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Abstract

Although cascading failures caused by overload on interdependent/interconnected net-

works have been studied in the recent years, the effect of overlapping links (inter-similarity)

on robustness to such cascades in coupled networks is not well understood. This is an

important issue since shared links exist in many real-world coupled networks. In this paper,

we propose a new model for load-based cascading failures in multiplex networks. We lever-

age it to compare different network structures, coupling schemes, and overload rules. More

importantly, we systematically investigate the impact of inter-similarity on the robustness of

the whole system under an initial intentional attack. Surprisingly, we find that inter-similarity

can have a negative impact on robustness to overload cascades. To the best of our knowl-

edge, we are the first to report the competition between the positive and the negative

impacts of overlapping links on the robustness of coupled networks. These results provide

useful suggestions for designing robust coupled traffic systems.

Introduction

Overloads can cause cascading failures in various critical infrastructures including power

grids, transportation systems, and telecommunication networks. Therefore, in the past decade,

modeling overload-based cascading failures in complex networks has attracted extensive inter-

est [1–14]. One of the earliest models of overload-based cascades in networks was proposed by

Motter and Lai [1]. They define the load on nodes using the betweenness centrality, and the

tolerance capacity of each node is assumed to be proportional to its initial load. After their pio-

neering work, many extensions have been proposed [2–7], as well as other models of overload

and traffic congestions [8–14].

Although previous studies on cascading failures based on overload have strongly deepened

our understandings of the robustness of systems with traffic flows, most of them focused on

single isolated networks. In fact, since most realistic complex systems are not isolated, but cou-

pled in different ways, coupled networks, including interdependent networks, multiplex net-

works and interconnected networks, have become the most attractive fields in network science

since 2010 [15–17]. Therefore, there is an need to understand overload-based cascades in cou-

pled networks.
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In this direction, several models have been developed, using Motter and Lai’s overload

model or other overload definitions in interdependent networks [18–22] or interconnected

networks [23–27]. For example, Tan et al. applied Motter’s model to interconnected scale-free

networks under intentional attacks, and they found that there is an optimal fraction of inter-

connectivity links, which varies with different coupling rules [23]. Xia et al. presented a similar

model but with capacity redundancy disparity, where increasing the capacity on one side may

lead to less robust systems [25]. Further, Hong et al. presented a model of cascading failures on

interdependent networks including overload-based failures [19]. However, until now, there

are no studies of overload-based cascades on multiplex networks with one set of nodes but dif-

ferent types of links. More importantly, none of the previous models discussed the effects of

overlapping links (inter-similarity) on the robustness of multiplex networks to overloads.

Actually, the influence of inter-similarity is key to understanding the robustness of coupled

systems with traffic flows, since many real-world coupled systems have a certain fraction of

overlapping links.

In this paper, we propose a general model of overload-based cascading failures in multiplex

networks, and study the effect of inter-similarity. Each node has different load values, as well

as different tolerance capacities in different layers of the multiplex network. Three different

coupling schemes and three overload rules are compared. Interestingly, we find that some-

times inter-similarity does not only increase assortativity, but can also have a negative impact

on the robustness of the multiplex network to overload cascades. This is the first time both the

good and the bad effects of inter-similarity on the robustness of coupled networks are

reported.

Materials and methods

Network model

In this paper, we aim to generalize the Motter and Lai’s overload based cascade model to multi-

plex networks. To this end, we consider a multiplex network composed of two single-layer net-

works A and B (depicted in Fig 1). Networks A and B share the same set of N nodes, but they

can have different sets of links. Hence, the constructed multiplex network includes two types

of interactions between nodes.

Fig 1. A schematic of our model of overload-based cascading failures on multiplex networks. The system of multiplex networks is

composed of two layers A and B (red and blue links respectively), which share the same set of nodes. At each time step t� 0, each node has

two load values LAi ðtÞ and LBi ðtÞ, defined as the its betweenness centrality in each layer. Each node also has two fixed capacities, defined as

CAi ¼ ð1þ aAÞ � L
A
i ð0Þ andCBi ¼ ð1þ aBÞ � L

B
i ð0Þ. At the beginning, the node with the largest total load LAi ð0Þ þ L

B
i ð0Þ is attacked. This leads to

the redistribution of loads among the remaining nodes. At the next time step, according to some pre-defined overload rule, some other nodes

will also fail due to overload. This causes a cascading process of overload failures, until no more overload happens.

https://doi.org/10.1371/journal.pone.0189624.g001
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In this work, two types of network models have been used: Erdős-Rényi (ER) model and

scale-free (SF) networks using Barabási–Albert (BA) model, which are homogeneous networks

and heterogeneous random networks respectively. We also consider the following three types

of coupling approaches:

1. Random coupling: Each node in network A is combined with a randomly selected node in

network B one by one, until all nodes in networks A (B) have been one-to-one coupled with

nodes in network B (A).

2. Assortative coupling: Nodes on each layer are sorted according to their betweenness (load)

values. Then the node with the largest load in network A is merged with the node with the

largest load in network B. The node with the second largest load in A is merged with its

counterpart in B, and so on, until all nodes in A (B) have been coupled with their counter-

parts in B (A).

3. Disassortative couplings: Nodes in each layer are sorted according to their betweenness

(load) values. The node with the largest load in network A is merged with the node with the

smallest load in network B. The node with the second largest load in A is merged with the

one with the second smallest load in B, and so on, until all nodes in A (B) have been coupled

with their counterparts in B (A).

These three coupling approaches are considered in this work in order to systematically

study the effects of assortative coupling by comparing with random or disassortative coupling.

This is important, because we would like to verify whether the frequently observed assortative

coupling in real-world coupled transport systems is really a good choice.

Load-based cascades on multiplex networks

To model overload-based cascading failures on multiplex networks, we consider multiplex net-

works with two ER networks or two SF networks with the same size (number of nodes N), cou-

pled following one of the above mentioned 3 coupling methods. We assume that initially (at

time step t = 0) each node i = 1, � � �, N has two load values: LA
i ð0Þ, LB

i ð0Þ, defined as the

betweenness centrality values of node i in two layers A and B respectively. Each node i also has

two capacity values: CA
i and CB

i , defined as CA
i ¼ ð1þ aAÞ � LA

i ð0Þ, and CB
i ¼ ð1þ aBÞ � LB

i ð0Þ.

The parameters αA and αB capture the load tolerance in different layers.

Initially, the node with the largest total load LA
i ð0Þ þ LB

i ð0Þ is attacked, and removed from

both layers A and B. This leads to a redistribution of loads to the remaining nodes in both lay-

ers at t = 1: all the remaining nodes have new load values, LA
i ðtÞ and LB

i ðtÞ, defined as the

betweenness values in the remaining two layers.

In our model, the following three overload rules are defined:

1. “OR rule”: Node i fails at time step t, if LAi ðtÞ � CAi or LBi ðtÞ � CBi .

2. “SUM rule”: Node i fails at time step t, if LAi ðtÞ þ LBi ðtÞ � CAi þ CBi .

3. “AND rule”: Node i fails at time step t, if LAi ðtÞ � CAi and LBi ðtÞ � CBi .

According to the defined overload rule, at each time step t> 0, some nodes will fail due to

overload, which leads to further redistributions of loads. This cascading process of failures will

cease when no more overload happens. Following Motter and Lai’s model, we use the relative

mutual giant component size to measure the robustness of the system, G, defined as the ratio

of the size of the largest mutually connected component at the final state, and that after the
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initial attack (See Fig 1). We mainly aim to study the relationship between G and capacity tol-

erance parameters αA, αB, and to test the effects of network structures and coupling schemes.

Results

Basic model results

In this section, we show how network structures and assortativity affect the system robustness.

Two types of network models are used here: random networks using Erdős-Rényi (ER) model

and scale-free (SF) networks using Barabási–Albert (BA) model, which are homogeneous and

heterogeneous networks respectively. We keep the system size as N = 500, and the mean degree

of each layer as kA = kB = 6, for either coupled ER networks or coupled SF networks. We evalu-

ate the system robustness under the three coupling schemes and the three overload rules

described in the Methods section above.

Fig 2A shows the best choice (with the largest G) among random, assortative and disassorta-

tive coupling schemes for different αA, αB values, for two ER networks under the OR rule.

Note that in general the mean G increases from 0 to 1 as αA or αB increases, and the impacts of

αA and αB on the model are symmetric. The dashed line is added where the mean G reaches

0.5, which indicates that the system is during the process of a transition between a congested

state and a congestion-free state. The same dashed line will be included in all following figures.

We find that, for two ER networks under the OR rule, assortative coupling is better in most

cases.

Fig 2B and 2C shows the same as Fig 2A but under the SUM/AND rules. We find that, for

two ER networks under the OR/SUM/AND rules, assortative coupling is always good when

the system is during the transition process. Assortativity is no longer better when the traffic

system is already efficient i.e. for larger αA, αB.

Fig 3A–3C shows the same as Fig 2, but for two SF networks. We find that assortativity is

still good for the system under the OR rule, but not under the AND rule. As shown in Fig 3B,

for two SF networks under the SUM rule, random coupling is the best for most symmetric sys-

tems i.e. those with small differences between αA and αB. However, for non-symmetric sys-

tems, i.e. systems with large differences between αA and αB, assortative coupling is the best.

When both αA and αB are around 0.2, the best is a combination of random coupling and assor-

tative coupling.

We next provide probable explanations for these observations. Firstly, for symmetric sys-

tems, assortativity is good for two SFs under the OR rule, since it reduces the chance of having

an overload on one of the two layers. Similarly, assortativity is bad for two SFs under the AND

rule. This also applies to two ERs, although the observed effects will be weakened due to a

much more homogeneous capacities.

Secondly, we consider non-symmetric systems e.g. where αA <<αB. Under the OR rule,

because of the much larger nodes’ capacities in B, the overload rule approximately reduces to

“LA
i ðtÞ � CA

i ”. Therefore, the advantage of the assortative coupling will disappear, especially

for two SFs (see Fig 3A). Under the AND rule, even when CA
i << CB

i , failures still happen

when the two layers experience overload simultaneously. Therefore, the disassortative cou-

pling is better in general.

Finally, we focus on the SUM rule. For two SFs, the assortative coupling brings more het-

erogeneity for both the total load and capacity. Therefore, assortativity has a much weaker and

more complicated impact under the SUM rule compared to the other two rules. The assorta-

tive coupling can negatively affect the system, because attacking the node with the largest total

load usually translates into attacking hub nodes in both layers. This explains why the random

coupling is better than either assortative or disassortative coupling for symmetric systems see

Overload cascades on multiplex networks
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Fig 3B. For coupled ERs, such intentional attacks have minimal impact. In fact, the assortative

coupling leads to broader total loads and capacities distributions, when αA and αB are small

such that the total capacities are smaller than the total loads on average. This increases the

chance of having LA
i ðtÞ þ LB

i ðtÞ < CA
i þ CB

i , which explains why the best choice changes from

assortative to disassortative coupling in Fig 2B.

Impact of inter-similarity

In this section, we study the effect of inter-similarity on cascading failures in multiplex net-

works. To this end, we vary the percentage of overlapping links, 0%� r� 100%, in the multi-

plex ER or SF networks. Note that here r = 0% is the same as random coupling.

For coupled ERs, to modify the overlap ratio r and keep the mean degree kA = kB = 6 in

each layer, we generate three ER networks A0, B0 an C with mean degree 6(1 − r), 6(1 − r) and

6r, independently. Then we obtain two ER networks A and B with a ratio r of overlapping links

Fig 2. Best choice among random/assortative/disassortative coupling schemes for two ER networks. (a) OR rule. (b) SUM rule. (c)

AND rule. N = 500, kA = kB = 6, averaged over M = 50 realizations. The color for certain αA and αB values indicates the coupling scheme with

the largest mean G value. Since the largest mean G value (among the three coupling schemes) increases in general for larger αA and αB, a

dashed line is added to each sub-figure to indicate the location where the best mean G reaches 0.5.

https://doi.org/10.1371/journal.pone.0189624.g002
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by taking the sum of the adjacency matrices: A = A0 + C and B = B0 + C. The multiplex system

is then constructed by merging the nodes from the two layers one-to-one without node

shuffling.

For coupled SFs, we firstly generate two identical SF networks, A and B, with mean degree

kA = kB = 6, and we sort the nodes in the two networks in the same order. Then we randomly

select a fraction p of nodes from network B and randomly shuffle their order. Using this

new node order, all nodes in the two layers are merged to construct the multiplex networks.

Note that the node shuffling keeps the single-layer network structures but leads to a fraction

r� (1 − p)2 of overlapping links. (Notice that after randomly shuffling a fraction p of nodes,

the number of remaining overlapping links is then [(1 − p)N]([(1 − p)N] − 1)/2, which is

approximately a fraction (1 − p)2 of the total number of links N(N − 1)/2.) Therefore, to finally

obtain a fraction r of overlapping links, we use p ¼ 1 �
ffiffi
r
p

.

We first illustrate the effects of inter-similarity for two ER networks under different over-

load rules. Fig 4A–4C shows the best choice of the overlap ratio r for the OR/SUM/AND rules

Fig 3. Best choice among random/assortative/disassortative coupling schemes for two SF networks. (a) OR rule. (b) SUM rule. (c)

AND rule. N = 500, kA = kB = 6, averaged over M = 50 realizations. The color for certain αA and αB values indicates the coupling scheme with

the largest mean G value. A dashed line is added to each sub-figure to indicate the location where the best mean G reaches 0.5, or 0.85 for

(c).

https://doi.org/10.1371/journal.pone.0189624.g003
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respectively. A dashed line indicating mean G around 0.5 is added again. We find that

r = 100% and r� 0% overlap ratios are the best under the OR rule and the AND rule. Under

the SUM rule, full overlapping is the best when the system is during the transition process,

while 0% becomes better when both αA and αB are larger. These patterns are similar to the

effect of assortativity.

For two SFs, as shown in Fig 5A–5C, the best overlap ratios also closely match the effect of

assortativity. One interesting finding here is that, according to Fig 5B, when αA and αB increase

the best choice of overlap ratio can have continuous changes from 1 to 0, especially when the

system is during the transition process. Compared to Fig 3B, we note that this continuous

change happens within the region where assortativity is good for the system. This is a notewor-

thy observation, because it shows that although assortative coupling is good for avoiding cas-

cades, the optimal overlap ratio is not a trivial 100% or 0% as in the other cases. This indicates

that SF multiplex networks need to be designed carefully when operating under the SUM rule.

Note also that αA and αB values for real systems mostly lie in the region with continuos change.

Fig 4. Best choice of overlap ratio r for two ER networks. (a) OR rule. (b) SUM rule. (c) AND rule. N = 500, kA = kB = 6, averaged over

M = 90 realizations. The color for certain αA and αB values indicates the optimal r that leads to the largest mean G value. A dashed line is

added to each sub-figure to indicate the location where the best mean G reaches 0.5.

https://doi.org/10.1371/journal.pone.0189624.g004
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This is the first time inter-similarity is found to have a non-trivial impact on the robustness of

multiplex networks to overload compared to assortative coupling.

A holistic view

In this section, we provide a holistic view by comparing various coupling schemes to coupling

with inter-similarity. This gives a better idea about all available options for improving multi-

plex networks resilience to overload cascades.

Firstly, we show, for two ER networks, the best choice among the following five coupling

schemes: random coupling, assortative coupling, disassortative coupling, a 50% overlap, and a

100% overlap. Fig 6A and 6C show as expected that, under the OR or AND rule, a 100% over-

lap or disassortative coupling are the best coupling approaches in most cases. Fig 6B, however,

shows the presence of several regions under the SUM rule. The best choice changes from 100%

overlap, assortative coupling to random/disassortative coupling. Interestingly, the region

where the best option is assortative coupling corresponds to the region where 100% is the best

Fig 5. Best choice of overlap ratio r for two SF networks. (a) OR rule. (b) SUM rule. (c) AND rule. N = 500, kA = kB = 6, averaged over

M = 90 realizations. The color for certain αA and αB values indicates the optimal r that leads to the largest mean G value. A dashed line is

added to each sub-figure to indicate the location where the best mean G reaches 0.5.

https://doi.org/10.1371/journal.pone.0189624.g005
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overlap ratio in Fig 4B. Accordingly, 100% overlap is worse than assortative coupling in this

region, although it leads to full assortativity. The same holds under the OR rule for highly non-

symmetric cases and under the AND rule around the transition region. This result is surpris-

ing since it shows that inter-similarity not only brings coupling assortativity, but can also have

both positive and negative impact (good and bad sides) on multiplex networks resilience to

overload cascades.

Secondly, we perform the same comparison for a multiplex network of two SF networks.

Fig 7 presents the corresponding results. Fig 7A and 7C show that, under the OR/AND rules,

the best options are similar to what we have seen in Figs 5A and 3C. For the SUM rule, Fig 7B

shows that, similar to Fig 5B, a 50% overlap remains the best option in the region where both

αA and αB are around 0.2. Interestingly, we find that, for non-symmetric systems, a full overlap

is worse than the assortative coupling.

The above interesting finding suggests that a 100% overlap, besides bringing assortativity,

can have a negative impact on the traffic system on multiplex networks. This is especially

Fig 6. Best choice of coupling schemes for two ER networks. (a) OR rule. (b) SUM rule. (c) AND rule. N = 500, kA = kB = 6, averaged over

M = 50 realizations. The color for certain αA and αB values indicates the best coupling scheme having the largest mean G value. A dashed line

is added to each sub-figure to indicate the location where the best mean G reaches 0.5.

https://doi.org/10.1371/journal.pone.0189624.g006

Overload cascades on multiplex networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0189624 December 18, 2017 9 / 16

https://doi.org/10.1371/journal.pone.0189624.g006
https://doi.org/10.1371/journal.pone.0189624


evident for two ER networks under the SUM/AND rules. In order to interpret this, we investi-

gate the differences between the assortative coupling and the 100% overlap. For both of them,

nodes with larger loads/capacities in A are coupled with nodes with larger loads/capacities in

B. The major difference is that for 100% overlap the two layers are identical. This translates

into a higher likelihood, compared to assortative coupling, for meeting requirements of the

SUM or AND rules, but not the OR rule. Therefore, inter-similarity is more likely to result in

overload, and also increases assortativity. In regions where assortativity is good, there will be a

competition between these two effects. As a result, we observe the non-integer best overlap

ratio in Fig 5B i.e. the optimality of assortative coupling (instead of full overlap) in some

regions in Figs 6A–6C and 7B.

Finally, we compare the resilience between homogeneous and heterogeneous multiplex net-

works to overload cascades. To this end, we show in Fig 8A–8C the best choice among the fol-

lowing 10 options: 2 choices of network structures (two ERs or two SFs) and 5 choices of

coupling schemes (random/assortative/disassortative coupling, 50% and 100% overlap), under

Fig 7. Best choice of coupling schemes for two SF networks. (a) OR rule. (b) SUM rule. (c) AND rule. N = 500, kA = kB = 6, averaged

over M = 50 realizations. The color for certain αA and αB values indicates the best coupling scheme having the largest mean G value. A

dashed line is added to each sub-figure to indicate the location where the best mean G reaches 0.5, and 0.7 for (c).

https://doi.org/10.1371/journal.pone.0189624.g007
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different overload rules respectively. We find that in most cases the optimal choice for two ER

networks is better than the best choice for the two SFs. The main exceptions are the regions

where one of αA, αB is very small under the OR or the AND rule. This suggests that using

homogeneous networks can be one way to improve the robustness of multiplex networks to

overload cascades.

Effects of network sizes

All the above model results are obtained based on multiplex networks with N = 500. This

smaller network size is used through our work for reducing computational complexity. More-

over, many real-world coupled traffic systems also have smaller network sizes. In the following,

we investigate whether increasing N qualitatively impact our results. To this end, we recom-

pute the results in Fig 5B, which is one of the key findings in this work, for larger networks.

Fig 9A and 9B shows the best choice of overlap ratio for coupled SF networks with N = 1000

and N = 2000, respectively, averaged over M = 30 realizations. Fig 9C further shows the case

Fig 8. Best choice of network structures and coupling schemes. (a) OR rule. (b) SUM rule. (c) AND rule. N = 500, kA = kB = 6, averaged

over M = 50 realizations. The color for certain αA and αB values indicates the best type of networks and coupling scheme having the largest

mean G value. A dashed line is added to each sub-figure to indicate the location where the best mean G reaches 0.5, and 0.7 for (c).

https://doi.org/10.1371/journal.pone.0189624.g008
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with N = 3000, but with M = 5 realizations. We find that the same pattern with Fig 5B can be

also found here: the optimal overlap ratio still can be neither 0 or 1 at around αA = αB * 0.2.

This suggests that the major findings of our work continue to hold for networks with up to

thousands of nodes.

Although it is not easy to show the simulation results for further larger systems, we can

claim that the discovered negative impact of inter-similarity still hold for large networks, since

it is mainly related to the nature of the SUM and AND overload rules. The detailed effects of

N on the competition between the positive and negative impacts of inter-similarity can be

studied in future work.

Realistic coupled communication networks

In the previous subsections, the model results have been presented on coupled random net-

work models. To relate our model to real world coupled systems with traffic loads, we apply

the model on realistic Internet topologies at the autonomous system (AS) level, using IPv4 and

IPv6 respectively. The Internet topology consists of a large number of interconnected ASes.

Fig 9. Best choice of overlap ratio r for two SF networks, SUM rule. (a) N = 1000, averaged over M = 30 realizations. (b) N = 2000,

averaged over M = 30 realizations. (c) N = 3000, averaged over M = 5 realizations kA = kB = 6. The color for different αA and αB values

indicates the optimal r that leads to the largest mean G value.

https://doi.org/10.1371/journal.pone.0189624.g009
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These ASes use devices called routers to facilitate traffic exchange between them. Currently,

there are two addressing schemes in the Internet IPv4 and IPv6, resulting in two partially over-

lapping AS-level topologies. IPv6 is currently maturing which makes its graph smaller. In most

cases, the same router is used to forward IPv4 and IPv6 traffic which may result in overloads.

To obtain the network structures of IPv4 and IPv6, we use the CAIDA datasets of AS links

(“http://www.caida.org/data/active/ipv4_routed_topology_aslinks_dataset.xml” for IPv4 and

“http://www.caida.org/data/active/ipv6_aslinks_dataset.xml” for IPv6). We consider the topol-

ogies collected in January of 4 different years (2011, 2013, 2015 and 2017) as different stages,

and we collect all the AS nodes and direct AS links from the CAIDA records in each stage to

construct the whole network. Finally, for each stage, we build the multiplex IPv4/IPv6 net-

works by merging the same AS nodes in two layers, and only focusing on the shared nodes

and the IPv4/IPv6 links among them.

Fig 10A shows how the fractions of overlapping links in IPv4 and IPv6 networks, r1 and r2,

and the number of nodes N, change over time. We find that the common links account for a

larger fraction in the IPv6 topology, since there are much more IPv4 links in these stages com-

pared to IPv6 links. Moreover, the fraction of common links in the IPv6 network decreases

with time, while that in the IPv4 network is roughly fixed at around 0.35.

We run our model using the SUM rule on the constructed multiplex IPv4/IPv6 networks.

We choose the SUM rule, because in the realistic IPv4 and IPv6 networks, the load of one

node can be shared by the two layers. Moreover, we mainly focus on the cases with αA = αB,

since the IPv4 and IPv6 are expected to have similar tolerance capacities. The model results are

shown in Fig 10B. We find that the earlier stages are more robust to overload cascades. Consid-

ering the heterogeneous structures of IPv4/IPv6 networks, this result (smaller fractions of

common links corresponding to less efficient traffic systems) can be related to the previous

model results as shown in Fig 5B, where the best overlapping ratio changes from 1 to smaller

values during the transition process. Our results suggest that it is necessary to pay attention to

the fraction of common links between IPv4 and IPv6 for obtaining more reliable telecommu-

nication networks. However, it is still hard to determine whether the change of the overlapping

ratio is the main reason for the observed decrease in robustness, since the two layers have

Fig 10. Results on real-world coupled IPv4/IPv6 networks. (a) Fraction of overlapping links, r1 and r2 and the system size N in the

multiplex IPv4/IPv6 networks in January of different years. N = 1086, 2416, 4974, and 6550, respectively. (b) Mean G as a function of αA in

the model with realistic IPv4/IPv6 networks and the SUM rule. January in different years, averaged over M = 30 realizations.

https://doi.org/10.1371/journal.pone.0189624.g010
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different amounts of links, and the system size also varies with time, which differ from our

model.

Discussion

In this work, we develop a new model of overload-based cascades (following Motter and Lai’s

model of overload) on multiplex networks, and we investigate the impact of inter-similarity.

This is not the first time that cascading failures caused by overload on multiplex networks are

investigated. K. Lee et al., have studied the sandpile model on multiplex networks in 2012 [28].

They compared duplex ER networks and SF networks, as well as overload rules (like our OR

rule and AND rule). However, the sandpile model mainly focuses on generating power-law

failure size distributions at criticality, rather than the efficiency of traffic flow or robustness to

overload cascades, which we focus on.

We study the robustness of multiplex networks to overload cascade, which is a different

way of modeling overload on coupled networks as oppose to previous models using intercon-

nected or interdependent networks. We assume different types of flows in the different layers

and three overload rules: OR, AND, and SUM. Under the OR rule, our model is similar to pre-

vious fully interdependent networks models. The main difference is that we consider failures

caused by single-layer overload and interdependencies at each step. Percolation, however, is

only considered at the end of the cascade. Moreover, our model with the AND rule can be

applied to coupled traffic systems where an overloaded node in one layer can survive if it is not

overloaded in the other layer. The SUM rule lies between the OR and the AND rules, where

the load can be shared by the two layers.

We compare homogeneous and heterogeneous networks, and random/assortative/disassor-

tative coupling schemes. We further study the effects of inter-similarity by finding the best

overlap ratio. One of the most interesting findings is that for two SF networks under the SUM

rule, the best overlap ratio decreases from 1 to 0 in a continues fashion when αA or αB are

around 0.2. This is important since many critical coupled systems with traffic flow have hetero-

geneous structures and not very large capacity tolerance. This finding provides suggestions for

the optimal fraction of overlapping links for the real world multiplex systems. Another surpris-

ing finding is that for two ERs under the SUM/AND rules, during the transition process, a full

overlap is worse than assortative coupling, although assortativity is good for the system. To

explain these findings, we for the first time clarify both the positive and negative potential

impacts of inter-similarity simultaneously on the robustness of multiplex networks. Note that

in previous works, inter-similarity has been proved to be able to improve the system robust-

ness in percolation of interdependent or multiplex networks [29–31]. We also find that

homogenous multiplex networks i.e. two ERs are more robust to overload cascades compared

to heterogeneous two SF multiplex networks. This supplements the previous understanding

that interdependent SF networks are more vulnerable than interdependent ER networks [15].

We have verified that the major model results hold for N as large as around 3000. More

detailed effects of network sizes can be investigated in future work. We also plan to explore

overload-based cascades on systems with more than two sub-networks and effects of inter-

similarity in our future work.

In summary, we have proposed a model for studying overload-based cascading failures in

multiplex networks. We have systematically explored the effect of inter-similarity and assorta-

tivity coupling. A key finding is that inter-similarity can have both positive and negative

impact. We have explained our surprising findings and discussed their potential applications

to real world multiplex networks.
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