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A B S T R A C T   

A ppbv-level mid-infrared photoacoustic spectroscopy sensor was developed for mouth alcohol tests. A compact 
CO2 laser with a sealed waveguide and integrated radio frequency (RF) power supply was used. The emission 
wavelength is ~9.3 µm with a power of 10 W. A detection limit of ~18 ppbv (1σ) for ethanol gas with an 
integration of 1 s was achieved. The sensor performed a linear dynamic range with an R square value of ~0.999. 
A breath measurement experiment after consuming lychees was conducted. The photoacoustic signal amplitude 
decreased with the quality of lychee consumed, confirming the existence of residual alcohol in the mouth. During 
continuous measurement, the photoacoustic signal decreased in < 10 min when consuming 30 g lychee fruits, 
proving that the alcohol detected in exhaled breath originated from the oral cavity rather than the bloodstream. 
This work provided valuable information on the distinction of alcoholism and crime.   

1. Introduction 

Conventional techniques for gas detection include gas chromatog-
raphy (GC), mass spectrometry (MS), and semiconductor gas sensors 
[1–7]. The GC and MS techniques are regarded to be gold standards for 
gas sensing. For semiconductor gas sensors, metal oxide materials are 
mainly used as sensitive materials due to their low cost and controllable 
structure. But this type of gas sensor usually works at high temperatures 
(above 300 ℃) and lacks selectivity, which undoubtedly increases the 
difficulty of the operation and makes the sensor consuming [8–10]. The 
spectroscopic methods are widely used for gas trace detection as a result 
of their proven valuable advantages: high selectivity, fast response, high 
sensitivity, and large dynamic range [5,6,11–17]. Generally, the spec-
troscopic methods employ a laser as the excitation light source, which 
has benefited from the fast development of the semiconductor laser 
industry. 

Photoacoustic spectroscopy (PAS) has attracted increasing research 
interest in recent years [13]. The advantage of PAS is that the sensitivity 

is proportional to the laser power [18–21]. The fundamental principle of 
PAS is to detect the acoustic wave generated by the interaction of a 
modulated laser with target molecules [22–26]. The absorption of op-
tical energy by gas molecules results in a transition of energy levels. The 
molecules are excited. Then the molecules relax to the ground state 
through the non-radiative process, due to the 
vibrational-to-translational (V-T) relaxation. This process is also called 
de-excitation. In such a process, acoustic waves are generated [27–30]. 
As a significant spectroscopic technique for trace gas detection, 
laser-based PAS has unique advantages in addition to the merits of 
traditional spectroscopic techniques. The PAS signal amplitude S 
recorded by a sensitive photoacoustic transducer is directly proportional 
to the excitation optical power P [31]: 

S∝
α(γ − 1)QCP

fV
(1)  

where α is the absorption coefficient of the analyte, γ is the adiabatic 
index, Q is the quality factor of the PAS resonator, C is the transducer 
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efficiency, f is the modulation frequency and V is the PAS cell volume, 
respectively. It follows that the detection sensitivity can be greatly 
improved by using a high-power laser as the excitation light source. 

For most molecules, the mid-infrared (MIR) spectral region is a 
fundamental absorption band in which the molecular absorption co-
efficients are orders of magnitude larger than those in the near-infrared 
(NIR) region [32]. Therefore, the sensitivity of the sensor can be 
improved by using the laser with an emission wavelength located in the 
MIR region as the excitation source. Profits from the favorable wave-
length region and high power, many applications in the gas sensing field 
have been performed with CO2 laser and PAS technique [33–36]. In the 
MIR spectral region, limited to the poor beam quality, compared with 
other techniques like quartz-enhanced photoacoustic spectroscopy 
(QEPAS) which employs a quartz tuning fork (QTF) as the photoacoustic 
transducer, the conventional ultrasensitive microphone-based PAS has 
its unique advantage that it can make the best use of the high power of 
excitation source to achieve lower detection limit, owing to its large 
resonator diameter [37–39]. The PAS gas sensors have been widely used 
in environmental monitoring, industry process control, and medical 
breath analysis [40]. 

Breath analysis of alcohol is commonly used in clinical and law 
enforcement. The alcohol in pulmonary capillary blood will diffuse into 
the air in the alveoli, thus the breath alcohol concentration can reveal 
the arterial blood alcohol concentration, which will persist for several 
hours after drinking [41]. An accurate breath alcohol concentration 
always assumes that the measurement occurs on breath alcohol coming 
from the deep lung. However, alcohol will present in the mouth after the 
consumption of mouthwashes or ripe fruits such as lychees [42]. Re-
sidual alcohol in the oral cavity may contaminate the passing deep lung 
air, leading to a falsely high result of the breath test [43]. This fact could 
be used as a defense tactic in court to free subjects who violate the 
statutory breath alcohol concentration limit. Researches showed that 
15 min were required to eliminate all mouth alcohol. As a result, there is 
a 15–20 min deprivation period before an evidential breath alcohol test 
[44]. 

Lychee or litchi (Litchi chinensis Sonn.) is one of the typical foods that 
may cause residual alcohol in the oral cavity. Lychee is a significant 
economic fruit crop that is grown in tropical regions and has been spread 
to many countries due to its beautiful skin color and bizarre and 
outlandish flavor [45]. The fruit can be round, ovoid, or heart-shaped, 
and from 2.0 to 3.5 cm in diameter. The flesh is generally translucent 
white, juicy, sweet, and aromatic and may comprise 80% of fruit weight. 
During maturation and storage, lychee fruit produces ethanol as a 
metabolite [46]. 

In this work, a sensitive ethanol gas sensor based on the PAS tech-
nique and a high-power CO2 laser with an emission wavelength of 
9.3 µm was developed for mouth alcohol test in breath analysis. In order 
to realize the laser modulation in the experiment process, the amplitude 
modulation (AM) method was implemented. The PAS signal was 
detected by a sensitive microphone. With an integration time of 1 s, a 1σ 
detection limit of ~18 ppbv for ethanol trace gas was achieved. As a 
demonstration of breath tests, we also analyzed the mouth alcohol after 
consuming different quantities of lychees. The pattern of changes in 
exhaled ethanol levels was found, proving the detected ethanol after 
consuming lychees was from the oral cavity. 

2. Sensor design 

2.1. The selection of excitation source 

Generally, most molecules exhibit their characteristic spectra in the 
fundamental fingerprint region, i.e., MIR spectral range, usually beyond 
2.5 µm. The detection sensitivity of the developed sensor can be steeply 
improved as a result of the implementation of the MIR excitation source. 
According to the NIST data [47], ethanol gas has strong absorption in 
the fundamental spectral region, and the transmission spectrum of 

ethanol gas is depicted in Fig. 1(a). It can be seen that the strongest 
absorption of the ethanol gas to the radiation locates at the wavelength 
of ~9.3 µm. 

As a candidate with good features, such as high power, robust 
structure, and easy operation, the CO2 laser can be considered for this 
application [48]. In our experiment, an original equipment manufac-
turer (OEM) CO2 laser (Coherent) was employed as the excitation 
source. This kind of CO2 laser is usually used for laser processing of 
materials such as paper, plastics, wood, etc. Based on a sealed wave-
guide and integrated RF power supply design, the CO2 laser shows 
production-proven reliability (lifetime >50,000 h), in a 
15.5 × 3.7 × 6.1 in. integrated package. The emission spectrum of the 
CO2 laser was measured using a Fourier-transform infrared spectrometer 
(FTIR, VERTEX 70 v, Bruker), as depicted in Fig. 1(b). It shows the 
emission of the light as a function of the wavelength. The emission 
wavelength centered at 9.292 µm. A Gauss fit was used to obtain the full 
width at half maximum (FWHM) of the spectrum ~49.8 nm. The 
ethanol transmission spectrum near 9.3 µm was drawn together with the 
emission spectrum of the CO2 laser. It can be seen from Fig. 1(b) that 
there is a good consistency between the two. The laser beam profile was 
analyzed by a mid-infrared charge-coupled device (CCD) camera. The 
beam emitting by the CO2 laser shows a beam divergence < 7.5 mrad. 
The profile of the beam spot was obtained by the CCD camera at a dis-
tance of 27.8 mm, as shown in Fig. 2. The beam diameter was ~ 
2.169 mm. 

2.2. Photoacoustic cell design 

The photoacoustic cell was designed based on longitudinal reso-
nance. In order to allow the collimation of the used CO2 laser, a reso-
nator with a diameter of 8 mm was used. Aiming at a resonance 
frequency of around 1.5 kHz, the resonator length was 100 mm. Two 
identical buffers with a diameter of 40 mm and a length of 50 mm were 
set at two ends of the resonator. To reduce the propagation loss of the 
laser beam, two anti-reflection film-coated ZnSe windows with a 
diameter of 25 mm were mounted, with a transmissivity of > 98% at 
9.3 µm. The resonance curve of the photoacoustic cell was measured by 
scanning the frequency of the driver signal of the CO2 laser, and the cell 
was filled with 20.06 ppmv of C2H6O. This process was controlled by a 
LabVIEW program. A Lorentz fit was used to obtain the resonance fre-
quency and Q value of the cell. The fitting result exhibits an R square 
value of 0.998. The resonance frequency of the photoacoustic cell was f0 
= 1608.3 Hz and the FWHM of the resonance curve was Δf = 76Hz, 
resulting in a Q-factor of 21, as shown in Fig. 3. The average power of the 
CO2 laser was 8.2 W in the process of frequency scanning. The acquired 
photoacoustic signal amplitude was normalized to power. When the 
frequency was equal to 1608.3 Hz, the photoacoustic cell reached a 
resonant state, and the corresponding peak value of the photoacoustic 
signal was 0.018 V/W. 

3. Experimental apparatus arrangement 

The experimental schematic of the developed sensor system is 
depicted in Fig. 4. The laser beam of the CO2 laser was directly passed 
through the photoacoustic cell without focusing. A power meter (Nova 
II, Ophir) with a 30 W power probe was positioned behind the photo-
acoustic cell to monitor the optical power. The laser was modulated with 
AM technology. An arbitrary function generator (AFG3102C, Tektronix) 
was used to generate a square wave signal with a duty cycle of 50% and a 
frequency of f0 to drive the CO2 laser. The frequency f0 of 1608.3 Hz is 
equal to the resonance frequency of the photoacoustic cell. The ampli-
tude of the square wave signal is 5 V. The acoustic signal produced by 
the photo-acoustic effect was detected by a microphone with a sensi-
tivity of 50 mV/Pa and then it was converted into an electrical signal. 
The generated electrical signal was amplified by a pre-amplifier and 
then fed into a lock-in amplifier (SR830, Stanford Research Systems). 
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The lock-in amplifier operated at 1-f harmonic mode to demodulate the 
signal. The reference signal from the function generator is fed to the 
reference channel of the lock-in amplifier to achieve signal synchroni-
zation. The time constant and filter slope of the lock-in amplifier were 

set to 1 s and 12 dB/oct, respectively. The demodulated signal was then 
transmitted to the personal computer through RS232 serial protocol. A 
home-coded LabVIEW-based program was used to process the data in 
real-time. 

A gas dilution system consisting of two mass flow controllers (MFCs) 
and gas cylinders was employed to generate different target gas con-
centrations and control the gas flow rate. A 100 ppmv C2H6O-N2 gas 
mixture with an uncertainty of 1% was diluted with pure N2 to vary the 
concentration of the gas mixture. To reduce the adsorption effect, the 
gas dilution system was set to flow mode, and the total gas flow rate was 
set at a constant value of 100 sccm (standard cubic centimeters per 
minute). In the subsequent breath analysis experiment, in order to 
eliminate the influence caused by the water vapor, a gas drying process 
was implemented. 

4. Experimental results and discussion 

4.1. Sensor performance evaluation 

The performance of the developed high-power photoacoustic ethanol 
sensor was evaluated at different C2H6O:N2 mixing ratios from 0 ppmv 
to 100 ppmv. To ensure that the sensor evaluation of gas samples is 
available for real ambient atmospheric monitoring or some kind of 
analogous measurements like exhaled breath analysis, the measure-
ments were carried out at atmospheric pressure and room temperature. 
The PAS signal at different concentrations of ethanol gas, as well as pure 
N2 gas, are plotted in Fig. 5(a). In order to eliminate the influence of 
laser power fluctuation, the PAS signal was normalized to the real-time 
monitored optical power. The PAS signal at each concentration level was 
plotted by 100 points. Each data point was obtained by lock-in amplifier 
with 1 s integration time. In the case of the 100.3 ppmv C2H6O detec-
tion, a PAS signal amplitude of 69.85 mV/W was achieved. The back-
ground was measured when the photoacoustic cell was filled with pure 
N2. Fig. 5(b) shows the enlargement of a background noise floor of 
2.25 mV/W with a 1σ noise level of 13 μV/W. Based on the measured 
signal and noise, a signal-to-noise ratio (SNR) of ~5373 can be obtained. 
The corresponding 1σ detection limit of ~18 ppbv for gaseous ethanol 
can be calculated as well. The calculated normalized noise equivalent 
absorption (NNEA) coefficient was 1.94 × 10− 7 W٠cm− 1٠Hz− 1/2. Fig. 6 
depicts the linearity of the developed sensor and the variation of stan-
dard deviation with ethanol concentration. The average values of the 
PAS signal were plotted as a function of ethanol concentration. The 
measurement cycle is 100 s at each concentration. The results indicated 
a linear dependence relation between the PAS signal and ethanol con-
centration. A linear fit was implemented. The obtained R square value of 
0.999 confirms the excellent linearity of the sensor response. In Fig. 6, 
there is a discrepancy between the signal by pure N2 and the intercept of 

Fig. 1. (a) Ethanol transmission spectrum, (b) Ethanol transmission near 9.3 µm (marked in black), and emission of the CO2 laser (marked in red).  

Fig. 2. CO2 laser beam spot measured by a mid-infrared CCD.  

Fig. 3. Frequency response of the photoacoustic cell within 20.06 ppmv of 
C2H6O background. 

H. Luo et al.                                                                                                                                                                                                                                     



Photoacoustics 33 (2023) 100559

4

the linear fitting. This may be caused by the nonlinear effect of the used 
microphone [49]. 

4.2. Breath experiment after lychee consumption 

Ethanol was found to be the most abundant alcohol in lychees [50]. 
Ethanol production occurs in lychees both before and after being har-
vested. During lychee fruit maturation on the tree, ethanol has been 
found to become pronounced [46]. After the harvest of lychees, ethanol 

will quickly accumulate with the anaerobic respiration increased [51]. 
In detached lychees, with the loss of water [52], the concentration of 
ethanol will increase. As ethanol presents in ripe lychee fruits, the 
ethanol will remain in the oral cavity after consuming lychees, resulting 
in the present of ethanol in the exhaled breath. 

As a proof-of-concept experiment, we experimentally measured the 
breath ethanol levels after consuming lychees. Compared to pure ni-
trogen gas, the resonance frequency of the cell filled with breath gas 
decreased by ~30 Hz, while the Q factor shifted < 1. According to [53], 
the cell parameters such as resonance frequency, Q factor, and adiabatic 
exponent will be influenced by the concentration of CO2 and water 
vapor, and changes in the adiabatic exponent is less significant. In this 
experiment, the Q factor was nearly unchanged. To avoid signal changes 
caused by cell parameters, the resonance curve was re-calibrated before 
each measurement. The obtained signal of one breath was shown in  
Fig. 7. The black, red, and blue line were the signal of consuming 10, 20, 
and 30 g of lychee fruits, respectively. The signal curve of one breath 
consisted of three parts. At first, we filled the photoacoustic cell with 
pure N2. Then, our volunteer consumed lychee fruits and started to blow 
into the PAS cell immediately. In order to eliminate the effects of 

Fig. 4. Schematic of the developed sensor system. MFC: mass flow controller, AFG: arbitrary function generator, PC: personal computer.  

Fig. 5. (a) The detected PAS signal at different concentration levels of ethanol 
gas. (b) Background noise was acquired when the photoacoustic cell was filled 
with pure N2. 

Fig. 6. Linearity of the PAS-based ethanol sensing system and variation of 
standard deviation with ethanol concentration (marked in blue). 
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humidity, a gas drying unit was connected to the gas inlet of the PAS cell 
to dry the exhaled air. The breath sample was directly blown into the 
system and measured. The blow process lasted about 15 s, in which the 
signal started to rise to a peak. After the signal reached a peak, we 
recorded the value and washed out the PAS cell with pure N2. The wash 
process cost about 20 s. The signal increasing and decreasing time 
depended on the gas flow rate of the stream. One blow-wash cycle was 
about 1 min and then the volunteer started the next blow. As for the 
sampling condition, the volunteer was required to be fasting before the 
test. During the experiment, the volunteer had not talked or opened his 
mouth for maximum mouth alcohol retention. 

The breath experiment was conducted repeatedly for 3 times in 
3 min. We extracted the peak value after consuming different quantities 
of lychees over time and plotted it in Fig. 8. Before consuming the 
lychee, we measured the common human breath. The green dash line 
was the peak value of the common breath, which was regarded as the 
baseline of mouth alcohol. After consuming the lychee, we measured the 
increment of mouth alcohol. The rectangles, rounds, and triangles 
represent the peak values consuming 10 g, 20 g, and 30 g lychee fruit as 
a function of time. Dot lines were the liner fits of the values. All three 
lines exhibited a linear downward trend in 3 min. As the quantities of 

consumed lychee increased from 10 g to 30 g, the initial mouth alcohol 
concentration rose from 3.14 ppmv to 7.61 ppmv. With 10 g lychee, the 
mouth alcohol decreased to the baseline level in 3 min. According to the 
slope of the dot line with triangles, less than 10 min are required for the 
mouth alcohol to return to the baseline. The increment of mouth alcohol 
concentration was calculated by subtracting the value of the baseline 
signal from the peak value and shown in Table 1. 

4.3. CO2 compensation in mouth alcohol test 

As the CO2 laser was used in the breath experiment, CO2 in exhaled 
breath was absorbing and contributing to the photoacoustic signal. 
During the detection of mouth alcohol, the influence of CO2 had been 
compensated by subtracting the baseline from the increased signal. 
However, the CO2 concentration may change in each breath cycle. To 
explore the influence brought about by this alteration, an integrated 
QEPAS sensor employing a 2004 nm laser was used to detect the vari-
ation of CO2 between breath [54]. Among the gas molecules exhaled by 
human, only CO2 exhibits strong absorption within the 2004 nm laser 
wavelength range. In this case, the CO2 concentration was continuously 
monitored. The same gas flow system and drying unit as the mouth 
alcohol detection were utilized. The blow-wash cycle was conducted 
using the QEPAS CO2 sensor before and after our volunteer consuming 
lychees. The CO2 concentrations were shown in Fig. 9. 

The CO2 concentration of four cycles was extracted, leading to a 
mean value of 44352 ppmv and a standard deviation of 172 ppmv. This 
result indicated that the variation in CO2 concentration between breaths 
was less than 0.5% within a few minutes. In addition, before and after 
consuming lychee, the exhaled CO2 concentration remains nearly un-
changed. To investigate whether such variations in CO2 concentration 
could affect the PAS mouth alcohol sensor, an absorption simulation was 
carried out through SpectraPlot [55]. With the removal of the baseline 
(mean value of ~4%v CO2), the spectra of 3 ppmv ethanol and 200 
ppmv CO2 were shown in Fig. 10. Around 9.3 µm, the absorption of 200 
ppmv CO2 is weaker by > 1 order of magnitude compared to 3 ppmv 
ethanol, which may cause little effect on the signal. 

To validate the simulated results, consecutive breath measurement 
before and after lychee consumption was conducted by the PAS sensor. 
The obtained signal was shown in Fig. 11(a). Before consuming lychees, 
the three blue cycles exhibited similar peak values, with a standard 
deviation of < 0.3%. The peak values of three red cycles were extracted 
and converted to increased mouth alcohol concentration, shown in 
Fig. 11(b). The initial mouth alcohol concentration was 3.13 ppmv, and 
it returned to the baseline within 3 min. 

5. Discussion 

The breath alcohol concentration can closely predict arterial blood 
alcohol concentration and is as precise as blood alcohol analysis [56]. 
After drinking, alcohol enters the bloodstream and the alcohol in the 
pulmonary capillaries will be in equilibrium with the air in the alveoli, 
driven by substantial differences in partial pressure and solubility 
properties. When the air is exhaled, the alcohol vapor passes the airway 
to the ambient air, allowing for detection through breath analysis [56]. 
Typically, the blood alcohol concentration takes 6–7 h to eliminate [57]. 

In the case of lychee consumption, the alcohol present in the fruit can 
remain in the oral cavity. When measuring the exhaled alcohol, 

Fig. 7. Processes of the exhaled breath measurement after consuming different 
quantities of lychee fruits. 

Fig. 8. Time-dependent observation of photoacoustic signal after consuming 
different quantities of lychees. The dash line represents the exhaled air without 
consuming lychee fruits. The dot line represents the extension of the linear fit. 

Table 1 
Mouth alcohol concentration over time.   

Mouth alcohol concentration (ppmv) 

Qualities of lychees 1 min 2 min 3 min 

10 g  3.14  1.53  0.16 
20 g  4.92  3.80  2.79 
30 g  7.61  6.68  4.79  
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contamination from the alcohol in the oral cavity can lead to higher 
measurement values. However, the concentration of alcohol in the oral 
cavity decreases rapidly within 15–20 min compared to the blood 
alcohol concentration [58]. In our experiment, the more lychees were 
consumed, the higher the mouth alcohol concentration was. The 
detected mouth alcohol from lychee fruits would eliminate in a few 
minutes, which proved that the ethanol in exhaled breath was from the 
oral cavity rather than blood. This study reaffirmed the importance of 
the 15–20 min observation period and duplicate breath test to allow any 
possible mouth alcohol to dissipate. 

6. Conclusions 

A sensitive high-power PAS sensor for gaseous ethanol detection was 
developed and demonstrated. A compact CO2 laser with ~10 W emis-
sion power was implemented as the excitation source. A photoacoustic 
cell was designed to detect the photoacoustic signals. Benefitting from 
the high optical power and strong absorption in the MIR region, a 
detection limit of 18 ppbv was achieved with an integration time of 1 s. 
The linearity of the sensor system was evaluated and an R square value 
of ~0.999 was obtained. As an experimental demonstration, the exhaled 
breath measurement after consuming lychees was performed by 
measuring the ethanol in the breath. The detected alcohol concentration 
decreased in a few minutes. Our experiment confirmed the detection of 
alcohol in the oral cavity, which was indicated by the observed signal 
patterns and the stability of other exhaled gases, while the blood alcohol 
concentration could last for several hours after drinking. To the extent 
that our sensing system can quickly distinguish the mouth alcohol from 
the exhaled breath, which is of great clinical and forensic significance. 
Further work can be done by performing a serial measurement with the 
gold standard measurement device such as gas chromatography–mass 
spectrometry (GC-MS) or proton-transfer-reaction time-of-flight mass 
spectrometer (PTR-TOF-MS). 
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