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Abstract: Genome-wide association studies (GWAS) play a critical role in identifying many loci for
common diseases and traits. There has been a rapid increase in the number of GWAS over the past
decade. As additional GWAS are being conducted, it is unclear whether a novel signal associated
with the trait of interest is independent of single nucleotide polymorphisms (SNPs) in the same region
that has been previously associated with the trait of interest. The general approach to determining
whether the novel association is independent of previous signals is to examine the association of the
novel SNP with the trait of interest conditional on the previously identified SNP and/or calculate
linkage disequilibrium (LD) between the two SNPs. However, the role of epistasis and SNP by SNP
interactions are rarely considered. Through simulation studies, we examined the role of SNP by
SNP interactions when determining the independence of two genetic association signals. We have
created an R package on Github called gxgRC to generate these simulation studies based on user
input. In genetic association studies of asthma, we considered the role of SNP by SNP interactions
when determining independence of signals for SNPs in the ARG1 gene and bronchodilator response.

Keywords: epistasis; SNP by SNP interactions; independence; GWAS; ARG1; bronchodilator response

1. Introduction

Genome-wide association studies (GWAS) play a critical role in identifying many
loci for common diseases [1] as well as complex traits [2]. Over the past decade, the
rapid increase in the number of GWAS provides an extraordinary opportunity to examine
the potential impact of common and rare genetic variants on complex diseases [3]. Two
independent GWAS may identify two different single nucleotide polymorphisms (SNPs)
in the same gene or region that are both significantly associated with the trait of interest [4].
When determining whether these two signals are independent in GWAS, epistasis and SNP
by SNP interactions are often not considered.

Epistasis is defined as the interaction between different genes or SNPs and refers to
the departure from independence of the effect of different genetic loci on the disease or trait
of interest [5,6]. There is a complex relationship with epistasis and linkage disequilibrium
(LD) [7,8]. Multiple unobserved functional polymorphisms can lead to genotyped SNPs
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that do not properly represent the causal variants [9] and high order LD can lead to spurious
statistical epistatic associations [10]. Strong LD may suggest that detected epistasis between
pairs of SNPs in different association studies need to be interpreted with caution [9,10].

Given epistasis, it is important to consider SNP by SNP interactions when determining
whether genetic signals in GWAS are considered independent. For example, if an SNP is
associated with the trait of interest in a GWAS, an investigator may want to determine
if this SNP is an independent signal or purely the result of a correlated SNP that was
previously associated with the trait of interest. In order to determine if the two signals are
independent, the most popular approaches are to fit a regression of the trait of interest with
the novel SNP conditional on the previously identified SNP and/or calculate LD between
the two SNPs.

Through simulation studies, we examined the impact of SNP by SNP interactions
when determining whether two signals are independent in a GWAS. We have created the
R package, called gxgRC, which implements these simulation studies for user specified
parameters. In addition, we considered the role of SNP by SNP interactions when deter-
mining independence of signals for SNPs in the ARG1 gene and bronchodilator response
in genetic association studies of asthma.

2. Materials and Methods

In the following simulation scenarios, we examined the impact of SNP by SNP inter-
actions when determining the independence of two SNPs by regressing the trait of interest
Y with the SNP X1 conditional on the SNP X2. We generated 1000 subjects for 5000 simula-
tions using a significance level of 5*10−8. SNP X1 is generated from a binomial distribution
with a binary genetic coding (i.e., dominant or recessive model) and P(X1 = 1) = 0.5. SNP
X2 is generated from a logistic regression based on X1 such that:

logit(P(X2 = 1)) = γ0 + γ1X1 (1)

where γ0 = 0 and γ1 = 0.3. While X1 and X2 assume a binary genetic coding for
simplicity, the results are generalizable to an additive genetic coding (i.e., Xj = 0, 1, 2 for
j = 1, 2). The continuous outcome Y is generated from a normal distribution with a variance
of 1 and a mean such that

E[Y] = β0 + β1X1 + β2X2 + β I X1X2 (2)

where β0 = 0, β1 = 0.3 or 0, β2 = 0.3 or 0, and βI varies from 0.3 to 1 by 0.05. We
considered additional simulation scenarios for different values for γ0, γ1 in Equation (1)
and β0, β1, β2 in Equation (2). However, we observed similar results to the presented
simulations scenarios; therefore, the results are not shown here.

After the data were simulated using Equations (1) and (2), we then fit 3 algorithms
and tested the following null hypotheses for each algorithm:

Algorithm 0: Fitting E[Y] = δ0 + δ1X1, we tested H0 : δ1 = 0 to determine if the
SNP X1 is associated with the trait of interest Y.

Algorithm 1: Fitting E[Y] = α0 + α1X1 + α2X2, we tested H0 : α1 = 0 to determine
if the SNP X1 is associated with the trait of interest Y conditional on the SNP X2.

Algorithm 2: Fitting E[Y] = ϕ0 + ϕ1X1 + ϕ2X2 + ϕI X1X2, we tested H0 : ϕI = 0 to
determine if there is an interaction of the 2 SNPs on the trait of interest Y.

Then, we determined when the following scenarios were true.
Scenario 1: Rejected Algorithm 0 H0 : δ1 = 0, Algorithm 1 H0 : α1 = 0, and

Algorithm 2 H0 : ϕI = 0.
Scenario 2: Rejected Algorithm 0 H0 : δ1 = 0 and Algorithm 1 H0 : α1 = 0, but

failed to reject H0 for Algorithm 2.
Scenario 3: Rejected Algorithm 0 H0 : δ1 = 0 and Algorithm 2 H0 : ϕI = 0, but

failed to reject H0 for Algorithm 1.
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Scenario 4: Rejected Algorithm 0 H0 : δ1 = 0, but failed to reject H0 for Algorithms 1
and 2.

Scenario 5: Failed to reject Algorithm 0 H0 : δ1 = 0

3. Results

In Figure 1, β1 = 0.3 and β2 = 0.3 in Equation (2) for the plot on the left and β1 = 0
and β2 = 0 in Equation (2) for the plot on the right. For both plots and simulations, when
a stronger interaction between the two SNPs is generated (i.e., βI closer to 1 in Equation
(2)), the majority of simulations concluded scenario 1: rejecting Algorithm 0 H0 : δ1 = 0,
Algorithm 1 H0 : α1 = 0, and Algorithm 2 H0 : ϕI = 0. These simulations show that there
can be a significant association between the SNP X1 and the trait of interest Y in Algorithm 0,
and the SNP X1 is still significantly associated with the trait of interest Y when conditioning
on the SNP X2 in Algorithm 1. However, there is a significant interaction between the
two SNPs in Algorithm 2. This shows that if a researcher were to use Algorithm 1 to
conclude that the two SNPs are independent since the SNP X1 is significantly associated
with the trait of interest Y conditional on the SNP X2, a false conclusion would be reached
because there is a significant interaction of the two SNPs on the trait Y in Algorithm 2
and as generated by the data using Equation (2), such that β I 6= 0. These simulations
demonstrate that it is not sufficient to consider independence of two genetic signals by
considering Algorithm 1: E[Y] = α0 + α1X1 + α2X2 and testing H0 : α1 = 0. One needs
to also consider if there is a significant SNP by SNP interaction by fitting Algorithm 2:
E[Y] = ϕ0 + ϕ1X1 + ϕ2X2 + ϕI X1X2 and testing H0 : ϕI = 0.

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 3 of 6 
 

  

  

Scenario 2: Rejected Algorithm 0 𝐻: 𝛿ଵ = 0 and Algorithm 1 𝐻: 𝛼ଵ = 0, but failed 
to reject 𝐻 for Algorithm 2. 

Scenario 3: Rejected Algorithm 0 𝐻: 𝛿ଵ = 0 and Algorithm 2 𝐻: 𝜑ூ = 0, but failed 
to reject 𝐻 for Algorithm 1. 

Scenario 4: Rejected Algorithm 0 𝐻: 𝛿ଵ = 0, but failed to reject 𝐻 for Algorithms 1 
and 2. 

Scenario 5: Failed to reject Algorithm 0 𝐻: 𝛿ଵ = 0 

3. Results 
In Figure 1, 𝛽ଵ = 0.3 and 𝛽ଶ = 0.3 in Equation (2) for the plot on the left and 𝛽ଵ = 0 

and 𝛽ଶ = 0 in Equation (2) for the plot on the right. For both plots and simulations, when 
a stronger interaction between the two SNPs is generated (i.e., βI closer to 1 in  
Equation (2)), the majority of simulations concluded scenario 1: rejecting Algorithm 0 𝐻: 𝛿ଵ = 0, Algorithm 1 𝐻: 𝛼ଵ = 0, and Algorithm 2 𝐻: 𝜑ூ = 0. These simulations show 
that there can be a significant association between the SNP 𝑋ଵ and the trait of interest Y 
in Algorithm 0, and the SNP 𝑋ଵ is still significantly associated with the trait of interest Y 
when conditioning on the SNP 𝑋ଶ in Algorithm 1. However, there is a significant inter-
action between the two SNPs in Algorithm 2. This shows that if a researcher were to use 
Algorithm 1 to conclude that the two SNPs are independent since the SNP 𝑋ଵ is signifi-
cantly associated with the trait of interest Y conditional on the SNP 𝑋ଶ, a false conclusion 
would be reached because there is a significant interaction of the two SNPs on the trait Y 
in Algorithm 2 and as generated by the data using Equation (2), such that 𝛽ூ ് 0. These 
simulations demonstrate that it is not sufficient to consider independence of two genetic 
signals by considering Algorithm 1: 𝐸ሾ𝑌ሿ = 𝛼 + 𝛼ଵ𝑋ଵ + 𝛼ଶ𝑋ଶ and testing 𝐻: 𝛼ଵ = 0. One 
needs to also consider if there is a significant SNP by SNP interaction by fitting Algorithm 
2: 𝐸ሾ𝑌ሿ = 𝜑 + 𝜑ଵ𝑋ଵ + 𝜑ଶ𝑋ଶ + 𝜑ூ𝑋ଵ𝑋ଶ and testing 𝐻: 𝜑ூ = 0. 

 

Figure 1. 𝛽ଵ = 0.3 and 𝛽ଶ = 0.3 in Equation (2) for the plot on the left and 𝛽ଵ = 0 and 𝛽ଶ = 0 in Equation (2) for the plot 
on the right, where both y-axes are the proportion of simulations where the null hypothesis was rejected. For the plot on 
the left, when the interaction was simulated to be weaker (i.e., βI closer to 0.3 in Equation (2)), the majority of simulations 
concluded scenario 2: rejecting Algorithm 0 𝐻: 𝛿ଵ = 0 and Algorithm 1 𝐻: 𝛼ଵ = 0, but failing to reject 𝐻 for Algorithm 
2 (i.e., there was not a signification SNP by SNP interaction). For the plot on the right, when the interaction was simulated 
to be weaker (i.e., βI closer to 0.3 in Equation (2)), the majority of simulations concluded scenario 5: failing to reject Algo-

Figure 1. β1 = 0.3 and β2 = 0.3 in Equation (2) for the plot on the left and β1 = 0 and β2 = 0 in Equation (2) for
the plot on the right, where both y-axes are the proportion of simulations where the null hypothesis was rejected. For
the plot on the left, when the interaction was simulated to be weaker (i.e., βI closer to 0.3 in Equation (2)), the majority of
simulations concluded scenario 2: rejecting Algorithm 0 H0 : δ1 = 0 and Algorithm 1 H0 : α1 = 0, but failing to reject H0

for Algorithm 2 (i.e., there was not a signification SNP by SNP interaction). For the plot on the right, when the interaction
was simulated to be weaker (i.e., βI closer to 0.3 in Equation (2)), the majority of simulations concluded scenario 5: failing
to reject Algorithm 0 H0 : δ1 = 0 (i.e., the SNP X1 was not associated with the trait of interest Y). For both plots, when
a stronger interaction between the 2 SNPs was simulated (i.e., βI closer to 1 in Equation (2)), the majority of simulations
concluded scenario 1: rejecting Algorithm 0 H0 : δ1 = 0, Algorithm 1 H0 : α1 = 0, and Algorithm 2 H0 : ϕI = 0.
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4. Data Analysis

To illustrate the effect of SNP by SNP interactions when determining conditional
independence of genetic signals, we considered SNPs in chromosome 6 [ARG1], which
has previously been associated with bronchodilator response (BDR) in asthma [11]. In
the CAMP (N = 560) [12], CARE (N = 206) [13,14], and LODO (N = 126) [15] cohorts, we
used weighted least squares regression to examine the conditional effect of four SNPs in
the ARG1 gene on BDR among subjects of European ancestry (total N = 892) adjusting
for cohort, age, sex, body mass index (BMI) as a categorical variable (obese, overweight,
vs. normal/underweight), and genetic ancestry. We picked these covariates based on
other studies of BDR [16–18], as BDR has been found to differ depending on age [19,20],
sex [21] and BMI [22]. Three of these SNPs are common variants that have previously been
associated with BDR (rs2781659, rs2781663, rs2781665) [11] and one SNP (rs185631674) is a
rare variant in the region.

Based on previous studies [11], rs2781659 had the most significant association with
BDR in AGR1. In our cohorts, rs2781659 was associated with BDR adjusting for cohort,
age, sex, BMI as a categorical variable (obese, overweight, vs. normal/underweight),
and genetic ancestry (minor allele frequency (MAF) = 0.32, Beta = −0.15, sd = 0.05, p-
value = 0.0037). In order to determine if the association of rs2781659 with BDR is indepen-
dent of the other three SNPs, we considered the following algorithms:

Algorithm 1: E[Y] = α0 + α1X1 + α2X2 + αCCT and H0 : α1 = 0
Algorithm 2: E[Y] = ϕ0 + ϕ1X1 + ϕ2X2 + ϕI X1X2 + ϕCCT and H0 : ϕI = 0,

where C is a vector of the covariates: cohort, age, sex, BMI as a categorical variable (obese,
overweight, vs. normal/underweight), and genetic ancestry.

As seen in Table 1, the association between rs2781659 and BDR was still significant
when conditioning on rs2781663 (p = 0.003) and rs185631674 (p = 0.004) but not when
conditioning on rs2781665 (p = 0.78). The SNP by SNP interaction on BDR was marginally
significant for rs2781663 (p = 0.06) and rs2781665 (p = 0.06), and significant for rs185631674
(p = 0.03). However, rs2781659 is in LD with rs2781663 (r2 = 0.995) and rs2781665 (r2 = 0.891)
and rs185631674 is a rare variant in a study with a small sample size (N = 892).

Table 1. Algorithm 1 considers the association of rs2781659 with bronchodilator response (BDR) conditioning on the SNPs
in column 1 and Algorithm 2 considers the interaction of rs2781659 with the SNPs in column 1 on BDR. MAF denotes the
minor allele frequency and SD denotes the standard deviation in the table below.

Algorithm 1 Algorithm 2

SNP Position (Hg38) r2 MAF Beta SD p-Value Beta SD p-Value

rs2781663 131571207 0.995 0.32 −0.15 0.05 0.003 0.14 0.08 0.06

rs2781665 131572107 0.891 0.31 −0.18 0.63 0.78 0.14 0.08 0.06

rs185631674 131570984 0.002 0.001 −0.15 0.05 0.004 −1.75 0.83 0.03

This shows that if a researcher were to only consider Algorithm 1, where the associa-
tion of rs2781659 with BDR is still significant conditioning on rs2781663 and rs185631674,
the researcher would falsely conclude that there is more than one independent genetic sig-
nal with BDR. This false conclusion would not be reached with the SNP by SNP interaction
considered in Algorithm 2 as well as the LD as measured by r2. This also shows that special
consideration needs to be given to rare variants.

5. Discussion

Through simulation studies and a data analysis of SNPs in ARG1 with BDR, we
demonstrate that it is not sufficient to consider independence of two genetic signals by
considering Algorithm 1: E[Y] = α0 + α1X1 + α2X2 and testing H0 : α1 = 0. One needs to
also consider whether there is a significant SNP by SNP interaction by fitting Algorithm 2:
E[Y] = ϕ0 + ϕ1X1 + ϕ2X2 + ϕI X1X2 and testing H0 : ϕI = 0 and/or calculating an
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estimate of LD, such as r2 or D’. Also, prior knowledge, for example protein–protein
interactions or biological pathways, should be considered when examining SNP by SNP
interactions [23].

There are some potential limitations for our simulation studies and data analysis.
For the data analysis, all subjects are of European origin. A more diverse population
could provide varying results, which should be considered for future analyses. Addi-
tionally, our data analysis considered genetic association studies of asthma but there is
opportunity to explore the role of SNP by SNP interactions in conditional analyses by
examining other diseases or traits. The sample size for the data analysis was relatively
moderate (n = 892). Since the power to detect an interaction is substantially smaller than
detecting a main effect, it should be noted that a larger sample size may be needed or
the study may be underpowered to detect SNP by SNP interactions. While we have only
presented two simulation studies here, we have created an R package on Github called
gxgRC (https://github.com/SharonLutz/gxgRC (accessed on 12 December 2020)) [24] to
generate similar simulations based on user input.

Understanding the role of epistasis and SNP by SNP interactions is important for
the development of pharmacogenetic tests and personalized medicine. To date, studies
in asthma pharmacogenetics have not resulted in clinical practice changes; however, ex-
ploring the role of SNP by SNP interactions has the potential to increase the likelihood of
translatable findings.
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