0188	47.25356
MTOR signaling pathway	52	2	0.08	26.33	0.0188	45.44142
Arginine and proline metabolism	54	2	0.08	25.35	0.0188	43.7501
Shigellosis	61	2	0.09	22.44	0.0188	38.7279
Renal cell carcinoma	70	2	0.1	19.56	0.0188	33.75747
Chronic myeloid leukemia	73	2	0.11	18.75	0.0188	32.35954
Progesterone-mediated oocyte maturation	86	2	0.13	15.92	0.0188	27.47541
Gap junction	90	2	0.13	15.21	0.0188	26.25006
Melanogenesis	101	2	0.15	13.56	0.0192	23.27844
GnRH signaling pathway	101	2	0.15	13.56	0.0192	23.27844
Oocyte meiosis	112	2	0.16	12.22	0.0192	20.97806
Leukocyte transendothelial migration	116	2	0.17	11.8	0.0192	20.25705
Vascular smooth muscle contraction	116	2	0.17	11.8	0.0192	20.25705
Neurotrophin signaling pathway	127	2	0.19	10.78	0.0192	18.50601
Spliceosome	127	2	0.19	10.78	0.0192	18.50601
Tight junction	132	2	0.19	10.37	0.0192	17.80217
Hepatitis C	134	2	0.2	10.22	0.0192	17.54466
Natural killer cell mediated cytotoxicity	136	2	0.2	10.07	0.0192	17.28716
Insulin signaling pathway	138	2	0.2	9.92	0.0192	17.02965
Alzheimer's disease	167	2	0.24	8.2	0.0261	12.98355
Chemokine signaling pathway	189	2	0.28	7.24	0.0313	10.89226
Metabolic pathways	1130	6	1.65	3.63	0.0188	6.264807

KEGG signaling pathway annotation of the cortical proteins possessing BTBR:WT iTRAQ expression ratios < 1.2 or < 0.8 was created using WebGestalt. Each KEGG pathway significantly populated (p < 0.05) by at least two independent proteins are depicted. For each populated KEGG pathway the number of total proteins in the curated KEGG pathway (C), the number of observed experimental proteins in the KEGG pathway (O), the expected number of proteins in the pathway based on whole-genome background frequency (E), the KEGG pathway enrichment factor (R), the KEGG pathway enrichment probability (P) and the hybrid score ($R^* - \log_{10} P$) are indicated (H).

ratios for differentially expressed proteins between BTBR and WT mice we investigated the functional clustering of the BTBRspecific protein changes into Gene Ontology term groups. Analysis of the differentially-regulated [elevated (<1.2) and reduced (<0.8)] proteins in the BTBR cortex we found a strong GO-biological process clustering of endoplasmic reticular, vesicular transport and neurotransmission related functions (Table 1). No GO-molecular function annotation was achieved with the cortical data however. With respect to GO-cellular compartment analysis we found the differential BTBR proteins were strongly associated with endocytic activity, neuronal outgrowth and architecture as well as mitochondrial metabolic activity (Table 1). GO-biological process analysis of the differential BTBR hippocampal protein set indicated a strong bias toward neuronal synaptic secretion, neuronal plasticity, metabolic activity and inter-cellular contact (Table 2). GOcellular compartment interrogation of the hippocampal dataset revealed a strong bias for protein interactions in the synaptic cleft, clathrin-coated vesicles and mitochondrial-associated metabolic areas (Table 2). GO-molecular function annotation was evident with the hippocampal data and revealed the presence of GO groups associated with malate metabolism, redox activity, synaptic vesicle docking and structural modeling (Table 2).

SIGNALING PATHWAY ANALYSIS OF DIFFERENTIALLY REGULATED BTBR-SPECIFIC PROTEINS

While GO annotation indicates some degree of functional commonality between groups of proteins, associating multiple proteins with classically-identified molecular signaling paradigms provides additional functional information regarding the potential physiological ramifications of specific group of differentiallyregulated factors. We therefore performed both KEGG and Ingenuity-base pathway analysis upon our cortical and hippocampal BTBR protein sets. Inspecting the top ten highest scoring KEGG pathways from cortical proteins (Figure 5A: Table 3) a strong population of metabolic (Glutathione metabolism, Insulin signaling pathway, Metabolic pathways), neurotransmission/degenerative (Neurotrophic signaling pathway, Alzheimer's disease) and ultrastructural (Gap junction, Tight junction, Spliceosome) signaling pathways was evident. Applying the same analysis to the hippocampus an intense population of signaling systems linked to oxidative metabolism [Oxidative phosphorylation, Pyruvate metabolism, Citrate cycle (TCA cycle)] and central neurodegeneration (Alzheimer's disease, Huntington's disease, Parkinson's disease, Long-term potentiation) was clear (Figure 5B: Table 4). Extraction of potential physiological meaning from complex data sets is best performed using multiple informatics tools. Therefore, we also sought interpretation of the potential

Table 4 | KEGG Pathway analysis for hippocampal proteins altered in BTBR mice compared to WT controls.

KEGG pathway	С	Ε	0	R	Р	н
Oxidative phosphorylation	132	15	0.61	24.63	1.42 <i>E</i> –15	365.699
Alzheimer's disease	167	17	0.77	22.06	1.03 <i>E</i> –16	352.676
Huntington's disease	183	18	0.84	21.32	2.92 <i>E</i> –17	352.518
Parkinson's disease	130	12	0.6	20	1.88 <i>E</i> –11	214.516
Long-term potentiation	70	8	0.32	24.77	1.74 <i>E</i> –08	192.201
Gastric acid secretion	74	8	0.34	23.43	2.34 <i>E-</i> 08	178.789
Collecting duct acid secretion	27	4	0.12	32.11	4.01 <i>E</i> -05	141.183
Pyruvate metabolism	40	5	0.18	27.09	7.57 <i>E–</i> 06	138.725
Metabolic pathways	1130	37	5.21	7.1	5.38 <i>E</i> –19	129.711
GnRH signaling pathway	101	8	0.47	17.17	2.19 <i>E</i> –07	114.344
Oocyte meiosis	112	8	0.52	15.48	4.04 <i>E</i> -07	98.9732
Calcium signaling pathway	177	10	0.82	12.24	1.14 <i>E</i> –07	84.9834
Vasopressin-regulated water reabsorption	44	4	0.2	19.7	0.0002	72.8697
Endocytosis	201	10	0.93	10.78	3.03 <i>E</i> -07	70.2700
Citrate cycle (TCA cycle)	30	3	0.14	21.67	0.001	65.01
Butanoate metabolism	30	3	0.14	21.67	0.001	65.01
Propanoate metabolism	32	3	0.15	20.32	0.001	60.96
Alanine, aspartate and glutamate metabolism	32	3	0.15	20.32	0.001	60.96
Melanogenesis	101	6	0.13	12.87	4.15 <i>E</i> –05	56.3957
Vibrio cholerae infection	54	4	0.25	16.05	0.0004	54.5369
Shigellosis	61	4	0.23	14.21	0.0007	44.8311
-	150	4	0.28		4.01 <i>E</i> –05	
Nnt signaling pathway	89	5		10.11		44.4522
Salivary secretion			0.41	12.18	0.0003	42.9086
Gap junction	90	5	0.42	12.04	0.0003	42.4154
Beta-Alanine metabolism	22	2	0.1	19.7	0.0071	42.3302
Glioma	65	4	0.3	13.34	0.0007	42.0863
Neurotrophin signaling pathway	127	6	0.59	10.24	0.0001	40.96
Valine, leucine and isoleucine degradation	44	3	0.2	14.78	0.0023	38.9936
	44	3	0.2	14.78	0.0023	38.9936
Epithelial cell signaling in Helicobacter pylori infection	68	4	0.31	12.75	0.0009	38.8334
PPAR signaling pathway	70	4	0.32	12.38	0.0009	37.70648
Long-term depression	70	4	0.32	12.38	0.0009	37.70648
Bile secretion	71	4	0.33	12.21	0.0009	37.1887
Cardiac muscle contraction	77	4	0.36	11.26	0.0012	32.8884
Phosphatidylinositol signaling system	78	4	0.36	11.11	0.0012	32.4503
Pentose phosphate pathway	27	2	0.12	16.05	0.0103	31.8939
Amyotrophic lateral sclerosis (ALS)	53	3	0.24	12.27	0.0036	29.9841
ErbB signaling pathway	87	4	0.4	9.96	0.0016	27.8469
nositol phosphate metabolism	57	3	0.26	11.41	0.0043	27.0021
Regulation of actin cytoskeleton	213	7	0.98	7.12	0.0003	25.0829
Glycolysis/Gluconeogenesis	65	3	0.3	10	0.0057	22.4412
Prion diseases	35	2	0.16	12.38	0.0158	22.3006
African trypanosomiasis	35	2	0.16	12.38	0.0158	22.3006
Pancreatic secretion	101	4	0.47	8.58	0.0026	22.1795
Adipocytokine signaling pathway	68	3	0.31	9.56	0.0064	20.9729
Bacterial invasion of epithelial cells	70	3	0.32	9.29	0.0066	20.2564
Renal cell carcinoma	70	3	0.32	9.29	0.0066	20.2564
Vascular smooth muscle contraction	116	4	0.54	7.47	0.0039	17.9947
Antigen processing and presentation	76	3	0.35	8.55	0.0081	17.8824
Purine metabolism	162	5	0.75	6.69	0.0023	17.65004
Protein processing in endoplasmic reticulum	165	5	0.76	6.57	0.0023	17.3334
Lysosome	121	4	0.56	7.16	0.0044	16.8728

Table 4 | Continued

KEGG pathway	С	Ε	0	R	Р	н
Spliceosome	127	4	0.59	6.83	0.005	15.71603
Chemokine signaling pathway	189	5	0.87	5.73	0.0036	14.00239
Rheumatoid arthritis	91	3	0.42	7.14	0.0127	13.53884
Fc gamma R-mediated phagocytosis	94	3	0.43	6.92	0.0136	12.91591
Taste transduction	52	2	0.24	8.34	0.0313	12.54716
MAPK signaling pathway	268	6	1.24	4.85	0.0032	12.10002
Arginine and proline metabolism	54	2	0.25	8.03	0.0325	11.94958
Pathogenic Escherichia coli infection	56	2	0.26	7.74	0.0342	11.34664
Chagas disease (American trypanosomiasis)	104	3	0.48	6.25	0.017	11.05969
Amoebiasis	106	3	0.49	6.13	0.0177	10.73992
Toxoplasmosis	132	3	0.61	4.93	0.0309	7.444505
Natural killer cell mediated cytotoxicity	136	3	0.63	4.78	0.0324	7.119595
Phagosome	153	3	0.71	4.25	0.0416	5.868853

KEGG signaling pathway annotation of the hippocampal proteins possessing BTBR:WT iTRAQ expression ratios < 1.2 or < 0.8 was created using WebGestalt. Each KEGG pathway significantly populated (p < 0.05) by at least two independent proteins are depicted. For each populated KEGG pathway the number of total proteins in the curated KEGG pathway (C), the number of observed experimental proteins in the KEGG pathway (O), the expected number of proteins in the pathway based on whole-genome background frequency (E), the KEGG pathway enrichment factor (R), the KEGG pathway enrichment probability (P) and the hybrid score (R * $-\log_{10} P$) are indicated (H).

signaling pathways enriched in the BTBR tissues using canonical signaling pathway analysis (Ingenuity). Canonical signaling analysis of the cortex revealed a strong bias toward cytokine signaling (*Leptin signaling in obesity*, *JAK family kinases in IL-6-type signaling*), neurodegenerative disease related activity (*Amyloid processing*, *CDK5 signaling*, *CNTF signaling*) and energy metabolism (IGF-1 signaling) (**Figure 5C: Table 5**). Similar pathway processing of hippocampal data again revealed a strong prediction of metabolism-related activity (*Oxidative phosphorylation*, *Mitochondrial dysfunction*, *G protein signaling mediated by Tubby*), neurodegenerative activity (*Huntington's disease signaling*) and interestingly, given the strong presentation of, *Melanocyte development and pigmentation signaling*' in the cortex (**Figure 5C**), melatonin-related activity (*Melatonin signaling*) (**Figure 5D: Table 6**).

BTBR-REGULATED COHERENT PROTEIN REGULATION PATTERNS

Along with our global analysis of protein set data from the two tissues we also investigated the predicted functional nature of the divergent expression polarity subsets of BTBR-specific proteins uniquely regulated in either the cortex or hippocampus. Using VennPlex (Figure 6A: Table 7) (Cai et al., 2013) we were able to identify multiple groups of coherently-controlled proteins across multiple CNS tissues. Using our previously developed informatics application, Textrous!, we generated physiological predictions extracted from multiple databases using latent semantic analysis (Chen et al., 2013). Using the collective processing capacity of Textrous!, which generates interactive hierarchical word-clouds, we found that the tissue-unique up or down regulated sets of proteins generated quite distinct functional signatures in the cortex or hippocampus. For example, the specifically upregulated proteins in the cortex were strongly focused into activity controlling excitatory amino acid synaptic activity (Figure S1A: Table S3), while the downregulated cortical only proteins demonstrated a strong link to a reduction of protein kinase activity (**Figure S1B**: Table S4). With respect to the hippocampus, the upregulated protein set appeared to be linked to increases in heat-shock factors and synaptic pathophysiology (**Figure S2A**: Table S5), while the downregulated hippocampal protein set suggested a reduction in oligodendrocyte generation and CNS myelination (**Figure S2B**: Table S6).

In addition to our global data set informatics interpretation we also sought to investigate the function of coherentlyregulated groups of BTBR-associated proteins observed across multiple tissues. We therefore focused on the subset of proteins (12 upregulated; 4 downregulated: Table 7) coherently altered in a BTBR-specific manner in both the cortex and hippocampus (Figure 6B). To explore the potential functional connection between these select proteins we applied our novel informatic platform Textrous! (Chen et al., 2013). Textrous! allows the extraction of functional data, using latent semantic analysis (LSA), from even the smallest of datasets. Textrous! is a unique LSA tool as it possesses two forms of functional data output, i.e., collective and individual processing. Collective processing of the coherent BTBR protein set results in the creation of a hierarchical word-cloud revealing a strong and novel link between the BTBR ASD phenotype and N-WASP (neuronal Wiskott-Aldrich Syndrome protein) mediated activity (Figure 6C: Table 8). In addition there was a second, less strong demonstration of the importance of inherited genomic activity in ASD phenotypes. The individual processing mode in Textrous! also investigates the strongest individual proteinterm relationships within a specific protein subset (Figure 6D). Again with this distinct analytical output we observed a strong relationship between cytoskeletal remodeling activity (f-actin, scaffolding, n-wasp, filopodia) and proteins such as Itsn1 (intersectin 1), Ap3b2 (adaptor-related protein complex 3, beta 2 subunit), Dbnl (drebrinlike) and Ermn (Ermin, ERM-like

Table 5 | Ingenuity Canonical Signaling Pathway analysis of proteins differentially regulated in the cortex of aged BTBR compared to WT C

Table 5 | Continued

differentially regulated in the controls.	cortex of aged	BIBK comp	ared to WI	Canonical pathways	log(<i>p</i> -value)	Ratio	10 × Hybrid
Canonical pathways	log(p-value)	Ratio	10 × Hybrid	Relaxin Signaling	1.98E + 00	1.83E-02	0.36234
				FGF Signaling	1.49E + 00	2.13E-02	0.31737
Leptin Signaling in Obesity	3.97E + 00	4.71E-02	1.86987	Gap Junction Signaling	1.83E + 00	1.66E-02	0.30378
Role of JAK family kinases in	2.52E + 00	7.14E–02	1.79928	Apoptosis Signaling	1.47E + 00	2.00E-02	0.294
IL-6-type Cytokine Signaling				Acute Phase Response	1.74E + 00	1.66E-02	0.28884
Amyloid Processing	3.20E + 00	4.92E-02	1.5744	Signaling			
Melanocyte Development and Pigmentation Signaling	3.73E + 00	4.21E-02	1.57033	G-Protein Coupled Receptor Signaling	1.99E + 00	1.45E-02	0.28855
Gαi Signaling	3.16E + 00	2.96E-02	0.93536	Mouse Embryonic Stem Cell	1.41E + 00	2.02E-02	0.28482
Dopamine Receptor Signaling	2.70E + 00	3.12E-02	0.8424	Pluripotency			
CDK5 Signaling	2.52E + 00	3.09E-02	0.77868	Neuregulin Signaling	1.47E + 00	1.92E-02	0.28224
α-Adrenergic Signaling	2.52E + 00	2.75E-02	0.693	FAK Signaling	1.48E + 00	1.89E-02	0.27972
IGF-1 Signaling	2.40E + 00	2.80E-02	0.672	Chronic Myeloid Leukemia	1.42E + 00	1.89E-02	0.26838
CNTF Signaling	1.90E + 00	3.51E-02	0.6669	Signaling			
Neuropathic Pain Signaling In	2.36E + 00	2.75E-02	0.649	VEGF Signaling	1.43E + 00	1.83E-02	0.26169
Dorsal Horn Neurons				IL-1 Signaling	1.42E + 00	1.83E-02	0.25986
G Beta Gamma Signaling	2.50E + 00	2.48E-02	0.62	Sertoli Cell-Sertoli Cell	1.69E + 00	1.52E-02	0.25688
IL-2 Signaling	1.88E + 00	3.28E-02	0.61664	Junction Signaling			
Thrombopoietin Signaling	1.85E + 00	3.12E-02	0.5772	PPARα/RXRα Activation	1.69E + 00	1.50E-02	0.2535
Renin-Angiotensin Signaling	2.26E + 00	2.38E-02	0.53788	HGF Signaling	1.37E + 00	1.80E-02	0.2466
Gαs Signaling	2.22E + 00	2.40E-02	0.5328	Mitochondrial Dysfunction	1.76E + 00	1.40E-02	0.2464
Role of JAK1 and JAK3 in γc	1.75E + 00	2.94E-02	0.5145	Ephrin Receptor Signaling	1.70E + 00	1.43E-02	0.2431
Cytokine Signaling				Role of NFAT in Cardiac	1.66E + 00	1.44E-02	0.23904
GM-CSF Signaling	1.74E + 00	2.94E-02	0.51156	Hypertrophy			
Clathrin-mediated Endocytosis Signaling	2.49E + 00	2.02E-02	0.50298	Calcium Signaling Integrin Signaling	1.67E + 00 1.57E + 00	1.38E–02 1.44E-02	0.23046 0.22608
Regulation of Cellular	1.82E + 00	2.74E-02	0.49868	Leukocyte Extravasation	1.56E + 00	1.44E-02	0.22308
Mechanics by Calpain	1.022 00	2.712 02	0.10000	Signaling	1.50L + 00	1.432-02	0.22500
Protease				Breast Cancer Regulation by	1.59E + 00	1.40E-02	0.2226
CREB Signaling in Neurons	2.58E + 00	1.93E-02	0.49794	Stathmin1	1.002 00	1.102 02	0.2220
Glutamate Receptor Signaling	1.79E + 00	2.78E-02	0.49762	Fc Epsilon RI Signaling	1.30E + 00	1.71E-02	0.2223
Synaptic Long Term	2.14E + 00	2.31E-02	0.49434	Nitric Oxide Signaling in the	1.36E + 00	1.60E-02	0.2176
Potentiation				Cardiovascular System			012170
Antiproliferative Role of	1.73E + 00	2.78E-02	0.48094	NGF Signaling	1.32E + 00	1.64E-02	0.21648
Somatostatin Receptor 2				Axonal Guidance Signaling	1.86E + 00	1.03E-02	0.19158
Agrin Interactions at	1.68E + 00	2.86E-02	0.48048	Cardiac Hypertrophy	1.42E + 00	1.20E-02	0.1704
Neuromuscular Junction				Signaling			
JAK/Stat Signaling	1.69E + 00	2.82E-02	0.47658	Molecular Mechanisms of	1.58E + 00	1.03E-02	0.16274
Corticotropin Releasing	2.21E + 00	2.07E-02	0.45747	Cancer			
Hormone Signaling				Colorectal Cancer Metastasis	1.34E + 00	1.12E-02	0.15008
Neurotrophin/TRK Signaling	1.68E + 00	2.63E-02	0.44184	Signaling			
P2Y Purigenic Receptor Signaling Pathway	2.12E + 00	2.08E-02	0.44096	Protein Kinase A Signaling	1.43E + 00	9.78E-03	0.139854
Renal Cell Carcinoma	1.65E + 00	2.53E-02	0.41745	Canonical signaling pathway an	notation of the	cortical prote	ins possessing
Signaling				BTBR:WT iTRAQ expression rati	ios <1.2 or <0.8	was created	using Ingenuity
Insulin Receptor Signaling	2.03E + 00	2.01E-02	0.40803	Pathway Analysis. Each signaling	pathway signific	antly populate	ed (p < 0.05) by
Melatonin Signaling	1.65E + 00	2.47E-02	0.40755	at least two independent protei	ns are depicted.	For each pop	ulated signaling
FLT3 Signaling in	1.60E + 00	2.53E-02	0.4048	pathway the $-\log_{10}$ of the enrich			
Hematopoietic Progenitor Cells				and the calculated hybrid score , depicted.	[10 * (enrichmen	t ratio * –log	₁₀ (p-value))] are
GNRH Signaling		1.96E–02	0.4018				
	2.05E + 00				_		
cAMP-mediated signaling	2.23E + 00	1.77E-02	0.39471	protein) with the BTBR			•
Ephrin B Signaling	1.61E + 00	2.44E-02	0.39284	relationships between BTI			
Prolactin Signaling	1.62E + 00	2.38E-02	0.38556	found, e.g., myelin-associa	ated activity [Lancl1 (La	nC bacterial
BMP signaling pathway	1.59E + 00	2.33E-02	0.37047	lantibiotic synthetase con	nponent C)-li	ike 1 and	Ermn] and

(Continued)

inherited neuronal atrophy and impairment [Prrt2 (proline-rich

Table 6 | Ingenuity Canonical Signaling Pathway analysis of proteins differentially regulated in the hippocampus of aged BTBR compared to WT controls.

Table 6 | Continued

to WT controls.							10 × Hybrid
Canonical pathways	–log(<i>p</i> -value)	Ratio	10 × Hybrid	D-myo-inositol (1,4,5,6)-tetrakisphosphate	2.86E + 00	4.17E-02	1.19262
Oxidative phosphorylation	1.27E + 01	1.25E-01	15.875	biosynthesis			
Vitochondrial dysfunction	1.33E + 01	8.37E-02	11.1321	D-myo-inositol	2.86E + 00	4.17E-02	1.19262
GABA receptor signaling	5.19E + 00	1.07E-01	5.5533	(3,4,5,6)-tetrakisphosphate			
Glutamate degradation III (via	3.02E + 00	1.67E-01	5.0434	biosynthesis			
4-aminobutyrate)				Methylmalonyl pathway	1.41E + 00	8.33E-02	1.17453
GM-CSF signaling	4.44E + 00	8.82E-02	3.91608	Neuropathic pain signaling in	2.50E + 00	4.59E-02	1.1475
Huntington's disease signaling	6.46E + 00	5.16E-02	3.33336	dorsal horn neurons			
G protein signaling mediated	3.47E + 00	9.09E-02	3.15423	G beta gamma signaling	2.73E + 00	4.13E-02	1.12749
by Tubby				nNOS signaling in neurons	1.95E + 00	5.77E-02	1.12515
Melatonin signaling	4.18E + 00	7.41E–02	3.09738	Signaling by rho family	3.24E + 00	3.36E-02	1.08864
RhoA signaling	4.52E + 00	6.25E-02	2.825	GTPases	1415 00	7005 00	1 00 4 2 0
Lipid antigen presentation by CD1	2.68E + 00	1.00E-01	2.68	Arginine degradation I (arginase pathway)	1.41E + 00	7.69E–02	1.08429
Regulation of actin-based	3.77E + 00	6.52E-02	2.45804	Ephrin B signaling	2.21E + 00	4.88E-02	1.07848
motility by rho Role of NFAT in cardiac	4.87E + 00	4.78E–02	2.32786	Purine nucleotides de novo biosynthesis II	2.22E + 00	4.76E–02	1.05672
hypertrophy				Leptin signaling in obesity	2.19E + 00	4.71E-02	1.03149
CTLA4 Signaling in cytotoxic T	3.63E + 00	6.25E-02	2.26875	Semaphorin signaling in	1.83E + 00	5.56E-02	1.01748
ymphocytes				neurons			
FCA Cycle II (Eukaryotic)	2.90E + 00	7.50E-02	2.175	Inosine-5'-phosphate	1.53E + 00	6.25E-02	0.95625
Breast cancer regulation by	4.65E + 00	4.67E-02	2.17155	biosynthesis II		0.045.00	
stathmin1				Actin cytoskeleton signaling	2.88E + 00	3.31E-02	0.95328
Chemokine signaling	3.22E + 00	6.67E-02	2.14774	3-phosphoinositide	2.57E + 00	3.70E-02	0.9509
Synaptic long term	3.72E + 00	5.38E-02	2.00136	degradation	2 425 + 00	2.015.02	0.05010
potentiation				Rac signaling	2.43E + 00	3.91E-02	0.95013
Guanine and guanosine	1.71E + 00	1.11E-01	1.8981	iCOS-iCOSL signaling in T helper cells	2.38E + 00	3.97E-02	0.94486
salvage I				Dopamine receptor signaling	2.17E + 00	4.17E-02	0.90489
CREB signaling in neurons	4.21E + 00	4.35E-02	1.83135	Molybdenum cofactor	1.41E + 00	6.25E-02	0.88125
3-alanine degradation I	1.71E + 00	1.00E-01	1.71	biosynthesis	1.412 + 00	0.201-02	0.00120
Axonal guidance signaling	5.19E + 00	3.29E-02	1.70751	Aldosterone signaling in	2.38E + 00	3.55E-02	0.8449
GNRH signaling	3.51E + 00	4.58E-02	1.60758	epithelial cells			
Actin nucleation by ARP-WASP complex	2.65E + 00	5.97E–02	1.58205	CD28 signaling in T helper cells	2.23E + 00	3.68E-02	0.82064
1-Aminobutyrate degradation I	1.53E + 00	1.00E-01	1.53	B cell receptor signaling	2.30E + 00	3.43E-02	0.7889
Superpathway of inositol	3.94E + 00	3.85E-02	1.5169	2-oxobutanoate degradation l	1.32E + 00	5.88E-02	0.77616
phosphate compounds				PKCe signaling in T	2.23E + 00	3.47E-02	0.77381
Creatine-phosphate biosynthesis	1.32E + 00	1.11E–01	1.4652	lymphocytes Virus entry via endocytic	1.93E + 00	3.96E-02	0.76428
Pyruvate fermentation to actate	1.32E + 00	1.11E-01	1.4652	pathways P2Y purigenic receptor		3.47E-02	0.74258
D-myo-inositol-5-phosphate netabolism	3.32E + 00	4.32E-02	1.43424	signaling pathway	2.14E + 00		
MLP signaling in neutrophils	3.13E + 00	4.55E-02	1.42415	D-myo-inositol (1,4,5)-trisphosphate	1.48E + 00	5.00E-02	0.74
Vethylglyoxal degradation I	1.53E + 00	9.09E-02	1.39077	biosynthesis			
Clathrin-mediated endocytosis	3.29E + 00	4.04E-02	1.32916	Dopamine-DARPP32 feedback	2.25E + 00	3.21E-02	0.72225
signaling				in cAMP signaling	2.200 7 00	0.212-02	0.72220
Ephrin receptor signaling	3.45E + 00	3.81E-02	1.31445	PI3K signaling in B	2.05E + 00	3.50E-02	0.7175
Protein kinase A signaling	3.95E + 00	3.18E–02	1.2561	lymphocytes	• • •		-
Thrombin signaling	3.20E + 00	3.79E-02	1.2128	α-Adrenergic signaling	1.95E + 00	3.67E-02	0.71565
3-phosphoinositide	3.10E + 00	3.87E-02	1.1997	Protein ubiquitination pathway	2.41E + 00	2.96E-02	0.71336
piosynthesis				Gluconeogenesis I	1.67E + 00	4.26E-02	0.71142

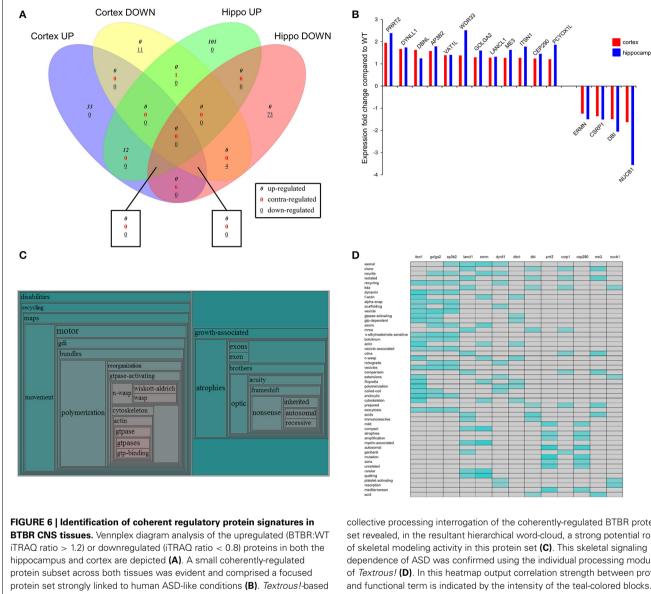
Table 6 | Continued

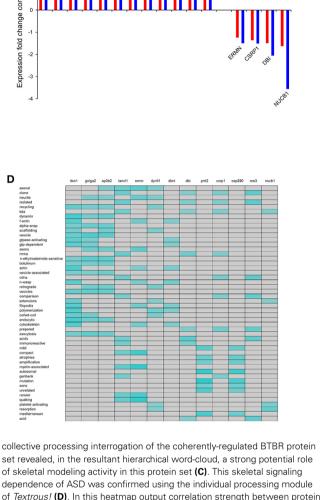
Canonical pathways	–log(<i>p</i> -value)	Ratio	10 × Hybrid
Glutamate receptor signaling	1.69E + 00	4.17E-02	0.70473
G-Protein coupled receptor	2.38E + 00	2.90E-02	0.6902
signaling			
IL-1 signaling	1.87E + 00	3.67E-02	0.68629
Antiproliferative role of	1.60E + 00	4.17E-02	0.6672
somatostatin receptor 2			
Remodeling of epithelial	1.53E + 00	4.29E-02	0.65637
adherens junctions			
JAK/stat signaling	1.54E + 00	4.23E-02	0.65142
Glioma signaling	1.84E + 00	3.54E-02	0.65136
Role of NFAT in regulation of	2.15E + 00	3.00E-02	0.645
the immune response			
Fatty acid β-oxidation I	1.45E + 00	4.44E-02	0.6438
RhoGDI signaling	2.11E + 00	2.97E-02	0.62667
Cardiac β -adrenergic signaling	1.96E + 00	3.16E–02	0.61936
Cardiac hypertrophy signaling	2.15E + 00	2.80E-02	0.602
Relaxin signaling	1.93E + 00	3.05E-02	0.58865
Renal cell carcinoma signaling	1.50E + 00	3.80E-02	0.57
Calcium signaling	2.05E + 00	2.76E-02	0.5658
Phospholipase C signaling	2.06E + 00	2.64E-02	0.54384
Gαq signaling	1.80E + 00	2.92E-02	0.5256
Gαs signaling	1.60E + 00	3.20E-02	0.512
Molecular mechanisms of	2.15E + 00	2.32E-02	0.4988
cancer			
Role of tissue factor in cancer	1.61E + 00	3.08E-02	0.49588
Gap junction signaling	1.71E + 00	2.76E-02	0.47196
p70S6K signaling	1.51E + 00	3.03E-02	0.45753
Androgen signaling	1.60E + 00	2.76E-02	0.4416
Gαi signaling	1.48E + 00	2.96E-02	0.43808
cAMP-mediated signaling	1.65E + 00	2.65E-02	0.43725
PPARα/RXRα activation	1.51E + 00	2.50E-02	0.3775
Insulin receptor signaling	1.38E + 00	2.68E-02	0.36984
eNOS signaling	1.39E + 00	2.58E-02	0.35862
Glucocorticoid receptor	1.35E + 00	2.01E-02	0.27135
signaling			

Canonical signaling pathway annotation of the hippocampal proteins possessing BTBR:WT iTRAQ expression ratios < 1.2 or < 0.8 was created using Ingenuity Pathway Analysis. Each signaling pathway significantly populated (p < 0.05) by at least two independent proteins are depicted. For each populated signaling pathway the $-\log_{10}$ of the enrichment probability (p-value), the enrichment ratio and the calculated hybrid score [10 * (enrichment ratio * $-\log_{10}(p$ -value))] are depicted.

transmembrane protein 2) and Cep290 (centrosomal protein 290)] (Figure 6D).

DISCUSSION


In the present study we evaluated the behavior, synaptic protein alterations and targeted proteomic signatures in the hippocampus and cortex of 15 month old BTBR and WT mice to determine whether the ASD-like phenotype of BTBR mice was resistant to neuronal aging. Thus, we assessed both the behavioral phenotype and proteomic profiles between aged ASD-like mice (abnormal CNS) and aged wild type mice (with a relatively normal CNS). We found that several neurosynaptic proteins were significantly increased in both the hippocampus and cortex of the aged ASDlike mice in comparison to the aged wild type. In particular, the phosphorylated form of the pre-synaptic marker synapsin 1, and the post-synaptic marker spinophilin were increased in both the aged BTBR hippocampus and cortex; PSD95 was significantly elevated in aged BTBR hippocampus. Aged BTBR mice still presented a behavioral phenotype typically observed in young autistic mice, suggesting that the physiological actions underlying the ASD-like condition of the BTBR mice is relatively resistant to aging.


The maintenance of the ASD-phenotype into advanced age in BTBR mice is intriguing because in the normal developing CNS synapses are overproduced but then become pruned in response to neuronal activity during post-natal development (Petit, 1988; Cohen and Greenberg, 2008; Ebert and Greenberg, 2013). It is proposed that autism is caused by dysregulation of the machinery controlling synaptic messenger RNA translation leading to increased synthesis of synaptic proteins and lack of synaptic pruning, in turn inducing a hyperconnectivity and over-reinforcement of neuronal circuits. In fact it is one of the hallmark characteristics of ASD observed in the brains of both mouse models and humans with ASD (Kelleher and Bear, 2008; Gkogkas et al., 2013). Fragile X syndrome, for example which is the leading cause of inherited intellectual disability and ASD (Bhakar et al., 2012), is caused by mutations in FMR1 gene resulting in decreased expression of fragile X mental retardation protein (FMRP). This protein modulates the rate of translational elongation of mRNAs that encode synaptic proteins (Darnell et al., 2011). A decrease in FMRP impairs regulation of synaptic protein expression (Bhakar et al., 2012) and post-natal synapse elimination (Harlow et al., 2010).

As increased synaptic marker expression is associated with the autistic-like mouse phenotype it is not surprising that we found that the BTBR T + tf/j mice maintained their reduced social behavior into old age (Figure 1). This is consistent with the limited human literature that found that social impairments in individuals with ASD persist into adulthood (Ballaban-Gil et al., 1996; Szatmari, 1998; Howlin and Moss, 2012). Although increased synaptic markers have been found to be deleterious for the developing CNS, it is possible that the increased synapses and hyperconnected neuronal circuits be an effective advantage in the aging process where typically nervous system connectivity is degraded through accumulated damage. BDNF and TrkB mRNAs are localized in dendritic spines, thus age-related spine density decreases in older individuals suggest a link between BDNF and TrKB mRNA expression and impaired synaptic connections with aging (Tapia-Arancibia et al., 2008). Indeed decreases in both BDNF and TrkB expression have been documented in the hippocampus and in the neocortex during physiological aging (Phillips et al., 1991; Murray et al., 1994; Connor et al., 1997; Ferrer et al., 1999; Quartu et al., 1999; Hock et al., 2000; Holsinger et al., 2000; Fahnestock et al., 2002; Romanczyk et al., 2002; Tapia-Arancibia et al., 2008; Zhao et al., 2010).

We found that levels of mature BDNF were significantly decreased in the aged BTBR hippocampus and cortex compared with the aged WT (Figures 2A, 3A), suggesting an accelerated

cortex hippocampus

aging phenomena, but did not find a significant change in the overall level of active TrkB receptor (Figures 2D, 3D), in the BTBR mice. In addition, we also found that there was a nonsignificant trend for the increase in the expression in both cortical and hippocampal levels of Akt1, one of the most important downstream targets of TrkB signaling. Thus, via a potentially complex compensatory mechanism, the BTBR mice may have increased their BDNF signaling efficiency and downstream signal transduction capacity compared to WT mice.

Our findings of reduced BDNF in both the hippocampus and cortex in old BTBR mice compared to old WT mice despite seemingly intact memory functioning may be related to this efficiency potentiation of the BDNF-TrkB system in the BTBR mice. These effects may be related to changes in endocytic proteins such as Itsn1, Golga2 and Ap3b2 (Table 7) that may affect the signaling dynamics of the TrkB receptor (Mattson et al., 2004). In addition

it is possible that the elevated levels of various synaptic markers served to protect the aging BTBR brain against age-related declines in cognition often associated with decreased levels of BDNF.

Given the complexity of the ASD, it is unlikely that BDNF signaling and various neuronal cell markers are the only protein products altered in the presence of ASD; thus we performed global quantitative iTRAQ proteomics, coupled to advanced bioinformatics in order to gain a comprehensive, systems-level understanding of potential changes in aged BTBR mice compared to WT counterparts. With respect to current relevant literature we discovered that many of these proteins differentially regulated in the brain of the old BTBR mice demonstrated strong correlations with those altered in humans with neurodevelopmental disabilities (Table S7). Nearly twenty percent of the coherently-regulated proteins across the hippocampus and cortex of aged BTBR mice

also are strongly linked to human ASD phenotypes, suggesting that future investigation of the remaining factors may prove extremely fruitful for autism-related research (**Figure 6B**). With respect to the highly-focused, coherently-regulated protein set (**Figure 6B: Table 7**) Prrt2 was coherently altered in both the hippocampus and cortex of aged BTBR mice compared to aged WT (**Table 7**). Alterations in activity of Prrt2 have been found in the frontal cortex of individuals with autism (Ji et al., 2012) and have also been genetically-associated with ASD (Weber et al., 2013). Vat11 was up-regulated in both the hippocampus and cortex of the old BTBR mice.

We performed functional informatics data clustering to gain a wider appreciation of the signaling phenotype present in aged BTBR mice. Using GO term annotation it was evident in the cortex that considerable alterations in ER (endoplasmic reticulum), vesicular transport, cytoskeletal remodeling, and energy generation were apparent (Figures 4E,F). The functional GO term clustering of differentially expressed proteins in the BTBR hippocampus also indicated a role of energy generation, neurotransmitter release and synaptic activity but did not display a robust skeletal remodeling component (Table 2). We also employed KEGG and Ingenuity Canonical Signaling pathway analysis for the differentially-regulated cortex and hippocampal protein sets. At this higher level of functional interrogation (compared to GO term clustering) we also observed a subtle divergence in tissue behavior, i.e., cortical KEGG pathway analysis demonstrated a strong bias toward energy metabolic and neurotrophic/neuroprotective mechanisms (Figure 5A) while the hippocampus demonstrated a more degenerative phenotype associated with metabolic instabilities and calcium management factors (Figure 5B). Interestingly and to highlight the need for multidimensional informatics analyses for physiological interpretation, the canonical signaling pathway analysis of both tissue datasets revealed additional processes that could affect the ASD phenotype, i.e., the prominence of cytokine signaling activity in the cortex and the identification of the potential role of melatonin function in both CNS tissues (Figures 5C,D).

To further reinforce the importance of applying unbiased informatics for the analysis of complex data associated with a highly nuanced phenotype such as ASD we found that analysis of different subgroups of the data yielded interesting, tissuespecific insights into the effects of aging on ASD. Using our novel *Textrous!* platform we were able to identify differential tissue activity, i.e., enhanced glutamatergic cortical activity coincident with attenuated kinase signaling (**Figure S1**). These cortical changes occurred contemporaneously with an elevation of hippocampal protein misfolding/aggregation coincident with an attenuated CNS myelination and oligodendrocyte functionality (**Figure S2**). Both of these hippocampal processes have been recently associated with dysfunctional brain development (Mitew et al., 2013).

When approaching complex issues such as ASD with a systems-biology approach it is important to maintain this concept of multiple levels of protein interaction, function and hierarchical architecture, i.e., functions can be tissue specific, expression polarity specific while also existing contemporaneously at a level above tissue-or polarity-dependence. For example we found that

Table 7 VennPlex Venn diagram analysis of up and downregulated
proteins across the cortex and hippocampus of BTBR mice compared
to WT controls.

to WI controls.									
Protein	Cortex up	Cortex down	Hippo up	Hippo down					
PRRT2	1.951168338		2.381953722						
DYNLL1	1.672920918		1.737545789						
DBNL	1.626693344		1.24548243						
AP3B2	1.581785753		1.789312776						
VAT1L	1.391942674		1.401775589						
WDR33	1.379833997		2.510567518						
GOLGA2	1.292500223		1.60040989						
LANCL1	1.279121599		1.320074872						
ME3	1.270939623		1.62730561						
ITSN1	1.269638936		1.774926636						
CEP290	1.238621608		1.454207016						
PCYOX1L	1.209317219		1.860882083						
ERMN		-1.243267187		-1.500264003					
CSRP1		-1.365689412		-1.509867503					
DBI		-1.496288514		-2.056916039					
NUCB1		-1.631205729		-3.561025937					
EIF5A	1.517756095			-1.65673365					
MMAA	1.391228352			-1.887879989					
PTPN11	1.247745108			-3.093767449					
ZXDB	1.214676409			-1.393599577					
SLC17A7	1.204082729			-1.315805498					
DPYSL4	1.195193712			-1.314442062					
OAT		-1.307905257	1.362629072						
Ptcd	1.828557315								
PCBP2	1.792502849								
QDPR	1.7625157								
SRSF4	1.533013648								
ADCY2	1.511246891								
NDUFS4	1.47998035								
SLC9A3R1	1.473396618								
LETM1	1.455678341								
PRDX3	1.44243043								
IDH2	1.441010435								
EXOC5	1.41342868								
HNRNPUL2	1.405691244								
PTCD1	1.371753507								
DDX5	1.365841661								
PPP1R9B	1.346708939								
DPP6	1.340020376								
LAP3	1.303333413								
KCNAB2	1.296085587								
SLC12A5	1.252190507								
HOOK3	1.250023514								
COX5A	1.247002966								
WDR1	1.244912709								
GRM2	1.243617897								
CAB39	1.2340405								
RTN3	1.233971862								
TF	1.233243832								
FBXO41	1.231290747								
RAB7A	1.226744118								
	1 01000000								
RTN4 TCP1	1.216638369 1.215498024								

Table 7 | Continued

Table 7 | Continued

PRAA28 121233792 CT7 1367761 CCT3 120248628 SD-C 134784534 CCT3 120248628 SD-C 134784534 COC9 122661385 HSPH1 13378319 COC9 122661385 HSPH1 13378337319 COC9 122661304 ADD2 1338830618 NCL1D -126634541 APA20 1332724755 EXOC05 -1275380097 GDA 132264735 CTTN -126734541 APA20 1332572485 EXOC05 -1275380097 GDA 132264730 VPN1 -136786666 COX7A2 130657661 VPN1 -130786666 COX7A2 130657661 VPN1 -130996788 NPM1 1309597043 CAPMS1 -172604589 NPM1 1309597043 CAPA151 -1726305193 APPC4 129998924 CAPA151 129989824 1300589329 CAPA151 159982711 COX8C 1298998934 STDB1	Table 7 Continued			lable / Continueu						
CCTaL20248028L2061385BCACAL34989149CDGA-12401385H5PH1L33933319CDGA-126573541ADD2L33952385IS-126573541ADD2L33952385IS-126573541DYILL2L32572385IS-126573541OTAL2L32572385IS-126573541CDXAL30857043CTIM-1287911813CDXAL30857043PICALM-1466573966CDXAAL30857043CANKSI-1466573966CDXAAL30857043CANKSI-158905486NRAAL30857043TOMMO-181905486NRAAL30857043TOMMO-181905486NRAAL30857043TOMMO-181905486NRAAL30935935NUCC-181905486NRAAL30935935NUCC-181905486NRAAL20863354NUCA-181905486NRAAL20863354NUCA-181905486NRAAL20863354NUCA-181905486NRAAL2086363NUCA-181905487NARAL2086363NCA-181905486NGTAL2086363NCA-181905487NGNAL2086363NCA-181905486NGTAL2086363NCA-181905486NGTAL2086363NCA-181905487NGTAL2086363NCA-181905487NGTAL2086363NCA-181905486NGTAL2086363NCA-185250589NGTAL2086363NCA <th>Protein</th> <th>Cortex up</th> <th>Cortex down</th> <th>Hippo up</th> <th>Hippo down</th> <th>Protein</th> <th>Cortex up</th> <th>Cortex down</th> <th>Hippo up</th> <th>Hippo down</th>	Protein	Cortex up	Cortex down	Hippo up	Hippo down	Protein	Cortex up	Cortex down	Hippo up	Hippo down
PRDMS1.98502382EAN5.2001.33737339CLDN1-1.260714004MSPI11.33797395CLDN1-1.260714004PAP2421.33797395CLDN1-1.26075566PAP2421.3387236433FE-1.26955566OGDA1.31825433FNO6B-1.289791813CDA1.305561VEP1-1.3176668SNCA1.30557043VEP1-1.4879668SNCA1.30557043VEP1-1.4879668SNCA1.30557043VEP1-1.72644569SNCA1.30557043CANNA-1.91863564SNCA1.30557043CANNA-1.91863364SNCA1.30557043CANNA-1.91863356ARPCA1.29298973SRDPA1.9389524ARPCA1.29298973SRDPA1.640856725CALB11.29298973SRDPA1.640856725CALB11.29298933SRTPAL1.640856725CALB11.292989363SRTPAL1.640856725CALB11.292989363SRTPAL1.640856725CALB11.292989363SRTPAL1.640856725CALB11.292989363SRTPAL1.640856725CALB11.292989363SRTPAL1.640856725CALB11.292989363SRTPAL1.640856725CALB11.292989363SRTPAL1.640856725CALB11.292989363SRTPAL1.640856725CALB11.292946964SRTPAL1.640856725CALB11.292946964SRTPAL1.640856726NERA	PRKAR2B	1.215235782				CCT7			1.3567651	
COQ6 -124961385 H3PH1 132372319 CLDN1 -126931864 AD02 1339723965 NCALD -126931864 DVNLL2 132025436 EXOC6B -1275380067 GDA 1312825433 CTIN -1267311813 IK 13108661 VPI -136764585 SNCA 130857621 PICALM -136573496 SNCA 130557043 CAPNS1 -136573496 SNCA 130567043 CAPNS1 -136557491 SNCA 130557043 CAPNS1 -130557043 SNCA 130557043 CAPNS1 -13055732 SNCA 130557043 NDRC -13980548 NPM1 13075732 NDRC 173200523 APRV1 12990973 NDRC 15305613 APRV1 12990973 NDRC 15300524 NPM1 12990933 STOB1 1299059354 APRV1 12990933 NDRC 15990620 CANV2 1299193149 NPM1 <td>CCT3</td> <td>1.20748828</td> <td></td> <td></td> <td></td> <td>SDHC</td> <td></td> <td></td> <td>1.347654394</td> <td></td>	CCT3	1.20748828				SDHC			1.347654394	
CLDN11-1.2667401ADD21.33890618NCALD-1.26594563AP2A21.3322947505F8-1.26594563GDA1.3122947305F8-1.27530687GDA1.3122947305CTN-1.26576626SNCA1.30567521VBP1-1.36766656SNCA1.30567521VBR1-1.36576665SNCA1.30557621CARNS-1.756445433SNCA1.3025732CMM20-1.51805485SRG61L31.3025923232MARA-1.3181335SRG61L31.303596608CMM20-1.31805485SRG61L31.303596725MARA-1.3181335SRG61L31.303596725MARA-1.3181335SRG61L31.303596725MARA-1.3181335SRG61L31.303596725MARA-1.3181335SRG61L31.303596725MARA-1.3185351SRG61L31.23093733SRTDB11.320595193MRVA1.28093933SRTDB11.32829231CONSE1.28059333SRTDB11.5656309ATP6V1D1.2865095SNG11.5656309ATP6V1F1.28669513DPYSL31.56756399SSF41.28169319DPYSL31.56469641NDLFAS1.28669313PMC11.4562692SSF41.28669313PMC11.4567269SSF41.2866931PMC11.4567269SSF41.2866931PMC11.4567269SSF41.2866931PMC11.4567269SSF41.2866931PMC	PRDM5	1.198502382				BCAN			1.342898167	
NCALD-128637461PAR2A1235723865F6-1275380087ONLL2123254736ENOGB-1275380087GDA1312425433CTIM-1367311613GDA1308667PICALM-1367311613C0X7A2130857621PICALM-1368374986SNCA130259521PICALM-136857498SNCA130259523PICALM-136950483SAAP2130359609TOMM20-131980548NPM1130157732NUDC-131980548NPM1130157732NUDC-131980548ARPA128069354RAP28-131980548APAC128069354STD61-131883716CAMEV128063954STD751-156456725CAMEV128069363ATP910-166456725CAMEV128063954STD81-166456725CAMEV128058089CTNN2-166456725CAMEV128058089NCAN-18653271CAMEV128058089NCAN-18653271CAMEV128058098NCAN-18655686ATP9V001127560049CTNN2-16655269ATP8V01128568098NCAN-16555686NDUFA9128059179NCAN-14555688NDUFA9128059179MF1-145695686NDUFA9128059179NCAN-145695686NDUFA9128059179NCAN-145895686NDUFA9128059179NCAN-145950588NDUFA9128059179NCAN-145950589NDUFA9<	COQ9		-1.24961385			HSPH1			1.337373319	
F6-128995688-128995688DVNL2122294706CTN-128791081CDA131252433CTN-128791081CDA1305651VBPI-136176665CDX721308675021PLALM-146337486SNCA1308675021CANS1-1756445493SNCA130269608CANS1-1756445493SNCA130269608MAPK3-19180358SI38GH23130296733MAPK3-19180358NIPMI129009523MAPK3-19180358NIPMI129009733RAP281320645725CALBI129009733SFTDB1136656725CALBI129009733SFTDB1144656725CALBI129009733SFTDB1144656725CAMEV128634931SFTDB1158520128COX6512853091SFTDB1158520283COX6512853091SFTDB1158520309AIPV011128608613DPNS13157186688NDL/A9128506081CINND2158280283NSFL1C1278603048CINND2154485143DHA128609313DPNS1154485143NDL/A9128609119APP145405020CITB128609119APP145405020CITB128609119APP145405020CITB128609119APP145405020CITB128609313PIN1145405020CITB128609313PIN21450906906SIS74128609319APP14509020CITB128	CLDN11		-1.260614004			ADD2			1.336930818	
EXOGNB-127838007CDA13122543CTTN-1.26378665COX7A21.308578021VBP1-1.465378665SNCA1.3055700431PICALM-1.465378567SNCA1.3055700431CAPNS1-1.76445433SNCA1.302663281TOMM20-1.81990648NIPSNAP11.302683281NUDC1.72000823ARP281.299090793NUDC1.72000823ARP282.99090793STDB11.8555711CAMKV1.299090793STDB11.85658513ANPA1.292138971STDB11.85084877CAMKV1.28630813AFP8711.85080347.40CAMKV1.28630813STDB11.51586688COX651.28630813STDB11.51586683NDUPA31.28635813CTNN21.51586683NDUPA31.28635813CTNN21.51586683NDUPA31.28635813CTNN21.51586683NDUPA31.28635813CTNN21.51586683NDUPA31.28635813CTNN21.515866841LBGUK1.2866313CTNN21.43506306NDUPA31.28693813CTNN21.43506307CAMK11.2866313APP1.478800677NDUFA31.28693813CTNN21.43506307CAMK21.28693813CTNN21.43506306CAMK11.28698417CTNN21.43506307CAMK21.2869892CTNN21.44526381CAMK21.2869892CTNN21.44506303CAMK21.2869892	NCALD		-1.266374541			AP2A2			1.335723865	
CTTN-1.287701181 />TKT1.3105861VBP1-1.361706658 />CXXA21.308570643CAPNS1-1.764445393 />SIACA1.30350609CAPNS1-1.764445393 />SIABGL31.30350609MAPK2-1.91891336 //NPMI1.301978732MAPK3-1.91891336 //NPMI1.301978732MAPK3-1.91891336 //NPMI1.301978732MAPK3-1.91891336 //NPMI1.301978732MAPK41.723006523 //NPMI1.29063933RAP2B1.723050133 //APRC41.29063933SETDB11.64094077CAMKV1.2861362SYNGR11.64094077CAMKV1.2861362SYNGR11.64094077CAMKV1.2861362DPYSL31.68269029APRV011.25603081CINND21.65260509APRV011.25603081CINND21.65260509APRV011.2560301UTP201.64365432NDUFA91.26603313UTP201.443556389APRV011.2560301ME11.47714399CLTB1.266039179UTP201.45576389APRV011.256039710ME11.45576539APRV011.2560412PNX11.45576539APRC11.256039710ME11.45576539APRC21.2560412PNX21.45576539APRC21.2560412PNX21.45576539APRC31.25644229CNA11.45576539APRC31.25644923CNA11.45576539APRC3<	F5		-1.269955566			DYNLL2			1.322647505	
VPF1-1.361766566COX7A21.30657621PICALM-1.4687376661.305570043.300556004CAPNS1-1.75844543SIAAP21.3025863291TOMM20-1.919905/835NIPSNAP11.3025863291NUDC1.73200623NIPSNAP12.29090793RAP291.732006523NIPSNAP12.29090793STD611.646366725CALB11.290639324SETD811.646366725CALB11.290639324ATPAV11.646366725CALB11.29063933ATPAV11.646366725CALB11.296639634ATPAV11.646366725CALB11.296639634ATPAV11.648366725CALB11.296639634SYNGR11.648366725CALB11.296639633SYNGR11.5486081DUPA91.285550868CTNN121.554254382NOUFA91.285550868CTNN121.554254382NOUFA91.295550868CTN121.54265031DUPA91.296564013PFN11.54365039SPS441.296153119CTN121.54365039CALB11.29664913PFN11.477145399SPS441.29664913PFN11.43530506PP2C51.28637109APPC1.43505066PP2C51.29637109APPC11.43530506PP3C41.24639374CNC121.4165267CNA121.24459534PN141.4165267CNA121.24639376CNC21.43505066PP1631.24459534PN241.43505067 <td>EXOC6B</td> <td></td> <td>-1.275380087</td> <td></td> <td></td> <td>GDA</td> <td></td> <td></td> <td>1.312825433</td> <td></td>	EXOC6B		-1.275380087			GDA			1.312825433	
PICALM-1.46837498SNCA1.305957083TOMM20-1.78484493SIABGRL31.305959698TOMM20-1.91891336NPM11.301978732MAPK3-1.91891336NPM11.20059324MAPK3-1.91891336NPFNAP11.20693924RAP281.723556133APPC41.20693933RAP281.648959725CALB11.20693933SETDB11.648959725CALB11.20693933SFTDB11.648959725CALB11.29638819DPYSL31.58522711CXX6C1.2863808CTNND21.58202831CXX6A1.28651484CNRD11.586282711CXX6C1.28658088CTNND21.58202831DUFA31.28651484CNRD11.5862808DUFA31.28651484CNRD21.542680812.487482NDUFA31.28658088CTNND21.5436808DUFA31.28654031UF201.443654382NDUFA31.28664013UF201.443656631DUFA31.28664013UF201.443650303DUFA31.28664013PPME11.45765369SPK141.26863913PPME11.459765369DUFA31.28664913PPME11.459765369DUFA31.28664913PPME11.45976569PUFA31.28649924PPME11.45976569PUFA31.28649924PPME21.45976569PUFA31.28649924PPME31.459247842DNAUC61.28649924CNP11.459247842DNA	CTTN		-1.287911813			TKT			1.3105561	
CAPNS1-1759A4593BAIAP2130596608TOMM/20-181981336NHSGRI31302953328MAPK3-191881336NIPSNAP1129909073NUDC173209523NIPSNAP1129909073RAP2B165032344NAPA129199371SETDB1168053271CAMKV1286113462STNGN1168053271CAMKV1286113462STNGN1156532711COX6E12865149NCAN1571585683NDUFA9128553608CTNND21571585683NDUFA9128553608CTNND21571585681NDUFA9128553608CTNND2157458684NDUFA9128553608CTNND2157458684NDUFA9128553608CTNND2154655639NSF4128660313PFN1147714599CLTB1266603513PFN1147565269SNSF41266603513PFN1147565269SNSF41266603513PFN1147565269SNSF41266603513PFN1147565269COX41112664029PFN1145665614LGUK1266047912GNAO145150301DNFS1266047912GNAO145150301COX41112664029PFN2145020606PP2CB125809709APPCG145163271DNLGA12569689CYFIP1145656269COX411126640729GNAO1451742LGA12569689SFQO147372534CANK2A124915255GNA14909436USP4 <t< td=""><td>VBP1</td><td></td><td>-1.361766656</td><td></td><td></td><td>COX7A2</td><td></td><td></td><td>1.308575621</td><td></td></t<>	VBP1		-1.361766656			COX7A2			1.308575621	
IOMAQ0-181980548SH80GRL313028328MAPK3-19801336NPM11301976732NUDC1726355193APPC4129890973RAP281726355193APPC4129890973KIF2A16805275CALB11298080733SETDB11.640856725CALB1129808073STDS11.640856725CALB1129808073DPYSL31.5852211COX6C1286413462CNR01.55425030ATP6V1D127860304CNR01.554256309ATP6V1D127863048CNR011.554256309ATP6V1F1286350368CNR011.554256309ATP6V1F126863513UTP201.544855143LIDHA126863513ME11.478800627ATP6V1F126863513PFN11.45575538SR54126153119APP1.45575539SR54126153119APP1.45575539SR54126153119APP1.45575539SR5412658497CNQ01.4553031L60447912125684924PFN11.455124208COX411125684924APP1.455424784CAMK2D125684924PR021.4353507COL642125684932SFPQ1.45154208CAMK2D125684934PR021.43737284CAMK2D125868934PS21.4165286SPT91237813188OXF11.3000845USP41123803986OXF11.3000845USP41123841328OXF11.3000845US	PICALM		-1.466374966			SNCA			1.305570043	
NAPK3-1918813365NPM113019772NUDC1732009623NIPSNAP1129309073RAP2B1726335193ARC4129309073KIF2A166303247NAPA129139871SETDB1164096487CALB1129089383ATFeVID164096487CAMKV128613462SYNGR115582011COX6C128671669DYSL3155250309COX5B128571669CTNND2155250309NDFA9128538088CNNP1155250309NDFA9128538088CNNP1155455432NSFL1C1276503048CNNP1157653668NDUFA9128538059CNNP1147714539CITB126863031ME1147714539CITB126863031PFN1147714539CITB126864013PFN1147714539CITB126864013PFN1147714539CITB126864013PFN1147810307CITB126864013PFN11478150201NDFS812689313APP14512031NDFS81268931479APP145130317CITB126804924PFN214513021NDFS8126894924PFN214513021NDFS8125894924PFN214513021CIAA12589893CYFIP1143524208CW1112589893CYFIP1143524208CW1412589893CYFIP114352474DNACC12689492CYFIP1143524208CW1412589893CYFIP1<	CAPNS1		-1.756445493			BAIAP2			1.303596608	
NUDC1/32008622NIPSNAP11/29090793RAP2B1/28035193ARPC41/2903971KIF2A1.66002474NAPA1/29139971SETDB11.64856725CALB11/28633619ATPEVID1.85832711COX8C1/28613462SYNGR11.58532711COX8C1/2851368DPYSL31.585203831COX5B1/285136863CTNND21.56256309ATPEVDD11/27560348CNNP11.66256309ATPEVD11/27560348CNNP21.54485143LDHA1/28153691UTP201.54485143LDHA1/28153691ME11.478800627ATPEVD1F1/26660313PFN11.45676389SR541/2159119APP1.45576394SR541/25091492LANCL21.45124208PM2G11/25094924GNAQ1.45124208PM2G81/250937109LANCL21.45124208PM2G81/250937109CYFIP11.43150307COL6A21/259398647FPA21.4192334CAMK2D1/259398647FPA21.419234344CAMK2D1/259398343FPA21.41923454SCA11/26939343FPA21.4192408PP2CA1/2493936FPA21.4192408CAMK2D1/24939364FPA21.419393CLAA41/2493936FPA21.41934364GAMK2A1/24939363FPA21.41934364GAMK2A1/24939363FPA21.41934364GAMK2A1/24939363F	TOMM20		-1.819905488			SH3BGRL3			1.302583328	
RAP2B1/2835193ARPC4129693524KIP2A1663032474NAPA129093913SETDB1164056725CALB11290939333ATP6V1D1640964977CAMKV128681396DPYSL3158280231COX6C1286385919DYSL3158280231COX6C1286386519CINND2156260630MTPFVDD11275603046CNAP115428432NSFL1C1275603046CNAP115428432NSFL1C1276603046CNAP11478000627ATP6VD1126666401UTP20154485143LDHA126132931UTP201478000627ATP6VIF1266664013PFN1147714399CLTB1266664013PFN1147800627ATP6VIF12666931919APP1455665611IGGUK12609147912CANC12145505080NDUFS81260931919APPC145505080COX411126668491APPC145505080COX411125686492CYFIP11432347642DNALC61256985647CYFIP11432347642DNALC6125698683CYFIP11432347642DNALC61256985647TNNG14797372534CYCA411125686833FPCX143150307COL6A21256985647TNNG14797372534CAMK2A124596633TNNG14797372534CAMK2A124596543CNPA14305080CAMK2A124596543CNPA143050805CPYN123802939TNNG137	MAPK3		-1.918813356			NPM1			1.301978732	
KIF2A168302474NAPA1292138971SETDB1164856725CALB1129803833ATPEVID164656725CALB11298613462SYNGR1158532711COXeC1288613462DPYSL3158532711COXeG128513462NCAN1571585688NDUFA91285536083CTIND2166250599ATPEVDD11275603048CINND2156256309ATPEVD11275603048UTP20154485143LDHA129135901UTP20154485143LDHA1269135901ME1147800027ATPEV1F1265663513PFN11477145399CTIF1265663013APP1455485641LRGUK1260891479LANCL21455132031NDUFS8126047912GNAQ1455124308SNSF41260891479APPC1455124308COXHI11256849924GNAQ146508006PPP2CB1250897109APRC2144892334CMK2D125684823CYFIP1143347642DNALG61255898647SFPQ1431503207COXAI1125684933FXLNG14492334CAMK2A124198376CPRE6141415286PFIA3124198376CPNE61408616442SYP123851981GNAQ14095436CAMK2A124198376CPNE61404516445SPP24123831473GNAQ137040235SFP312331473GNAQ137040235SFP312331473GNAQ13906445SCA33 </td <td>NUDC</td> <td></td> <td></td> <td>1.732009523</td> <td></td> <td>NIPSNAP1</td> <td></td> <td></td> <td>1.299090793</td> <td></td>	NUDC			1.732009523		NIPSNAP1			1.299090793	
SETDB1164856725CALB1129093833ATP6V/D164069477CAMKV1286413462SYNGR1168582711COX6C128638619DPYSL3158202831COX6B1285714649NCAN157158568NDUFA9128550088CINID21562506309ATP6VDD11275603048CNRP1156256309ATP6VD11295603048CNRP1156455432NSFL1C1295603048CNRP1156456543LDHA12915801ME1147800627ATP6VJF126660133PFN11477145399CLTB1265664013PFN11455765664LBGUK12608914791APP1455656641LBGUK12608914791GNAQ1455305086PP2CB125397109APRCSL145132031NDUFS8126449214GNAQ1453050866PP2CB1253997109ARPCSL145132037COX411126649924PFN214303207COX621256985647CYEP11422347642DNAC61256985647CYEP11422347642DNAC61256985647CYEP214303207COX6312593976FFR21431527CAMK2A1241513937CYEP414096436CAMK2A124151397CYEP5137040575FABF5123314773CM26137040575FABF5123314773CM27137040575FABF5123314773CM28137040575FABF5123314773CM31136046972CAMK2A<	RAP2B			1.726355193		ARPC4			1.296939524	
ATPRV1D1.640964877CAMKV1.286413462SYNGR11.5852711COX6C1.286734649DPYSL31.58230281COX5B1.286714649NCAN1.571586688NDUFA91.285350088CTNND21.564250309ATPRVD11.275603048CTNND21.564254382NSFL1C1.27452051UTP201.54485143LDHA1.269135901UTP201.54485143LDHA1.26964013PFN11.477145399CLTB1.266664013PFN11.475765369SR541.261593119LANCL21.45536361NDUFS81.260447912GNAQ1.45306086PPP2CB1.2684924APPC1.455243934CAMKZD1.25684929PKN21.44892334CAMKZD1.25684924PRDS21.44892334CAMKZD1.25684924PFN21.43150207OLGA21.259886477FSPQ1.415742SLC2A11.2489376CYHP11.423237642PNALC61.24598343PKDS21.415742SLC2A11.2489376CPNE61.4165266PFP3CA1.24596343FDNP1.41098436PFP3CA1.24596343GNB21.41098436SPF11.23341733GNB21.41098436SPF11.233314773GNB21.41098436SPF11.233314773GNB21.40084456SPF11.23644591GNB21.41098456SPF11.23334773GNB21.40084565SPF11.23644591 <t< td=""><td>KIF2A</td><td></td><td></td><td>1.663032474</td><td></td><td>NAPA</td><td></td><td></td><td>1.292138971</td><td></td></t<>	KIF2A			1.663032474		NAPA			1.292138971	
SYNGR1158532711COX6C1286388519DPYSL3158208081COX6F1.286714649NCAN157195668NDUFA91.2855008CTNND21.562506309ATP6VD11.275603048CNRP11.58425432NSFL1C1.24520051UTP201.54485143DHA1.2915901ME11.47800827ATP6V1F1.26664013PFN11.477145399CLTB1.26664013PFN11.45565664LRGUK1.2606914791APP1.45565664LRGUK1.26064013APP1.45565664LRGUK1.26064013APP1.45565664LRGUK1.260447912GNAQ1.455132031NDUFS81.260447912GNAQ1.45505080COX4111.256848229CYFIP11.4522408COX4111.25684829GNAQ1.45132031COL6221.25308992FPDX21.443247842DNAJC61.256986847FINA21.43150307COL6221.25308992SFPQ1.421972534CNA11.24839376FPDX21.4116528PYP2CA1.24819376FINA1.211969345CAMK2A1.241519397GNB21.41098456CAMK2A1.241519397GNB21.4109845SYP11.23314773GNB21.4109845SYP11.23314773GNB21.4109845SYP11.23314773GNB21.37028035EHD11.233402391GNB21.37028035EHD11.233402391GNB3	SETDB1			1.648556725		CALB1			1.290893833	
DPYSL31582802831COX5B1285714649NCAN157186868NDLFA128538086CTNND2156250630ATP6V0P101275603048CNRIP11564254382NSFLIC1274526071UTP201544655143LDHA1266593513PFN1147800627ATP6V1FA1266693513PFM114757653094CTB1266593191PFM1145576569SRSF41261593119APP1455468641LRGUK12608914791CINAC145512031NDLFS81260447912GNAQ145502050PPP2051259397109ARPC5L145124208COX411125684924FRPA21448929344CMKZD125684592VFNP11432347842DNA/C6155895647HSPA2143150307COL6A2125684592SFPQ1427372534PPYA31244915255GR8214165286PFP1A31244915255GR8214169286PFP1A3124495633CNLG141165286PFF1A3124459634CNK113800645USP241233810239GNAC14169286PFF1A3124395013GNAC1391614369AP281123311318GNAC1391614528SPP11233810239GNAC1391614528SP151233810239GNAC1391614568SP151233810239GNAC139161458SP151233810239GNAC139161458SP151233810239GNAC139161458SP15 </td <td>ATP6V1D</td> <td></td> <td></td> <td>1.640964877</td> <td></td> <td>CAMKV</td> <td></td> <td></td> <td>1.286413462</td> <td></td>	ATP6V1D			1.640964877		CAMKV			1.286413462	
NCAN1571585688NDUFA9128535088CTNND21662506309ATP6VD11275630344CNNP11554254324NSFL1C1276320641UTP201544855143LDHA1269135901ME1147800627ATP6V1F1266684313PFN11477145396CLTB1265684013PPME11455765369SRSF41261593119APP14546641LBGUK1260841479LANCL214513203NDUFS0125684922GNAQ1453050806PPP2CB1258937109ARPCSL145124208COMU1125684922GNAQ145132037COL62125898547HSPA2143103207COL62125898547HSPA2143103207COL62125898547HSPA2143103207COL62125808992SFPQ1427372534CRVM1251866833FKPQ141416286PPP3CA1241513937GNB2141416286PP13A1241513937GNB2140861442SLC21112339376CPNE6139161452SP2123741318QNP2137309575FAP5123314773SFSA1139080545LHD1122844591QNP2137309575FAP5123314773SFSA1139161452SP24123801913GNS1139161452SP45123314773SFSA1139161452SP45123314773SFSA1139161452SP45123314773SFSA113930955FAP5123314773 <td>SYNGR1</td> <td></td> <td></td> <td>1.58532711</td> <td></td> <td>COX6C</td> <td></td> <td></td> <td>1.286388519</td> <td></td>	SYNGR1			1.58532711		COX6C			1.286388519	
CTNND2 1562506309 ATP6V0D1 1275603048 CNRIP1 1564254382 NSFLTC 1274526051 ME1 1478800627 ATP6V1F 1266693513 PFN1 1477145399 CLTB 1265664013 PPME1 1455765369 SR5F4 1265664013 APP 145566561 LGUK 126093179 LANCL2 1455132031 NDUFS8 1260447912 GNAQ 1450360806 PPP2CB 125598647 ARPC5L 145122408 COX411 1255684922 YFIP1 1432347642 DNAJC6 1255985647 HSPA2 1443929334 CAMIK2D 125684924 YFIP1 1432347642 DNAJC6 1255985647 HSPA2 143150307 COL6A2 125598697 YFIP1 1432347642 DNAJC6 124915255 GRB2 1411416526 PPHA3 1244596343 YCHP1 143050945 SVPG 123781981 GLOD4 1391614359 AP2B1 12378173	DPYSL3			1.582802831		COX5B			1.285714649	
CNRIP11554254382NSFL1C1274526051UTP201544855143LDHA1269135001ME11.478800627ATF6V1FF1266693513PFN11.45756559SRSF4126159319PPME11.45566561LGUK126094179LANCL21.455305080PPP2CB125099710CARPCSL1.455305080PP2CB125099710ARPCSL1.4512208COXH111256849224PRDX21.448929334CAMK2D1256849294PRDX21.41892934CAMK2D1256849294PSPQ1.427372534CRYM125186883SFPQ1.419969PPP3CA124192525GRB21.41196266PPFIA31244590343CNPE61.414165266PFIA31244590343CNPE1.4008436CAMIZA124596343PDXP1.4008436SYP123785198GLDD41.39161425SYP123785198GLD41.3930955FFB123314773HSPA1B1.37302035SEPT91223807836SFS41.37302035SEPT91223807836SFS41.36849072CAP21223807836SFS41.36849072CAP2122844591PS231.36831641PFGS3121666914PFM241.36849072CAP2122844591PS351.36831641PFGS3121666914PS451.36849072CAP2122844591PS451.36831641PFGS31216665914PS451.36849072	NCAN			1.571585688		NDUFA9			1.285358088	
UTP20 1544855143 LDHA 126913501 ME1 1778800627 ATP6V1F 1266693513 PFN1 1477145399 CLTB 1265664013 PPME1 1455765369 SRSF4 1261593119 APP 1455465641 LRGUK 1260891479 LANCL2 1455132031 NDUFS8 1260447912 GNAQ 1455050806 PPP2CB 1259397109 ARPC5L 145124208 COX411 125684924 VFIP1 143237424 DNJC66 1255985647 VSPA2 1431503207 COL6A2 125308992 SFPQ 1427372534 CRYM 1251666833 VLNG 14219969 PPF3CA 1241593976 GRB2 1415742 SLC2A1 124893376 CPNE6 1414165266 PPF1A3 124159397 GNB2 14098436 CAMK2A 124159397 GNB2 1391614359 AP2B1 123741318 OXR1 13902035 EPF19 1237405198 <tr< td=""><td>CTNND2</td><td></td><td></td><td>1.562506309</td><td></td><td>ATP6V0D1</td><td></td><td></td><td>1.275603048</td><td></td></tr<>	CTNND2			1.562506309		ATP6V0D1			1.275603048	
ME1 1478800627 ATP6V1F 1266693513 PFN1 1477145399 CLTB 1265664013 PPME1 14556765369 SRSF4 1261593119 APP 1455646641 LGCUK 126091479 LANCL2 1455132031 NDUFS8 1260447912 GNAQ 1453050806 PPP2CB 1259397109 ARPCSL 1445122408 COX411 125684924 PRDX2 1448929334 CAMK2D 1256848229 CYFIP1 1432347642 DNA/C6 1255895647 HSPA2 1431503207 COL6A2 12568633 SFPQ 14219969 PPP3CA 124912525 GRB2 1415742 SLC2A1 124893376 CPNE6 1414165286 PFIN3 124459843 PDXP 140098436 CAMK2A 124151397 GNA2 1409156442 SYP 123785198 GLOD4 139069455 USP14 1233820239 VAMP2 1370308035 EHD1 1226916013	CNRIP1			1.554254382		NSFL1C			1.274526051	
PFN1 1.477145399 CLTB 1.265664013 PPME1 1.455765369 SRSF4 1.261533119 APP 1.455645641 LRGUK 1.26047191 LANCL2 1.455132031 NDUFS8 1.260447912 GNAO 1.450506060 PPP2CB 1.256849224 GNAO 1.451224208 COX411 1.256849224 CYFIP1 1.432347642 DNAJC6 1.2558648229 CYFIP1 1.432347642 DNAJC6 1.256849224 SFPQ 1.427372534 CRVM 1.256864823 SFPQ 1.427372534 CRVM 1.245805833 CPNE6 1.41165266 PPP3CA 1.244596343 CPNE6 1.41165266 PPF1A3 1.244596343 CPNE6 1.410698436 CAMK2A 1.241519397 GNB2 1.40058456 SP24 1.23380239 VAMP2 1.33064397 SP24 1.233314773 SPA1A 1.330028035 EPT9 1.226916013 SPA1A 1.330280305 EPT9	UTP20			1.544855143		LDHA			1.269135901	
PPME1 1.455765369 SRSF4 1.261593119 APP 1.455465641 LRGUK 1.260891479 LANCL2 1.455132031 NDUFS8 1.260447912 GNAQ 1.453050806 PPP2CB 1.259397109 ARPC5L 1.451224208 COX411 1.256849224 PRDX2 1.448929334 CAMK2D 1.256849229 CYFIP1 1.432347642 DNAJC6 1.253698992 SFPQ 1.41805307 COL6A2 1.25368647 SFPQ 1.42119869 PPP3CA 1.249125255 GRB2 1.41165286 PFIA3 1.249125255 GRB2 1.41165286 PFIA3 1.244596343 CPNE6 1.414165286 PFIA3 1.244596343 OXR1 1.380069445 USP24 1.23382039 OXR1 1.39014359 AP281 1.23745188 OXR1 1.3900575 FABP5 1.23314773 HSPA1A 1.373028035 EVT9 1.23801733 SPSA 1.3731411227 CAP2	ME1			1.478800627		ATP6V1F			1.266693513	
APP 1455465641 LRGUK 1260891479 LANCL2 145132031 NDUFS8 1260447912 GNAQ 145305086 PPP2CB 1259397109 ARPC5L 1451224208 COX411 125684924 PRDX2 1448929334 CAMK2D 125684924 YFP1 1432347642 DNAJC6 125586647 HSPA2 1431503207 COL6A2 125868992 SFPO 1427372534 CRYM 1251866833 TXLNG 14211969 PP93CA 1249125255 GRB2 14167442 SLC2A1 12439376 CPNE6 1414165286 PFFIA3 1244596343 DXP 140098436 CAMK2A 1237859198 GLOD4 1391614359 AP281 1233820239 VAMP2 1337026035 EFP3 122381473 HSPA1B 1373028035 EHD1 122804591 FSP3 132781318 122050485 122050485 SG 137411227 CAP2 122801451 HSPA1B 1373028035 EHD1 1228044591 <td< td=""><td>PFN1</td><td></td><td></td><td>1.477145399</td><td></td><td>CLTB</td><td></td><td></td><td>1.265664013</td><td></td></td<>	PFN1			1.477145399		CLTB			1.265664013	
LANCL2 1455132031 NDUFS8 1260447912 GNAQ 145030606 PPP2CB 1250397109 ARPC5L 145032066 CX4l1 125684924 PRDX2 1448929334 CAMK2D 1256848229 CYFIP1 1432347642 DNAJC6 1255985647 HSPA2 1431503207 C0L6A2 125386992 SFPQ 1427372534 CRYM 1251866833 TXLNG 12419969 PPP3CA 1249125255 GRB2 1415742 SLC2A1 124839376 CPNE6 1414165266 PFFIA3 12449125255 GNB2 140086436 CAMK2A 1241519397 GND4 1391614359 AP2B1 123789198 GLOD4 1391614359 AP2B1 1233820239 VAMP2 1373028035 EHD1 123831473 HSPA1A 1373028035 EHD1 1228916013 HSPA1B 1373028035 EHD1 122804785 SGG 1369170274 CAP2 122804785	PPME1			1.455765369		SRSF4			1.261593119	
GNAQ 1453050806 PPP2CB 1259397109 ARPC5L 1451224208 COX411 1256849224 PRDX2 1448929334 CAMK2D 1256848229 CYFIP1 1432347642 DNAJC6 1255865647 HSPA2 1431503207 COL6A2 1258068992 SFPQ 1427372534 CRYM 1251866833 TXLNG 142119969 PP3CA 124803376 CPNE6 1414165286 PFIA3 1244596343 PDXP 1410098436 CAMK2A 1241519397 GNB2 1400816442 SYP 1237859198 GLOD4 1391614359 AP2B1 123820239 VAMP2 13709675 FABP5 1233814773 HSPA1B 137028035 EPT9 1226916013 HSPA1B 137028035 EPT9 122634591 PSD3 136147207 CAP2 123807885 SGG 1369172074 SLC25A3 1219665914 PFN2 1368469072 CAMK2B 12058499 AFF5JZ 1368321641 PTGES3 1216665914	APP			1.455465641		LRGUK			1.260891479	
ARPC5L 1.451224208 COX411 1.25684924 PRDX2 1.44892334 CAMK2D 1.256848229 CYFIP1 1.432347642 DNAJC6 1.255985647 HSPA2 1.431503207 COLGA2 1.253989892 SFPQ 1.427372534 CRYM 1.251866833 TXLNG 1.4219969 PPP3CA 1.249125255 GRB2 1.4165286 PFIA3 1.244596343 CPNE6 1.41098436 CAMK2A 1.241513397 GNB2 1.40098436 CAMK2A 1.241513397 GNB2 1.408516442 SYP 1.237859198 GLOD4 1.391614359 AP281 1.237413186 OXR1 1.37009575 FABP5 1.233314773 HSPA1A 1.373028035 EHD1 1.226916013 HSPA1B 1.370411227 CAP22 1.23807885 BSG 1.369172074 SLC25A3 1.21949131 PFN2 1.36849072 CAMK2B 1.22058499 ATP5J2 1.3684917736 PDX1	LANCL2			1.455132031		NDUFS8			1.260447912	
PRDX2 1.448929334 CAMK2D 1.256848229 CYFIP1 1.432347642 DNAJC6 1.255985647 HSPA2 1.431503207 CLGA2 1.25398992 SFPQ 1.427372534 CRYM 1.25186833 TXLNG 1.427372534 CRYM 1.2419125255 GRB2 1.41165286 PPP3CA 1.249125255 GRB2 1.411098436 CAMK2A 1.241519397 GNB2 1.410098436 CAMK2A 1.241519397 GNB2 1.40098436 CAMK2A 1.237851986 GLOD4 1.391614359 AP281 1.237413188 OXR1 1.380069445 USP24 1.233820239 VAMP2 1.373028035 EHD1 1.22634631 HSPA1A 1.37028035 EHD1 1.22634631 SFSG 1.36849072 CAP2 1.223807885 BSG 1.36849072 CAMK2B 1.22058499 ATF5J2 1.36849072 CAMK2B 1.216665914 GNB1 1.368417736 PDEX1	GNAQ			1.453050806		PPP2CB			1.259397109	
CYFIP1 1.432347642 DNAJC6 1.255985647 HSPA2 1.431503207 COL6A2 1.253698992 SFPQ 1.427372534 CRYM 1.251866833 TXLNG 1.42119969 PPGXA 1.249125255 GRB2 1.41165266 PFIA3 1.244598343 CPNE6 1.410098436 CAMK2A 1.241519397 GNB2 1.408516442 SYP 1.237859198 GLOD4 1.391614359 AP281 1.237813188 OXR1 1.380069445 USP24 1.233802393 VAMP2 1.373028035 EFP19 1.226916013 HSPA1B 1.37028035 EHD1 1.226944591 PSD3 1.371411227 CAP2 1.22807885 BSG 1.368469072 CAMK2B 1.2205499 ATP5J2 1.3684306 PRDX1 1.215985447 DLG4 1.36931591 ATP5I 1.21594968 SH3GLB2 1.363306 ATIC 1.213849668 KTN1 1.362629072 GSTM5 1.213704207 ABSA 1.362173026 MUFS7 1.213904207	ARPC5L			1.451224208		COX4I1			1.256849924	
HSPA2 1.431503207 COL6A2 1.253698992 SFPQ 1.427372534 CRYM 1.251866833 TXLNG 1.42119969 PP93CA 1.249125255 GRB2 1.4157442 SLC2A1 1.2489376 CPNE6 1.414165286 PFIA3 1.241596343 DDXP 1.40098436 CAMK2A 1.24151397 GNB2 1.400816442 SYP 1.237859198 GLOD4 1.391614359 AP2B1 1.237413188 OXR1 1.380069445 USP24 1.233820239 VAMP2 1.373028035 EHD1 1.226916013 HSPA1B 1.373028035 EHD1 1.228307885 PSD3 1.371411227 CAP2 1.22807885 BSG 1.36617074 SLC25A3 1.21941931 PFN2 1.368489072 CAMK2B 1.2208499 ATP5JZ 1.36831641 PTGES3 1.21685447 DLG4 1.36331641 PTGES3 1.216665914 GNB1 1.66417736 PRDX1 1.215851395 SH3GLB2 1.36363306 ATIC 1.21349668 <td>PRDX2</td> <td></td> <td></td> <td>1.448929334</td> <td></td> <td>CAMK2D</td> <td></td> <td></td> <td>1.256848229</td> <td></td>	PRDX2			1.448929334		CAMK2D			1.256848229	
SFPQ 1.427372534 CRYM 1.251866833 TXLNG 1.42119969 PPP3CA 1.249125255 GRB2 1.415742 SLC2A1 1.24839376 CPNE6 1.414165286 PPFIA3 1.244596343 PDXP 1.410098436 CAMK2A 1.241519397 GNB2 1.400816442 SYP 1.237859198 GLOD4 1.391614359 AP2B1 1.237413188 OXR1 1.380069445 USP24 1.23314773 HSPA1A 1.37028035 SEPT9 1.226916013 HSPA1B 1.37028035 EHD1 1.22634591 PSD3 1.371411227 CAP2 1.223807885 BSG 1.36917074 SLC25A3 1.21941931 PFN2 1.36849072 CAMK2B 1.22058499 ATP5J2 1.36849072 CAMK2B 1.22058499 GNB1 1.366417736 PRDX1 1.215895447 DLG4 1.36931591 ATP51 1.21594968 KTN1 1.36262072 GSTM5 1.21	CYFIP1			1.432347642		DNAJC6			1.255985647	
TXLNG 1.42119969 PPP3CA 1.249125255 GRB2 1.4157442 SLC2A1 1.24839376 CPNE6 1.414165286 PPFIA3 1.244596343 PDXP 1.40098436 CAMK2A 1.241513937 GNB2 1.408516442 SYP 1.237859198 GLOD4 1.391614359 SYP4 1.233820239 VAMP2 1.33709575 FABP5 1.233314773 HSPA1A 1.373028035 SEPT9 1.226916013 HSPA1B 1.373028035 EHD1 1.226344591 PSD3 1.36111227 CAP2 1.223807885 BSG 1.36917074 SLC25A3 1.221941931 PFN2 1.368469072 CAMK2B 1.22058499 GNB1 1.36811736 PRDX1 1.21685447 DLG4 1.363981591 ATP51 1.215521395 SH3GLB2 1.363306 ATIC 1.213849668 KTN1 1.36229072 GSTM5 1.21304207 BAB3A UPUF7 UPUF7 1.2196939	HSPA2			1.431503207		COL6A2			1.253698992	
TXLNG 1.42119969 PPP3CA 1.249125255 GRB2 1.4157442 SLC2A1 1.24839376 CPNE6 1.414165286 PPFIA3 1.244596343 PDXP 1.40098436 CAMK2A 1.241513937 GNB2 1.408516442 SYP 1.237859198 GLOD4 1.391614359 SYP4 1.233820239 VAMP2 1.33709575 FABP5 1.233314773 HSPA1A 1.373028035 SEPT9 1.226916013 HSPA1B 1.373028035 EHD1 1.226344591 PSD3 1.36111227 CAP2 1.223807885 BSG 1.36917074 SLC25A3 1.221941931 PFN2 1.368469072 CAMK2B 1.22058499 GNB1 1.36811736 PRDX1 1.21685447 DLG4 1.363981591 ATP51 1.215521395 SH3GLB2 1.363306 ATIC 1.213849668 KTN1 1.36229072 GSTM5 1.21304207 BAB3A UPUF7 UPUF7 1.2196939	SFPQ			1.427372534		CRYM			1.251866833	
CPNE6 1.414165286 PPFIA3 1.244596343 PDXP 1.410098436 CAMK2A 1.241519397 GNB2 1.408516442 SYP 1.237859198 GLOD4 1.391614359 AP2B1 1.237413188 OXR1 1.380069445 USP24 1.233820239 VAMP2 1.37309575 FABP5 1.23314773 HSPA1A 1.37028035 SEPT9 1.226916013 HSPA1B 1.37028035 EHD1 1.226344591 PSD3 1.371411227 CAP2 1.22807885 BSG 1.369172074 SLC25A3 1.211941931 PFN2 1.36849072 CAMK2B 1.22058499 ATP5J2 1.36849072 CAMK2B 1.215985447 DLG4 1.36931591 ATP5I 1.215985447 DLG4 1.3663306 ATIC 1.213849668 KTN1 1.36629072 GSTM5 1.213704207 SH3GLB2 1.3663306 ATIC 1.213849668 KTN1 1.362629072 GSTM5 1.213704207 KB3A UVFS7 LUFS7 1.213704207				1.42119969		PPP3CA			1.249125255	
PDXP 1.410098436 CAMK2A 1.241519397 GNB2 1.408516442 SYP 1.237859198 GLOD4 1.391614359 AP2B1 1.237413188 OXR1 1.380069445 USP24 1.233820239 VAMP2 1.37309575 FABP5 1.23314773 HSPA1A 1.37028035 EHD1 1.226916013 HSPA1B 1.37028035 EHD1 1.223807885 PSD3 1.371411227 CAP2 1.223807885 BSG 1.369172074 SLC25A3 1.221941931 PFN2 1.368469072 CAMK2B 1.22058499 ATP5J2 1.368469072 CAMK2B 1.215985447 DLG4 1.36981591 ATP5I 1.215985447 PLG4 1.3639306 ATIC 1.213849668 KTN1 1.362629072 GTM5 1.213704207 KTN1 1.3627306 MDUFS7 1.213704207	GRB2			1.4157442		SLC2A1			1.24839376	
PDXP 1.410098436 CAMK2A 1.241519397 GNB2 1.408516442 SYP 1.237859198 GLOD4 1.391614359 AP2B1 1.237413188 OXR1 1.380069445 USP24 1.233820239 VAMP2 1.37309575 FABP5 1.23314773 HSPA1A 1.37028035 SEPT9 1.226916013 HSPA1B 1.37028035 EHD1 1.223807885 PSD3 1.371411227 CAP2 1.223807885 BSG 1.369172074 SLC25A3 1.221941931 PFN2 1.368469072 CAMK2B 1.22058499 ATP5J2 1.368469072 CAMK2B 1.215985447 DLG4 1.36981591 ATP5I 1.215985447 PLG4 1.3639306 ATIC 1.213849668 KTN1 1.362629072 GTM5 1.213704207 KTN1 1.3627306 MDUFS7 1.213704207	CPNE6			1.414165286		PPFIA3			1.244596343	
GLOD4 1.391614359 AP2B1 1.237413188 OXR1 1.380069445 USP24 1.233820239 VAMP2 1.373709575 FABP5 1.233314773 HSPA1A 1.373028035 SEPT9 1.226916013 HSPA1B 1.373028035 EHD1 1.226344591 PSD3 1.37111227 CAP2 1.223807885 BSG 1.369172074 SLC25A3 1.221941931 PFN2 1.368469072 CAMK2B 1.22058499 ATP5J2 1.368321641 PTGES3 1.216665914 GNB1 1.366417736 PRDX1 1.215985447 DLG4 1.363981591 ATP5I 1.215521395 SH3GLB2 1.3636306 ATIC 1.213849668 KTN1 1.36229072 GSTM5 1.21304207 RAB3A 1.36217926 STM5 1.21304207						CAMK2A				
OXR1 1.380069445 USP24 1.233820239 VAMP2 1.37309575 FABP5 1.233314773 HSPA1A 1.373028035 SEPT9 1.226916013 HSPA1B 1.373028035 EHD1 1.226344591 PSD3 1.371411227 CAP2 1.223807885 BSG 1.369172074 SLC25A3 1.221941931 PFN2 1.368469072 CAMK2B 1.22058499 ATP5J2 1.368417736 PRDX1 1.216665914 GNB1 1.366417736 PRDX1 1.215985447 DLG4 1.363981591 ATP5I 1.213849668 KTN1 1.362629072 GSTM5 1.213704207 RAB3A 1.362173026 NDUFS7 1.2196939	GNB2			1.408516442		SYP			1.237859198	
VAMP2 1.373709575 FABP5 1.233314773 HSPA1A 1.373028035 SEPT9 1.226916013 HSPA1B 1.373028035 EHD1 1.226344591 PSD3 1.371411227 CAP2 1.223807885 BSG 1.369172074 SLC25A3 1.221941931 PFN2 1.368469072 CAMK2B 1.22058499 ATP5J2 1.366417736 PRDX1 1.216665914 GNB1 1.366417736 PRDX1 1.2159854477 DLG4 1.363981591 ATP5I 1.215521395 SH3GLB2 1.362629072 GSTM5 1.213704207 RAB3A 1.362173026 NDUFS7 1.2196939	GLOD4			1.391614359		AP2B1			1.237413188	
HSPA1A 1.373028035 SEPT9 1.226916013 HSPA1B 1.373028035 EHD1 1.226344591 PSD3 1.371411227 CAP2 1.223807885 BSG 1.369172074 SLC25A3 1.221941931 PFN2 1.368469072 CAMK2B 1.22058499 ATP5J2 1.366417736 PRDX1 1.216665914 GNB1 1.366417736 PRDX1 1.215985447 DLG4 1.363981591 ATP5J 1.215921395 SH3GLB2 1.3663306 ATIC 1.213849668 KTN1 1.362629072 GSTM5 1.213704207 RAB3A UFS7 1.2196939 1.2196939	OXR1			1.380069445		USP24			1.233820239	
HSPA1A 1.373028035 SEPT9 1.226916013 HSPA1B 1.373028035 EHD1 1.226344591 PSD3 1.371411227 CAP2 1.223807885 BSG 1.369172074 SLC25A3 1.221941931 PFN2 1.368469072 CAMK2B 1.22058499 ATP5J2 1.366417736 PRDX1 1.216665914 GNB1 1.366417736 PRDX1 1.215985447 DLG4 1.363981591 ATP5J 1.215921395 SH3GLB2 1.3663306 ATIC 1.213849668 KTN1 1.362629072 GSTM5 1.213704207 RAB3A UFS7 1.2196939 1.2196939	VAMP2			1.373709575		FABP5			1.233314773	
HSPA1B 1.373028035 EHD1 1.226344591 PSD3 1.371411227 CAP2 1.223807885 BSG 1.369172074 SLC25A3 1.221941931 PFN2 1.368469072 CAMK2B 1.22058499 ATP5J2 1.366417736 PRDX1 1.216665914 GNB1 1.366417736 PRDX1 1.215985447 DLG4 1.363981591 ATP5J 1.215521395 SH3GLB2 1.3663306 ATIC 1.213849668 KTN1 1.36229072 GSTM5 1.213704207 RAB3A J.302173026 NDUFS7 J.2199391						SEPT9				
PSD3 1.371411227 CAP2 1.223807885 BSG 1.369172074 SLC25A3 1.221941931 PFN2 1.368469072 CAMK2B 1.22058499 ATP5J2 1.36821641 PTGES3 1.216665914 GNB1 1.366417736 PRDX1 1.215985447 DLG4 1.363981591 ATP5I 1.215521395 SH3GLB2 1.3663306 ATIC 1.213849668 KTN1 1.362629072 GSTM5 1.213704207 RAB3A UUFS7 1.211966939 1.21395				1.373028035						
BSG 1.369172074 SLC25A3 1.221941931 PFN2 1.368469072 CAMK2B 1.22058499 ATP5J2 1.368321641 PTGES3 1.216665914 GNB1 1.366417736 PRDX1 1.215985447 DLG4 1.363981591 ATP5I 1.215521395 SH3GLB2 1.3626306 ATIC 1.213849668 KTN1 1.362629072 GSTM5 1.213704207 RAB3A NDUFS7 1.211966939										
PFN2 1.368469072 CAMK2B 1.22058499 ATP5J2 1.368321641 PTGES3 1.216665914 GNB1 1.366417736 PRDX1 1.215985447 DLG4 1.363981591 ATP5I 1.215521395 SH3GLB2 1.36629072 GSTM5 1.213704207 RAB3A UUFS7 UUFS7 1.211966939	BSG			1.369172074		SLC25A3			1.221941931	
ATP5J2 1.368321641 PTGES3 1.216665914 GNB1 1.366417736 PRDX1 1.215985447 DLG4 1.363981591 ATP51 1.215521395 SH3GLB2 1.3663306 ATIC 1.213849668 KTN1 1.36229072 GSTM5 1.213704207 RAB3A UVFS7 1.211966939										
GNB1 1.366417736 PRDX1 1.215985447 DLG4 1.363981591 ATP5I 1.215521395 SH3GLB2 1.36363306 ATIC 1.213849668 KTN1 1.362629072 GSTM5 1.213704207 RAB3A 1.362173026 NDUFS7 1.21306939										
DLG4 1.363981591 ATP5I 1.215521395 SH3GLB2 1.36363306 ATIC 1.213849668 KTN1 1.362629072 GSTM5 1.213704207 RAB3A 1.362173026 NDUFS7 1.211966939										
SH3GLB2 1.36363306 ATIC 1.213849668 KTN1 1.362629072 GSTM5 1.213704207 RAB3A 1.362173026 NDUFS7 1.211966939										
KTN1 1.362629072 GSTM5 1.213704207 RAB3A 1.362173026 NDUFS7 1.211966939										
RAB3A 1.362173026 NDUFS7 1.211966939										
					(Continued)					(Continued)

(Continued)

Table 7 | Continued

Protein	Cortex up	Cortex down	Hippo up	Hippo down
DCLK1			1.207992461	
GPD1L			1.207286149	
HNRNPL			1.205847041	
NAPB			1.202833155	
RTN4			1.201798491	
PCSK1N				-1.245474191
NDR7				-1.245967263
MAG				-1.248958157
DDB1				-1.255013637
MOBP				-1.256321905
GAD2				-1.26014124
NA				-1.265874043
IPT1				-1.268669401
DH3G				-1.270175029
PCCB				-1.272883353
MAPRE2				-1.274095945
MRPS36				-1.275342647
VIRPS36				-1.275342647
PSMC6 ABAT				-1.281124693
ABAT NTM				-1.283265073 -1.284285221
CA2				-1.284359839
HPCAL1				-1.284463003
MOG				-1.295178624
PSMA6				-1.297701354
SDHA				-1.300775393
COPB1				-1.300938943
NONO				-1.301095086
TUFM				-1.311237761
ADSS				-1.311542644
GSF8				-1.312784192
COX5A				-1.313555144
JQCRFS1				-1.316410553
СКВ				-1.318123142
PIP4K2B				-1.324477494
NEFM				-1.330302859
PSMD6				-1.330311752
NEFL				-1.344530231
NDUFA8				-1.348309239
BIN1				-1.354260702
PTMS				-1.379162453
PHB2				-1.381012946
NDUFS2				-1.382654847
DSTN				-1.396469687
CCT5				-1.396711507
S100B				-1.403153034
CLASP2				-1.403192685
EPB41L1				-1.419486383
PFKL				-1.424253294
PSAP				-1.429458675
CPLX1				-1.437904339
SERPINA3K				-1.462482626
AHSA1				-1.482509362
SET				-1.494218612
ATL1				-1.49652324
				1. 10002024

Table 7 | Continued

Protein	Cortex up	Cortex down	Hippo up	Hippo down
PRKACB				-1.501341659
NME2				-1.50235585
ITPKA				-1.515605888
NCS1				-1.519434163
EEF1A1				-1.52888451
PLCB1				-1.530645112
ENPP6				-1.54238465
SYNE1				-1.544411246
PCP4				-1.55434885
MBP				-1.58360055
NCEH1				-1.612308156
ACSL6				-1.61234218
GLO1				-1.65962180
PPP1R1B				-1.66857107
HSD17B10				-1.71978093
SIRT2				-1.77672773
GPHN				-1.81024390
MORC1				-1.85364369
SLC6A11				-1.87713295
PDHX				-1.87873224
PTK6				-1.89800334
DPYSL5				-1.90346527
HPRT1				-2.33309542

For each specific protein studied fold change values, indicated in the table below, were generated from the iTRAQ expression ratios of (> 1.2 or < 0.8) proteins differentially regulated in the BTBR tissues [Cortex, Hippocampus (Hippo)] compared to WT.

inspection of the coherently-regulated multi-tissue protein set revealed an exciting and potentially novel functional association of neuronal Wasp (Wiskott-Aldrich syndrome protein) activity and ASD (**Figures 6C,D**). To our current knowledge this is the first example of such a functional correlation, however it is relatively simple to predict that the molecular activities of this skeletal remodeling factor could impact a disorder such as ASD in which a less synaptically plastic neurological system is present.

In conclusion, we found that both the social behavioral phenotype and the CNS proteomic profile of this ASD model are relatively age-resistant. Aged BTBR mice possessed elevations in hippocampal and cortical synaptic markers that likely play a role in the etiology of the autistic-like phenotype. Low levels of BDNF have been found inconsistently in the ASD literature but more consistently in the aging and Alzheimer Disease literature (Chadwick et al., 2010b). Diminished mature BDNF in the aged BTBR hippocampus/cortex were seen along with complementary alterations in the downstream signaling pathways compared to WT aged mice. These findings in-part reinforce the potential long-term neuroprotective capacity of the ASD phenotype with respect to cognitive aging. It is therefore interesting to posit that despite lower levels of neurosynaptic plasticity that the more robust and reinforced neuronal network in ASD phenotypes may indeed act prophylactically over long periods of time compared to normal CNS networks that degrade due to unrepaired damage and synaptic loss. The complex proteotype of the

Table 8 | Textrous!-based collective analysis of coherently-regulated BTBR-specific proteins.

Table 8 | Continued

BTBR-specific prote	eins.							
Word	Cosine similarity	Z-score	<i>p</i> -Value	Word	Cosine similarity	Z-score	<i>p</i> -Value	
	Cosine similarity	2-30016	p-value	Neuron	0.370913941	1.283353835	0.099746038	
Motor	0.524476314	1.869598279	0.030741909	Multidisciplinary	0.369651835	1.27853558	0.100448528	
Nonsense	0.478414897	1.693752796	0.045132642	Destination	0.369566192	1.278208627	0.100624713	
Atrophies	0.4700895	1.661969501	0.048256387	Cilia	0.368620901	1.274599856	0.101154621	
Gtpases	0.468206051	1.65477919	0.048962249	Gtp-dependent	0.367048826	1.268598253	0.102220532	
Exons	0.466743056	1.649194013	0.049573817	Phosphatidic	0.366734218	1.267397195	0.102577645	
Growth-associated	0.455961506	1.608034038	0.053917589	Identification	0.366608729	1.266918125	0.102577645	
Inherited	0.455845768	1.607592194	0.053917589	Disability	0.365764506	1.263695196	0.103115013	
Gtpase	0.455708175	1.607066915	0.054027184	Muscular	0.365741802	1.26360852	0.103115013	
Autosomal	0.453900108	1.600164382	0.054799292	Ciliary	0.364952202	1.260594116	0.103654424	
Polymerization	0.453672232	1.599294435	0.054910301	Meshwork	0.364710238	1.259670389	0.103834681	
Optic	0.444664336	1.564905613	0.058791455	Partners	0.364390606	1.258450149	0.104195878	
Exon	0.437675556	1.538225034	0.062024307	Inheritance	0.364260066	1.257951798	0.104195878	
Gtp-binding	0.435679912	1.5306064	0.062884696	Scanning	0.363734162	1.255944089	0.104557985	
Maps	0.427384101	1.498936057	0.066936816	f-actin	0.363367304	1.254543564	0.10473938	
Bundles	0.426675363	1.496230358	0.067326828	Beta-galactoside	0.36316993	1.253790062	0.104921003	
Disabilities	0.423470554	1.483995579	0.06890446	Anonymous	0.361144496	1.2460577	0.106382198	
Gdi	0.419726975	1.469703976	0.070780877	Protrusion	0.359889734	1.241267484	0.107302874	
Brothers	0.419534775	1.46897023	0.070916395	Sialyltransferase	0.359831442	1.241044947	0.107302874	
Movement	0.417518799	1.461273977	0.072007721	Neurofibromatosis	0.359791096	1.24089092	0.107302874	
	0.417184158	1.45999644	0.072145037	Lipofuscin	0.359746522	1.24033032	0.107302874	
Acuity		1.448405032	0.072145037	•	0.35878958		0.107302874	
Cytoskeleton	0.414147875			Radixin		1.237067503		
n-wasp	0.412898356	1.443634832	0.074369488	Proteins	0.358631641	1.236464548	0.108229282	
Frameshift	0.411123648	1.436859653	0.075358997	Squid	0.358474059	1.23586296	0.108229282	
Recessive	0.409375594	1.430186227	0.07635851	Screen	0.356102317	1.226808525	0.109911295	
Wiskott-aldrich	0.407779814	1.424094126	0.077223236	Filopodia	0.355914644	1.226092057	0.110099338	
Actin	0.406644694	1.419760659	0.077803841	Extensions	0.355265349	1.223613288	0.110476114	
Wasp	0.405802073	1.416543842	0.078241464	Lowe	0.355018906	1.222672462	0.110664848	
Gtpase-activating	0.402282931	1.403109057	0.080308419	Pre-mrna	0.354335273	1.220062601	0.111232437	
Recycling	0.395770067	1.378245348	0.084101644	Leber	0.354284348	1.219868188	0.111232437	
Reorganization	0.391991869	1.363821581	0.086283783	Counseling	0.354132651	1.219289065	0.111422096	
Prenylation	0.389968302	1.356096352	0.087549584	x-linked	0.354046801	1.218961323	0.111422096	
Splice	0.388453273	1.350312529	0.088507991	Cones	0.353920096	1.218477608	0.111611986	
Missense	0.388195935	1.349330109	0.088668483	Contig	0.353576868	1.217167292	0.111802108	
Streaming	0.387806369	1.347842888	0.088829191	Cryomicroscopy	0.35310173	1.215353389	0.112183046	
Apparatus	0.3874916	1.346641219	0.088990116	Amaurosis	0.353046083	1.215140949	0.112183046	
Pericentriolar	0.387010855	1.344805911	0.089312617	Methanothermobacter	0.352545212	1.21322881	0.11256491	
Families	0.386042261	1.341108175	0.089960226	Neurofibromas	0.35222224	1.211995824	0.11275619	
Plexiform	0.385574635	1.339322953	0.090285336	Endocytic	0.352220725	1.211990038	0.11275619	
Polysomes	0.383798601	1.332542712	0.091265902	Pumping	0.351073392	1.207609946	0.113523631	
Guanosine	0.383107191	1.329903161	0.091759136	Tail	0.350586481	1.205751097	0.113908745	
Splicing	0.382666221	1.328219703	0.092089053	Dynamin	0.350367829	1.204916365	0.114101651	
Cytoskeletal	0.381993528	1.325651608	0.092419849	Syndrome	0.349521708	1.20168619	0.114681764	
Mutational	0.381893517	1.325269803	0.092585576	Endosomes	0.347991562	1.195844656	0.11584828	
Coiled-coil	0.381550118	1.323958833	0.092751522	Blindness	0.34724489	1.19299414	0.116434687	
gaps	0.380853905	1.321300948	0.093250682	Visual	0.347190286	1.192785679	0.116434687	
Depolymerizing	0.380444571	1.319738261	0.093417509					
Intellectual	0.378479462	1.312236202	0.094760067	Cosine similarity scores,		, ,		
Mutations	0.378323187	1.311639602	0.094760067	lated using collective pro	ocessing of the 16 co	pherently-regulat	ed BTBR-specif	
Protrusions	0.377199886	1.307351254	0.094700007	proteins in the cortex and	d hippocampal datase	ets.		
Neurofibromin	0.376699229	1.305439931	0.095946424					
Actin-binding	0.375976678	1.302681498	0.096287381	BTBR mice revealed		-	-	
Atrophy	0.375377983	1.3003959	0.096800485	reminiscent of those			-	
Dynamics	0.373862886	1.29461182	0.097660115	tar disubilities including field. Many of these facilities processes				
Pigmentary	0.373853033	1.294574204	0.097660115	play a role in neurod	evelopment based	l on studies in	murine mod	

(Continued)

els, and give more evidence for proteins that are playing a role

in neuroprotection allowing for maintenance of cognition in the aged BTBR mice. Therefore, it is possible that the elevated levels of various synaptic markers and proteins identified proteomically such as Picalm, Itsn1, Mobp, Ina, as well as signaling actions involving Wasp functionality served to protect the aging BTBR brain against age-related declines in cognition often associated with decreased BDNF. In the current study we observed a robust maintenance of cognitive ability despite advanced age that may be due to unique neurosynaptic architecture and activity in the ASD phenotype. The role of the associated proteins and synaptic markers provide a foundation for further investigation into this intriguing mechanism.

ACKNOWLEDGMENTS

This work was carried out with the support of the Intramural Research Program of the National Institute on Aging at the National Institutes of Health. Authors are grateful to Tatiahna Rivera, Vivian Cong, Dianna Augustyniak, Emily Maxwell, Shilpa Kadam for technical help.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://www.frontiersin.org/journal/10.3389/fnagi. 2014.00225/abstract

Figure S1 | Collective *Textrous!* analysis of differentially-regulated cortical

protein subsets. Functional hierarchical word-clouds were generated from the upregulated (BTBR:WT iTRAQ ratio > 1.2) (A) and downregulated (BTBR:WT iTRAQ ratio < 0.8) cortical protein data sets.

Figure S2 | Collective Textrous! analysis of differentially-regulated

hippocampal protein subsets. Functional hierarchical word-clouds were generated from the upregulated (BTBR:WT iTRAQ ratio > 1.2) (A) and downregulated (BTBR:WT iTRAQ ratio < 0.8) hippocampal protein data sets.

REFERENCES

- American Psychiatric Association. (2012). Diagnostic and Statistical Manual of Mental Disorders: DSM-V. Washington, DC: American Psychiatric Association.
- Anitha, A., Nakamura, K., Thanseem, I., Yamada, K., Iwayama, Y., Toyota, T., et al. (2012). Brain region-specific altered expression and association of mitochondria-related genes in autism. *Mol. Autism* 3:12. doi: 10.1186/2040-2392-3-12
- Ballaban-Gil, K., Rapin, L., Tuchman, T., and Shinnar, S. (1996). Longitudinal examination of the behavioral, language, and social changes in a population of adolescent and young adults with autistic disorder. *Pediatr. Neurol.* 15, 217–223. doi: 10.1016/S0887-8994(96)00219-6
- Bhakar, A. L., Dölen, G., and Bear, M. F. (2012). The pathophysiology of fragile X (and what it teaches us about synapses). *Ann. Rev. Neurosci.* 35, 417–443. doi: 10.1146/annurev-neuro-060909-153138
- Blednov, Y. A., Walker, D. L., Iyer, S. V., Homanics, G., and Harris, A. R. (2010). Mice lacking Gad2 show altered behavioral effects of ethanol, flurazepam and gabaxadol. *Addict. Biol.* 15, 45–61. doi: 10.1111/j.1369-1600.2009.00186.x
- Bohlen, M., Cameron, A., Metten, P., Crabbe, J. C., and Wahlsten, D. (2009). Calibration of rotational acceleration for the rotarod test of rodent motor coordination. J. Neurosci. Methods 178, 10–14. doi: 10.1016/j.jneumeth.2008.11.001
- Bolivar, V. J., Walter, S. R., and Phoenix, J. L. (2007). Assessing autism-like behavior in mice: variations in social interactions among inbred strains. *Behav. Brain Res.* 176:2126. doi: 10.1016/j.bbr.2006.09.007
- Cai, H., Chen, H., Yi, T., Daimon, C., Boyle, J., Peers, C., et al. (2013). VennPlexa novel Venn diagram program for comparing and visualizing datasets with

differentially regulated datapoints. *PLoS ONE* 8:e53388. doi: 10.1371/journal.pone.0053388

- Centers for disease control and prevention. (2010). Available online at: http://www.cdc.gov/ncbddd/dd/default.html [Accessed, 2013]
- Chadwick, W., Brenneman, R., Martin, B., and Maudsley, S. (2010a). Complex and multidimensional lipid raft alterations in a murine model of Alzheimer's disease. *Int. J. Alzheimer's Disease* 2010:604792. doi: 10.4061/2010/604792
- Chadwick, W., Mitchell, N., Caroll, J., Zhou, Y., Park, S. S., Wang, L., et al. (2011). Amitriptylinemediated cognitive enhancement in aged 3 × Tg Alzheimer's disease mice is associated with neurogenesis and neurotrophic activity. *PLoS ONE* 6:e21660. doi: 10.1371/journal.pone.0021660
- Chadwick, W., Zhou, Y., Park, S. S., Wang, L., Mitchell, N., Stone, M., et al. (2010b). Minimal peroxide exposure of neuronal cells induces multifaceted adaptive responses. *PLoS ONE* 5:e14352. doi: 10.1371/journal.pone.0014352
- Chao, H. T., Chen, H., Samaco, R. C., Xue, M., Chahrour, M., Yoo, J., et al. (2010). Dysfunction in GABA signaling mediates autism-like stereotypies and Rett syndrome phenotypes. *Nature* 468, 263–269. doi: 10.1038/nature09582
- Chen, H., Martin, B., Daimon, C., Siddiqui, S., Luttrell, L., and Maudsley, S. (2013). Textrousl: extracting semantic textual meaning from gene sets. *PLoS ONE* 8:e62665. doi: 10.1371/journal.pone.0062665
- Cohen, S., and Greenberg, M. E. (2008). Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. *Annu. Rev. Cell Dev. Biol.* 24, 183–209. doi: 10.1146/annurev.cellbio.24.110707.175235
- Connor, B., Young, D., Yan, Q., Faull, R. L., Synek, B., and Dragunow, M. (1997). Brain-derived neurotrophic factor is reduced in Alzheimer's disease. *Mol. Brain Res.* 49:7181. doi: 10.1016/S0169-328X(97)00125-3
- Coppieters, F., Casteels, I., Meire, F., De Jaegere, S., Hooghe, S., van Regemorter, N., et al. (2010). Genetic screening of LCA in Belgium: predominance of CEP290 and identification of potential modifier alleles in AHI1 of CEP290-related phenotypes. *Hum. Mutat.* 31, E1709–E1766. doi: 10.1002/humu.21336
- Crawley, J. N. (2007). Mouse behavioral assays relevant to the symptoms of autism. Brain Pathol. 17, 448–459. doi: 10.1111/j.1750-3639.2007.00096.x
- Cukier, H. N., Dueker, N., Slifer, S., Lee, J. M., Whitehead, P. L., Lalanne, E., et al. (2014). Exome sequencing of extended families with autism reveals genes shared across neurodevelopmental and neuropsychiatric disorders. *Mol. Autism* 5:1. doi: 10.1186/2040-2392-5-1
- Cukier, H. N., Lee, J. M., Ma, D., Young, J. I., Mayo, V., Butler, B. L., et al. (2012). The expanding role of MBD genes in autism: identification of a MECP2 duplication and novel alterations in MBD5, MBD6, and SETDB1. *Autism Res.* 5, 385–397. doi: 10.1002/aur.1251
- Darnell, J. C., Van Driesche, S. J., Zhang, C., Hung, K. Y., Mele, A., Fraser, C. E., et al. (2011). FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. *Cell* 146, 247–261. doi: 10.1016/j.cell.2011.06.013
- Defensor, E. B., Pearson, B. L., Pobbe, R. L. H., Bolivar, V. J., Blanchard, D. C., and Blanchard, R. J. (2011). A novel social proximity test suggests patterns of social avoidance and gaze aversion-like behavior in BTBR T + tf/J mice. *Behav. Brain Res.* 217, 302–308. doi: 10.1016/j.bbr.2010.10.033
- Dere, E., Huston, J. P., and De Souza Silva, M. A. (2007). The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. *Neurosci. Biobehav. Rev.* 31, 673–704. doi: 10.1016/j.neubiorev.2007. 01.005
- Dickson, T. C., Chuckowree, J. A., Chuah, M. I., West, A. K., and Vickers, J. C. (2005). Alphainternexin immunoreactivity reflects variable neuronal vulnerability in Alzheimer's disease and supports the role of the betaamyloid plaques in inducing neuronal injury. *Neurobiol. Dis.* 18, 286–295. doi: 10.1016/j.nbd.2004.10.001
- Ebert, D., and Greenberg, M. (2013). Activity-dependent neuronal signaling and autism spectrum disorder. *Nature* 493, 327–337. doi: 10.1038/nature11860
- Fahnestock, M., Garzon, D., Holsinger, R. M., and Michalski, B. (2002). Neurotrophic factors and Alzheimer's disease: are we focusing on the wrong molecule? *J. Neural. Transm. Suppl.* 62, 241–252. doi: 10.1007/978-3-7091-6139-5_22
- Ferrer, I., Marin, C., Rey, M. J., Ribalta, T., Goutan, E., Blanco, R., et al. (1999). BDNF and full-length and truncated TrkB expression in Alzheimer disease: implications in therapeutic strategies. J. Neuropathol. Exp. Neurol. 58, 729–739. doi: 10.1097/00005072-199907000-00007
- Feyder, M., Karlsson, R., Mathur, P., Lyman, M., Bock, R., Momenan, R., et al. (2010). Association of mouse D1g4 (PSD-95) gene deletion and human DLG4 gene variation with phenotypes relevant to autism spectrum disorders and

Williams' syndrome. Am. J. Psychiatry 167, 1508–1517. doi: 10.1176/appi.ajp. 2010.10040484

- Fombonne, E., Simmons, H., Ford, T., Meltzer, H., and Goodman, R. (2001). Prevalence of pervasive developmental disorders in the British nationwide survey of child mental health. J. Am. Acad. Child Adolesc. Psychiatry 40, 820–827. doi: 10.1097/00004583-200107000-00017
- Fruhmesser, A., Blake, J., Haberlandt, E., Baying, B., Raeder, B., Runz, H., et al. (2013). Disruption of EXOC6B in a patient with developmental delay, epilepsy, and a de novo balanced t(2;8) translocation. *Eur. J. Hum. Genet.* 21, 1177–1180. doi: 10.1038/ejhg.2013.18
- Gillberg, C., and Wing, L. (1999). Autism: not an extremely rare disorder. Acta Psychiatr. Scand. 99, 399–406. doi: 10.1111/j.1600-0447.1999.tb00984.x
- Gkogkas, C. G., Khoutorsky, A., and Ran, I. (2013). Autism-related deficits via dysregulated eIF4E-dependent translational control. *Nature* 493, 371–377. doi: 10.1038/nature11628
- Griswold, A. J., Ma, D., Cukier, H. N., Nations, L. D., Schmidt, M. A., Chung, R. H., et al. (2012). Evaluation of copy number variations reveals novel candidate genes in autism spectrum disorder-associated pathways. *Hum. Mol. Genet.* 21:3523. doi: 10.1093/hmg/dds164
- Harlow, E. G., Till, S. M., Russell, T. A., Wijetunge, L. S., Kind, P., and Contractor, A. (2010). Critical period plasticity is disrupted in the barrel cortex of FMR1 knockout mice. *Neuron* 65, 385–398. doi: 10.1016/j.neuron.2010.01.024
- Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L., et al. (2013). Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. *Nat. Genet.* 45, 712. doi: 10.1038/ ng0613-712a
- Hedges, D. J., Hamilton-Nelson, K. L., Sacharow, S. J., Nations, L., Beecham, G. W., Kozhekbaeva, Z. M., et al. (2012). Evidence of novel fine-scale structural variation at autism spectrum disorder candidate loci. *Mol. Autism* 3:2. doi: 10.1186/20402392-3-2
- Hock, C., Heese, K., Hulette, C., Rosenberg, C., and Otten, U. (2000). Regionspecific neurotrophin imbalances in Alzheimer disease: decreased levels of brain derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. *Arch. Neurol.* 57, 846–851. doi: 10.1001/archneur.57.6.846
- Holmes, A., Wrenn, C. C., Harris, A. P., Thayer, K. E., and Crawley, J. N. (2002). Behavioral profiles of inbred strains on novel olfactory, spatial and emotional tests for reference memory in mice. *Genes Brain Behav.* 1, 55–59. doi: 10.1046/j.1601-1848.2001.00005.x
- Holsinger, R. M., Schnarr, J., Henry, P., Castelo, V. T., and Fahnestock, M. (2000). Quantitation of BDNF mRNA in human parietal cortex by competitive reverse transcription-polymerase chain reaction: decreased levels in Alzheimer's disease. *Brain Research. Mol. Brain Res.* 76, 347–354. doi: 10.1016/S0169-328X(00)00023-1
- Howlin, P., Goode, S., Hutton, J., and Rutter, M. (2004). Adult outcome for children with autism. J. Child Psychol. Psychiatry 45, 212–229. doi: 10.1111/j.1469-7610.2004.00215.x
- Howlin, P., and Moss, P. (2012). Adults with autism spectrum disorders. *Can. J. Psychiatry* 57, 275–283.
- Hunter, M. P., Nelson, M., Kurzer, M., Wang, X., Kryscio, R. J., Head, E., et al. (2011). Intersectin 1 contributes to phenotypes *in vivo*: implications for down syndrome. *Neuroreport* 22, 767–772. doi: 10.1097/WNR.0b013e32834ae348
- Hussain, R. J., Stumpo, D. J., Blackshear, P. J., Lenox, R. H., Abel, T., and McNamara, R. K. (2006). Myristoylated alanine rich C kinase substrate (MARCKS) heterozygous mutant mice exhibit deficits in hippocampal mossy fiber-CA3 longterm potentiation. *Hippocampus* 16, 495–503. doi: 10.1002/hipo.20177
- Ji, L., Chauhan, A., and Chauhan, V. (2012). Reduced activity of protein kinase C in the frontal cortex of subjects with regressive autism: relationship with developmental abnormalities. *Int. J. Biol. Sci.* 8, 1075–1084. doi: 10.7150/ijbs.4742
- Jones, E. L., Mok, K., Hanney, M., Harold, D., Sims, R., Williams, J., et al. (2013). Evidence that PICALM affects age at onset of Alzheimer's dementia in down syndrome. *Neurobiol. Aging* 34, 2441.e1-5. doi: 10.1016/j.neurobiolaging.2013. 03.018
- Kanner, L., Rodriguez, A., and Ashenden, B. (1972). How far can autistic children go in matters of social adaptation? J. Autism Child. Schizophr. 19, 213–225.
- Kelleher, R., and Bear, M. (2008). The autistic neuron: troubled translation? Cell 135:401406. doi: 10.1016/j.cell.2008.10.017
- Khalifa, A. M., Watson-Siriboe, A., Shukry, S. G., Chiu, W. L., Nelson, M. E., Geng, Y., et al. (2012). Thr136Ile polymorphism of human vesicular monoamine

transporter-1 (SLC18A1 gene) influences its transport activity in vitro. Neuro. Endocrinol. Lett. 33, 546–551.

- Liu, C. C., Kanekiyo, T., Xu, H., and Bu, G. (2013). Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. *Nature Rev. Neurol.* 9, 106–118. doi: 10.1038/nrneurol.2012.263
- Lohoff, F. W., Weller, A. E., Bloch, P. J., Buono, R. J., Doyle, G. A., Ferraro, T. N., et al. (2008). Association between polymorphisms in the vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) on chromosome 8p and schizophrenia. *Neuropsychobiology* 57, 56–60. doi: 10.1159/000129668
- Lotter, V. (1974). Social adjustment and placement of autistic children in Middlesex: a follow-up study. J. Autism Child. Schizophr. 4, 11–32. doi: 10.1007/ BF02104997
- Martin, B., Brenneman, R., Golden, E., Walent, T., Becker, K., Prabhu, V., et al. (2009a). Growth factor signals in neural cells: coherent patterns of interaction control multiple levels of molecular and phenotypic responses. J. Biol. Chem. 284, 2493–2511. doi: 10.1074/jbc.M804545200
- Martin, B., Pearson, M., Brenneman, R., Golden, E., Wood, W. I., Prabhu, V., et al. (2009b). Gonadal transcriptome alterations in response to dietary energy intake: sensing the reproductive environment. *PLoS ONE* 4:e4146. doi: 10.1371/journal.pone.0004146
- Mattson, M. P., Maudsley, S., and Martin, B. (2004). BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. *Trends Neurosci.* 27, 589–594. doi: 10.1016/j.tins.2004.08.001
- Maudsley, S., Chadwick, W., Wang, L., Zhou, Y., Martin, B., and Park, S. S. (2011). Bioinformatic approaches to metabolic pathways analysis. *Methods Mol. Biol.* 756, 99–130. doi: 10.1007/978-1-61779-160-4_5
- Maudsley, S., Naor, Z., Bonfil, D., Davidson, L., Karali, D., Pawson, A., et al. (2007). Proline-rich tyrosine kinase 2 mediates gonadotropin-releasing hormone signaling to a specific extracellularly regulated kinase-sensitive transcriptional locus in the luteinizing hormone beta-subunit gene. *Mol. Endocrinol.* 21, 1216–1233. doi: 10.1210/me.2006-0053
- Mitew, S., Hay, C., Peckham, H., Xiao, J., Koenning, M., and Emery, B. (2013). Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. *Neuroscience*. doi: 10.1016/j.neuroscience.2013.11.029. [Epub ahead of print].
- Moy, S. S., and Nadler, J. J. (2008). Advances in behavioral genetics: mouse models of autism. *Mol. Psychiatry* 13, 4–26. doi: 10.1038/sj.mp.4002082
- Moy, S. S., Nadler, J. J., Young, N. B., Perez, A., Holloway, L. P., Barbaro, R. P., et al. (2007). Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. *Behav. Brain Res.* 176, 4–20. doi: 10.1016/j.bbr.2006.07.030
- Mundy, P. (2003). The neural basis of social impairments in autism: the role of the dorsal medial-frontal cortex and anterior cingulate system. J. Child Psychol. Psychiatry 44, 793–809. doi: 10.1111/1469-7610.00165
- Murray, K. D., Gall, C. M., Jones, E. G., and Isackson, P. J. (1994). Differential regulation of brain-derived neurotrophic factor and type II calcium/calmodulin dependent protein kinase messenger RNA expression in Alzheimer's disease. *Neuroscience* 60, 37–48. doi: 10.1016/0306-4522(94)90202-X
- Nadler, J. J., Zou, F., Huang, H., Moy, S. S., Lauder, J., Crawley, J. N., et al. (2006). Large scale gene expression differences across brain regions and inbred strain correlate with behavioral phenotype. *Genetics* 174, 1229–1236. doi: 10.1534/ genetics.106.061481
- Nishimura, K., Lee, S. B., Park, J. H., and Park, M. H. (2012). Essential role of eIF5A-1 and deoxyhypusine synthase in mouse embryonic development. *Amino Acids* 42, 703–710. doi: 10.1007/s00726-011-0986-z
- Noor, A., Whibley, A., Marshall, C., Gianakopoulos, P., Piton, A., Carson, A., et al. (2010). Disruption at the PTCHDI locus on Xp22.11 in autism spectrum disorder and intellectual disability. *Sci. Transl. Med.* 2:49ra68. doi: 10.1126/scitranslmed.3001267
- Park, J., Shimojo, E., and Shimojo, S. (2010). Roles of familiarity and novelty in visual preference judgments are segregated across object categories. *Proc. Natl. Acad. Sci. U.S.A.* 107, 14552–14555. doi: 10.1073/pnas.1004374107
- Pathania, M., Davenport, E., Muir, J., Sheehan, D., Lopez-Domenech, G., and Kittler, J. (2014). The autism and schizophrenia associated gene CYFIPI is critical for the maintenance of dendritic complexity and the stabilization of mature spines. *Transl. Psychiatry* 4:e374. doi: 10.1038/tp.2014.36
- Pearson, B. L., Pobbe, R. L. H., Defensor, E. B., Osay, L., Bolivar, V. J., Blanchard, D. C., et al. (2011). Motor and cognitive stereotypies in the BTBR T+tf/J mouse model of autism. *Genes Brain Behav.* 10, 228–235. doi: 10.1111/j.1601-183X.2010.00659.x

- Petit, T. L. (1988). Synaptic plasticity and the structural basis of learning and memory. *Neurol. Neurol. Neural. Plast.* 36, 201–234.
- Phillips, H. S., Hains, J. M., Armanini, M., Laramee, G. R., and Johnson, S. A. (1991). BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer's disease. *Neuron* 7:695702.
- Piven, J., Bailey, A. S., and Andreasen, N. (1996). Regional brain enlargement in autism: a magnetic resonance imaging study. J. Am. Acad. Child Adolesc. Psychiatry 35, 530–536. doi: 10.1097/00004583-199604000-00020
- Piven, J., and Rabins, P. (2011). Autism spectrum disorders in older adults: toward defining a research agenda. J. Am. Geriatr. Soc. 59, 2151–2155. doi: 10.1111/j. 1532-5415.2011.03632.x
- Pobbe, R. L., Defensor, E. B., Pearson, B. L., Bolivar, V. J., and Blanchard, D. C. (2010). Expression of social behaviors of C57BL/6J versus BTBR inbred mouse strains in the visible burrow system. *Behav. Brain Res.* 214, 443–449. doi: 10.1016/j.bbr.2010.06.025
- Quartu, M., Lai, M. L., and Del Fiacco, M. (1999). Neurotrophin-like immunoreactivity in the human hippocampal formation. *Brain Res. Bull.* 48, 375–382. doi: 10.1016/S0361-9230(99)00009-X
- Renty, J. O., and Roeyers, H. (2006). Quality of life in high-functioning adults with autism spectrum disorder: the predictive value of disability and support characteristics. *Autism* 10, 511–524. doi: 10.1177/1362361306 066604
- Romanczyk, T. B., Weickert, C. S., Webster, M. J., Herman, M. M., Akil, M., and Kleinman, J. E. (2002). Alterations in TrkB mRNA in the human prefrontal cortex throughout the lifespan. *Eur. J. Neurosci.* 15, 269–280. doi: 10.1046/j.0953-816x.2001.01858.x
- Rumsey, J. M., Rapoport, J. L., and Sceery, W. R. (1985). Autistic children as adults: psychiatric, social, and behavioral outcomes. J. Am. Acad. Child Psychiatry 24, 465473. doi: 10.1016/S0002-7138(09)60566-5
- Rutter, M., Greenfeld, D., and Lockyer, L. (1967). A five to fifteen year followup study of infantile psychosis (II. Social and behavioural outcome). *Br. J. Psychiatry* 113, 1183–1199. doi: 10.1192/bjp.113.504.1183
- Scattoni, M. L., Gandhy, S. U., Ricceri, L., and Crawley, J. N. (2008). Unusual repertoire of vocalizations in the BTBR T+tf/J mouse model of autism. *PLoS ONE* 3:e3067. doi: 10.1371/journal.pone.0003067
- Scattoni, M. L., Ricceri, L., and Crawley, J. N. (2011). Unusual repertoire of vocalizations in adult BTBR T+tf/J mice during three types of social encounters. *Genes Brain Behav.* 10:4446. doi: 10.1111/j.1601-183X.2010. 00623.x
- Seltzer, M. M., Krauss, M. W., Shattuck, P. T., Orsmond, G., Swe, A., and Lord, C. (2003). The symptoms of autism spectrum disorders in adolescence and adulthood. J. Autism Dev. Disord. 33, 565–581. doi: 10.1023/B:JADD.0000005995. 02453.0b
- Shattuck, P. T., Seltzer, M. M., Greenberg, J. S., Orsmond, G. I., Bolt, D., Kring, S., et al. (2007). Change in autism symptoms and maladaptive behaviors in adolescents and adults with an autism spectrum disorder. *J. Autism Dev. Disord.* 37, 1735–1747. doi: 10.1007/s10803-006-0307-7
- Sokol, D. K., Maloney, B., Long, J. M., Ray, B., and Lahiri, D. K. (2011). Autism, Alzheimer disease, and fragile X: APP, FMRP, and mGluR5 are molecular links. *Neurology* 76:13441352. doi: 10.1212/WNL.0b013e318 2166dc7
- Stamova, B., Tian, Y., Nordahl, C., Shen, M., Rogers, S., Amaral, D., et al. (2013). Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders. *Mol. Autism* 4:30. doi: 10.1186/2040-2392-4-30

- Stumpo, D. J., Bock, C. B., Tuttle, J. S., and Blackshear, P. J. (1995). MARCKS deficiency in mice leads to abnormal brain development and perinatal death. *Proc. Natl. Acad. Sci. U.S.A.* 92, 944–948.
- Suckow, A. T., Craige, B., Faundez, V., Cain, W. J., and Chessler, S. D. (2010). An AP-3dependent mechanism drives synaptic-like microvesicle biogenesis in pancreatic islet beta-cells. *Am. J. Physiol. Endocrinol. Metab.* 299, E23–E32. doi: 10.1152/ajpendo.00664.2009
- Szatmari, P., Bartolucci, G., Bremner, R., Bond, S., and Rich, S. (1989). A follow up study of high-functioning autistic children. J. Autism Dev. Disord. 19, 213–225. doi: 10.1007/BF02211842
- Szatmari, P., Archer, L., Fisman, S., Streiner, D. L., and Wilson, F. (1995). Asperger's syndrome and autism: differences in behavior, cognition, and adaptive functioning. J. Am. Acad. Child Adolesc. Psychiatry, 34, 1662–1671. doi: 10.1097/ 00004583-199512000-00017
- Szatmari, P. (1998). Differential diagnosis of Asperger's disorder. Asperger Syndr. High Funct. Autism? 7, 61–76. doi: 10.1007/978-1-4615-5369-4_4
- Tapia-Arancibia, L., Aliaga, E., Silhol, M., and Arancibia, S. (2008). New insights into brain BDNF function in normal aging and Alzheimer disease. *Brain Res. Rev.* 59, 201–220. doi: 10.1016/j.brainresrev.2008.07.007
- Weber, A., Kohler, A., Hahn, A., Neubauer, B., and Muller, U. (2013). Benign infantile convulsions (IC) and subsequent paroxysmal kinesigenic dyskinesia (PKD) in a patient with 16pl 1.2 microdeletion syndrome. *Neurogenetics* 14, 251–253. doi: 10.1007/s10048-013-0376-7
- Weimer, J. M., Yokota, Y., Stanco, A., Stumpo, D. J., Blackshear, P. J., and Anton, E. S. (2009). MARCKS modulates radial progenitor placement, proliferation and organization in the developing cerebral cortex. *Development* 136, 2965–2975. doi: 10.1242/dev.036616
- Wohr, M., Roullet, F. I., and Crawley, J. N. (2011). Reduced scent marking and ultrasonic vocalizations in the BTBR T+tf/J mouse model of autism. *Genes Brain Behav.* 10, 35–43. doi: 10.1111/j.1601-183X.2010.00582.x
- Zhao, L., Yao, J., Mao, Z., Chen, S., Wang, Y., and Brinton, R. D. (2010). 17βestradiol regulates insulin-degrading enzyme expression via an ERβ/PI3-K pathway in hippocampus: relevance to Alzheimer's prevention. *Neurobiol. Aging* 32, 1949–1963. doi: 10.1016/j.neurobiolaging.2009.12.010
- Zhubi, A., Chen, Y., Dong, E., Cook, E., Guidotti, A., and Grayson, D. (2014). Increased binding of MeCP2 to the GAD1 and RELN promoters may be mediated by an enrichment of 5-hmC in autism spectrum disorder (ASD) cerebellum. *Transl. Psychiatry* 4:e349. doi: 10.1038/tp.2013.123

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 27 June 2014; accepted: 08 August 2014; published online: 01 September 2014.

Citation: Jasien JM, Daimon CM, Wang R, Shapiro BK, Martin B and Maudsley S (2014) The effects of aging on the BTBR mouse model of autism spectrum disorder. Front. Aging Neurosci. 6:225. doi: 10.3389/fnagi.2014.00225

This article was submitted to the journal Frontiers in Aging Neuroscience.

Copyright © 2014 Jasien, Daimon, Wang, Shapiro, Martin and Maudsley. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.