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Abstract

Knee osteoarthritis is a progressive disease mediated by high joint loads. Foot progression

angle modifications that reduce the knee adduction moment (KAM), a surrogate of knee

loading, have demonstrated efficacy in alleviating pain and improving function. Although

changes to the foot progression angle are overall beneficial, KAM reductions are not consis-

tent across patients. Moreover, customized interventions are time-consuming and require

instrumentation not commonly available in the clinic. We present a regression model that

uses minimal clinical data—a set of six features easily obtained in the clinic—to predict the

extent of first peak KAM reduction after toe-in gait retraining. For such a model to generalize,

the training data must be large and variable. Given the lack of large public datasets that con-

tain different gaits for the same patient, we generated this dataset synthetically. Insights

learned from a ground-truth dataset with both baseline and toe-in gait trials (N = 12) enabled

the creation of a large (N = 138) synthetic dataset for training the predictive model. On a test

set of data collected by a separate research group (N = 15), the first peak KAM reduction

was predicted with a mean absolute error of 0.134% body weight * height (%BW*HT). This

error is smaller than the standard deviation of the first peak KAM during baseline walking

averaged across test subjects (0.306%BW*HT). This work demonstrates the feasibility of

training predictive models with synthetic data and provides clinicians with a new tool to pre-

dict the outcome of patient-specific gait retraining without requiring gait lab instrumentation.

Author summary

Gait retraining is a conservative intervention for knee osteoarthritis shown to reduce pain

and improve function. Although customizing a treatment plan for each patient results in a

better therapeutic response, customization cannot yet be performed outside of the gait

laboratory, preventing research advances from becoming part of clinical practice. Our

work aimed to build a model that accurately predicts whether a patient with knee osteoar-

thritis will benefit from non-invasive gait retraining using measures that can be easily col-

lected in the clinic. To overcome the lack of large datasets required to train predictive
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models, we generated data synthetically (N = 138) based on limited ground-truth exam-

ples, and we provide experimental evidence for the model’s ability to generalize to real

data (N = 15). Our results contribute toward a future in which clinicians can use data col-

lected in the clinic to easily identify patients who would respond to therapeutic gait

retraining.

1. Introduction

Globally, one in five individuals aged 40 and older are afflicted by knee osteoarthritis, a painful

joint disease that still lacks a cure or disease-modifying intervention [1]. Pain is managed phar-

maceutically, while structurally cartilage is left to degrade until joint failure, at which point

joint replacement surgery is recommended. Although the etiology of the disease is multifacto-

rial, disease progression is known to be exacerbated by high joint loading during ambulation

[2]. Osteoarthritis presents more often in the medial compartment than the lateral compart-

ment of the knee partially because the common varus (bow-leg) alignment increases medial

knee contact force [3,4]. However, since the forces that stress the tibiofemoral contact surface

generally cannot be measured in vivo, the knee adduction moment (KAM) is often used as a

surrogate of medial compartment knee loading [5]. Both a higher peak KAM [6] and higher

KAM impulse [7] are associated with osteoarthritis progression: reducing either or both peaks

of the typically two-peaked KAM has therefore been a primary target of non-invasive gait

retraining interventions [8].

Biomechanists continue to direct efforts toward conservative interventions that can pre-

serve native joint health to the greatest extent possible [9]. Gait modification strategies to

reduce KAM have included decreasing walking speed [10,11], increasing trunk sway [10,12–

15], and changing the foot progression angle (FPA) by walking with the toes pointed inward

or outward [16–22]. For some, the decrease in walking speed required to reduce peak KAM

can be prohibitive to daily living [11]. Increasing trunk sway has been reported to induce back

pain and imbalance [14]. In contrast, changing the foot progression angle reduces KAM suc-

cessfully [23] and is generally preferred by patients, who report minimal discomfort [18].

Walking with the toes pointed inward can reduce the first peak of KAM by lateralizing the foot

center of pressure and medializing the knee joint center (Fig 1). After six weeks of retraining

with a toe-in gait, knee osteoarthritis patients reduced the first peak of KAM by 0.44% body

weight � height (BW�HT) on average, reporting reduced knee pain and improved function at a

one-month follow-up [20]. This reduction was comparable to high tibial osteotomy [24] but

without the risks associated with the surgery [25].

Customizing the change in foot progression angle to the individual results in a larger peak

KAM reduction than a non-custom intervention [17]. However, determining a target foot pro-

gression angle is a time-consuming process of acclimation and evaluation that can be per-

formed only in the gait lab. At present, researchers must iteratively evaluate KAM reduction at

a range of foot progression angles, relying on force plates and motion capture to compute and

compare joint moments. Although proposed methods for estimating KAM using wearable

sensors [26,27] or synthetic video data [28] could help reduce reliance on gait lab equipment,

these approaches still require gait data collection. No methods currently exist to automate the

procedure of predicting KAM reduction in response to gait retraining interventions.

To translate prescription of gait retraining to the clinic, we sought to build a predictive

model for KAM reduction with toe-in gait using only features that can be obtained in the clinic

without gait analysis tools (Fig 2). For such a model to be generalizable to new patients, large
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training data with both baseline and toe-in gait are needed, but this specialized dataset does

not yet exist. To address this need, we synthesized toe-in gait from baseline walking data from

138 participants. The synthetic toe-in gait was generated using learned gait modification pat-

terns extracted from a ground-truth dataset of 12 participants walking at baseline and toe-in.

We evaluated both the synthetic data generation approach and the predictive model on an

independent dataset collected in a different laboratory.

Fig 1. Toe-in gait reduces the knee adduction moment. (A) The external moment about the knee is computed using

the ground reaction force and lever arm from the knee joint center. Toe-in gait shifts the knee joint center medially

and the foot center of pressure laterally in the first half of stance, reducing the KAM. Group average data [18] illustrate

how (B) toe-in gait shortens the lever arm and (C) reduces the KAM. Ground reaction force magnitude (not shown in

the figure) does not change.

https://doi.org/10.1371/journal.pcbi.1009500.g001

PLOS COMPUTATIONAL BIOLOGY Predicting knee adduction moment response to gait retraining with minimal clinical data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009500 May 16, 2022 3 / 15

https://doi.org/10.1371/journal.pcbi.1009500.g001
https://doi.org/10.1371/journal.pcbi.1009500


2. Methods

Ethics statement

All experimental procedures involving human participants were approved by each institution’s

ethics review boards: the Stanford University Institutional Review Board, the University of

Calgary Conjoint Health Research Ethics Board, and the Carnegie Mellon University Institu-

tional Review Board. All participants provided their written informed consent to participate.

2.1 Learning gait patterns

Optical motion capture and force plate data from 12 subjects with knee osteoarthritis (Table 1,

Stanford University) were used to learn how gait changes with increasing toe-in angle. Subjects

walked at a self-selected speed on a split-belt instrumented treadmill under two conditions:

walking normally (baseline gait) and walking with toes pointed in (toe-in gait). The last ten

steps of the osteoarthritic leg in each condition were used for analysis. We filtered force data at

Fig 2. Study overview. This study focused on building a regression model that uses minimal clinical data to predict the extent of first peak KAM reduction after toe-in

gait retraining. Given the lack of large datasets that contain both baseline and toe-in gaits for the same patient, we generated this dataset synthetically. Gait patterns of

knee joint center (KJC) and foot center of pressure (FCP) learned from a ground-truth dataset (N = 12) with both baseline and toe-in gait trials (2.1, Stanford University

dataset) enabled the creation of extensive synthetic toe-in data (N = 138) from a dataset that contained only baseline gait trials (2.2, Calgary Running Injury Clinic

dataset). A regression model using height, weight, walking speed, limb alignment, baseline FPA, and toe-in FPA was then built to predict KAM reduction (2.3). Both the

synthetic data generation approach and the predictive model were tested using data (N = 15) collected by a separate research group (2.4, Carnegie Mellon University

dataset).

https://doi.org/10.1371/journal.pcbi.1009500.g002

Table 1. Summary demographics for participants included in each dataset.

Stanford University Calgary Running Injury Clinic Carnegie Mellon University

Number of subjects 12 138 15

Sex 7 M / 5 F 57 M / 81 F 9 M / 6 F

Height 1 170.7 cm (±8.4 cm) 171.6 cm (±8.9 cm) 173.9 cm (±9.3 cm)

Weight 1 77.7 kg (±18.0 kg) 70.2 kg (±12.4 kg) 68.0 kg (±11.1 kg)

1 Mean (±STD)

https://doi.org/10.1371/journal.pcbi.1009500.t001
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15 Hz using a fourth-order zero-lag Butterworth low-pass filter. Foot progression angle was

defined in the laboratory horizontal plane as the angle between the anterior-posterior axis and

the line connecting the markers placed on the calcaneus and the second metatarsal head. A

toe-in angle was defined with respect to a participant’s average baseline foot progression angle.

A specific toe-in angle was not enforced: mean and standard deviation (± STD) baseline and

toe-in angles were 3.97˚ (± 4.91˚) and -5.65˚ (± 4.10˚) respectively.

First, at each step, the foot center of pressure and knee joint center in the mediolateral and

anterior-posterior directions were expressed with respect to the pelvis center. The pelvis center

was calculated as the centroid of the markers placed on the left and right anterior and posterior

superior iliac crests. We then normalized each step from heel strike to toe-off as 0 to 100%

stance. For each subject, we represented the foot center of pressure and knee joint center tra-

jectories during toe-in gait with respect to that subject’s average foot center of pressure and

knee joint center trajectories during baseline gait. We labeled all 120 toe-in trajectories (10

steps x 12 subjects) by the toe-in angle at that step and grouped them into 1˚ bins from 1˚ to

10˚. The number of steps in each bin ranged from 6 in the 10˚ bin to 21 in the 5˚ bin. Trajecto-

ries were averaged within each bin. We represented each of the averaged trajectories using

basis splines of order 12 to smooth the prediction. This order was selected from a range of 3 to

20 via cross-validation; increasing beyond 12 yielded no further reduction in root mean

squared error (RMSE) between the trajectory and the spline. We then used these gait patterns

to synthesize toe-in gait in new subjects by offsetting the learned foot center of pressure and

knee joint center trajectory modifications for a given toe-in angle from the new subject’s base-

line trajectories (Fig 3).

To test whether the learned gait patterns were generalizable across subjects, we carried out

exhaustive leave-one-out cross-validation by learning foot center of pressure and knee joint

center trajectories from 11 subjects and testing on the left-out subject. We combined the syn-

thesized foot center of pressure and knee joint center trajectories with the subject’s baseline

ground reaction force, which does not change with toe-in gait, to compute the KAM using the

lever-arm method. We compared the synthetic KAM to the subject’s ground-truth toe-in

KAM using the average RMSE (±STD) for the knee joint center, foot center of pressure, and

KAM trajectories, and the mean absolute error (MAE) (±STD) for the first peak KAM across

all subjects.

Fig 3. Synthetic gait generated via learned patterns. At each toe-in angle from 1˚ to 10˚, all subject trajectories for

the foot center of pressure and knee joint center (KJC) were binned, averaged, and fit with a spline. (A) At a given toe-

in angle, the trajectory represents the positional offset from baseline gait. (B) Here, knee joint center position in the

mediolateral direction was predicted for a representative subject with a 5˚ toe-in angle by adding the learned offset to

the baseline trajectory.

https://doi.org/10.1371/journal.pcbi.1009500.g003
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2.2 Synthesizing toe-in gait data

The learned gait patterns extracted from the ground-truth dataset were used to synthesize toe-

in gait from an optical motion capture dataset of 138 subjects performing only baseline gait tri-

als (Table 1, Calgary Running Injury Clinic). All subjects were pain-free at the time of data col-

lection, although some were experiencing a lower extremity running-related injury. Subjects

walked at a self-selected speed on an instrumented split-belt treadmill, and data were collected

for approximately 2 minutes. We filtered ground reaction force data at 15 Hz using a fourth-

order zero-lag Butterworth low-pass filter and removed steps that did not land cleanly on the

treadmill’s two force plates. We applied the toe-in gait patterns to the average and step-nor-

malized knee joint center and foot center of pressure trajectories for the left leg of each subject,

at each toe-in angle from 1˚ to 10˚, resulting in a final dataset of 1380 entries (138 subjects x 10

toe-in angles). The reduction in the first peak KAM from baseline to synthetic toe-in gait was

expressed in %BW�HT and used as the response variable of the predictive model.

2.3 Training a predictive model

We used the synthetic toe-in gait data to train a predictive model for KAM reduction. To

ensure that this model would be useful to clinicians without access to gait lab instrumentation,

we used input features that are routinely collected in the clinic (i.e., height, weight, baseline

walking speed, static knee alignment) or can be computed with foot-mounted inertial sensors

(i.e., baseline foot progression angle and target toe-in angle). The static knee alignment was

taken when the subject was standing still and was defined as the angle between the vectors con-

necting 1) the lateral malleolus and lateral epicondyle and 2) the lateral epicondyle and hip

joint center, in the frontal plane, with valgus angle defined as positive. These landmarks can be

identified in the clinic by manual inspection and goniometric measurement and may be more

accurately estimated in the future with video-based motion capture.

To train a linear regression model to predict first peak KAM reduction, we split data into 80%

training, 10% validation, and 10% test sets. Gait cycles from each subject were included in only

one set to reduce the risk of inflated performance. All input features were standardized to have

zero mean and unit variance using the training data. To quantify model accuracy on synthetic

data, we computed the R2 value and the MAE (±STD) between the synthetic first peak KAM

reduction and the output of the predictive model. We also computed the mean signed error

between the synthetic reduction and model prediction across all toe-in angles for each subject.

2.4 Validating gait patterns and predictive model

To evaluate how well the synthetic data generation approach and predictive model generalize

to data collected in different settings, we tested the learned toe-in gait patterns and the result-

ing predictive model using optical motion capture data (Optitrack, Corvallis, USA) collected

in a different laboratory (Table 1, Carnegie Mellon University). Fifteen healthy participants

walked at baseline and with toe-in gait on an instrumented treadmill (Bertec, Worthington,

USA) at a self-selected speed for one minute during both conditions. Participants were guided

to maintain a toe-in angle of approximately 5˚ relative to baseline with the use of a commercial

device that provides vibration feedback on the shank (SageMotion, Kalispell, USA), but toe-in

angles ranged from 3˚ to 10˚. Mean (±STD) angles were 6.46˚ (±5.43˚) for baseline and -6.60˚

(±1.72˚) for relative toe-in, respectively. Synthetic toe-in foot center of pressure, knee joint

center and KAM trajectories were generated for each subject, using the gait patterns learned

from the Stanford University dataset, as described in Sections 2.1 and 2.2.

The predictive model, described in Section 2.3, was also evaluated on the 15 new subjects

using their height, weight, baseline walking speed, static knee alignment, baseline foot
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progression angle, and average toe-in angle as input features. We computed the R2 value and

the MAE (±STD) between the actual first peak KAM reduction and the predicted KAM reduc-

tion, as well as the mean signed error between real and predicted peak KAM reduction. To

assess if there was a reduction of accuracy when testing the model on new data, we compared

the mean signed errors of the synthetic training data, synthetic test data, and Carnegie Mellon

University test data. After testing for normality using the Kolmogorov-Smirnov test, we com-

pared the mean signed errors with a one-way analysis of variance (ANOVA) test and post-hoc

Tukey’s Honestly Significant Difference (HSD) test for multiple comparisons. We used a sig-

nificance level of 0.05 for all statistical tests.

3. Results

3.1 Learned gait patterns

Synthetic toe-in KAM correctly captured that all subjects reduced their first KAM peak. The

mean [95% CI] of the actual first KAM peak was 3.065 [2.15, 3.98] %BW�HT during baseline

gait and 2.622 [1.71, 3.53] %BW�HT during toe-in gait. The mean [95% CI] predicted first

KAM peak was 2.681 [1.76, 3.61] %BW�HT (Fig 4). Predicted knee joint center and foot center

of pressure trajectories were more accurate in the mediolateral than in the anterior-posterior

direction. The resulting synthetic KAM trajectory was estimated with an RMSE (±STD) of

0.253 (±0.112) %BW�HT (Table 2).

3.2 Training and evaluating the predictive model

The predictive model estimated the first peak reduction with an MAE (±STD) of 0.095

(±0.072) %BW�HT (Fig 5) and an R2 of 0.87. The average signed error across all toe-in angles

for each of the 108 subjects in the training set was distributed around zero with a 95% CI of

Fig 4. Validation of toe-in KAM trajectories and first peak KAM reductions (Stanford University dataset). With

leave-one-out cross-validation, the synthetic toe-in KAM trajectory (red, dashed line) from the Stanford University

dataset closely matched the ground-truth toe-in KAM (blue, dotted line). Synthetic KAM captured the within-subject

reduction in the first peak of KAM relative to baseline (black, solid line) with an MAE of 0.174%BW�HT. The left plot

captures mean (±STD) KAM trajectories across subjects, while the right plot shows individual and mean peak KAM

with 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1009500.g004
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[-0.020, 0.020]. The mean signed error for the 15 subjects in the synthetic test set was also dis-

tributed around zero with a 95% CI of [-0.057, 0.061]. The toe-in angle was the strongest pre-

dictor, with a linear weighting coefficient of β1 = 0.30 (p< 0.0001). Increased valgus angle

during static alignment (β2 = -0.015, p = 0.0002) and increased weight (β3 = -0.014,

p = 0.0025) contributed to a smaller KAM reduction. Baseline foot progression angle (β4 =

-0.0049, p = 0.198), height (β5 = -0.0041, p = 0.398), and walking speed (β6 = 0.0034, p = 0.375)

did not significantly contribute to a reduction in KAM. When using only the toe-in angle as a

feature, KAM reduction was estimated with an MAE (±STD) of 0.096 (±0.073) %BW�HT.

3.3 Validating the learned gait patterns and predictive model on a separate

dataset

The synthetic toe-in KAM correctly captured that all subjects reduced the first KAM peak. The

mean [95% CI] of the actual first peak KAM was 2.602 [2.08, 3.12] %BW�HT during baseline

gait and 1.982 [1.47, 2.50] %BW�HT during toe-in. The mean [95% CI] of the predicted first

peak of the KAM was 2.006 [1.46, 2.56] %BW�HT (Fig 6). The within-subject variation of the

Table 2. Evaluation of the learned gait patterns against ground truth measurements in the Stanford University

dataset.

RMSE (±STD)

Knee Joint Center (Anterior-Posterior) 12.7 (±7.8) mm

Knee Joint Center (Mediolateral) 5.6 (±2.4) mm

Center of Pressure (Anterior-Posterior) 13.4 (±4.8) mm

Center of Pressure (Mediolateral) 8.1 (±5.4) mm

KAM Trajectory 0.253 (±0.112) %BW�HT

MAE (±STD)

First KAM Peak 0.174 (±0.135) %BW�HT

https://doi.org/10.1371/journal.pcbi.1009500.t002

Fig 5. Prediction of KAM reduction using synthetic training data (Calgary Running Injury Clinic dataset).

Synthetic toe-in data from 108 subjects were used to train the predictive model, which achieved an MAE of 0.0826 (±
0.0628) %BW�HT on the test set of 15 subjects. The line of best fit (dashed line) has an R2 of 0.87. The signed errors

(the difference between actual and predicted KAM reduction) of the training and test sets were similarly distributed

around zero.

https://doi.org/10.1371/journal.pcbi.1009500.g005
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first KAM peak was greater than the error in the predicted KAM peak: the mean STD of the

first KAM peak during baseline walking averaged across all subjects was 0.306%BW�HT. The

knee joint center and foot center of pressure for toe-in gait were predicted with similar accu-

racy to the Stanford University dataset. The predicted knee joint center and foot center of pres-

sure trajectories were again more accurate in the mediolateral direction than in anterior-

posterior, and the resulting synthetic KAM trajectory was estimated with an RMSE (±STD) of

0.335 (±0.121) %BW�HT (Table 3).

The predictive model trained on the synthetic data could estimate first peak KAM reduc-

tion of the Carnegie Mellon University dataset with an MAE (±STD) of 0.134 (±0.0932) %

BW�HT (Fig 7) and an R2 value of 0.55. When using only the toe-in angle, the strongest pre-

dictor, as a feature, KAM reduction was estimated with an MAE of 0.187%BW�HT (±0.151%

BW�HT). Holding all other inputs constant, increasing valgus angle by 12˚ or weight by 40 kg

resulted in mean peak KAM reduction of less than 0.50%BW�HT. The mean [95% CI] signed

error between the predicted and actual first peak KAM reduction was 0.068%BW�HT [-0.017,

0.15]. The mean signed error of the KAM prediction on independently collected data was not

Fig 6. Validation of synthetic toe-in KAM (Carnegie Mellon University dataset). The synthetic toe-in KAM

trajectory (red, dashed line) closely matched the real toe-in KAM (blue, dotted line). Synthetic KAM captured the

within-subject reduction in the first peak of KAM, relative to baseline (black, solid line) with an MAE of 0.170%

BW�HT. The left plot captures mean (±STD) KAM trajectories across subjects, while the right plot shows individual

and mean peak KAM with 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1009500.g006

Table 3. Validation of the learned gait patterns using the Carnegie Mellon University dataset.

RMSE (±STD)

Knee Joint Center (Anterior-Posterior) 13.3 (±8.2) mm

Knee Joint Center (Mediolateral) 4.5 (±2.7) mm

Center of Pressure (Anterior-Posterior) 15.4 (±8.8) mm

Center of Pressure (Mediolateral) 9.0 (±6.8) mm

KAM Trajectory 0.335 (±0.121) %BW�HT

MAE (±STD)

First KAM Peak 0.170 (±0.101) %BW�HT

https://doi.org/10.1371/journal.pcbi.1009500.t003
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statistically different from the error of the model on training data (p = 0.082). We found no sig-

nificant difference between the mean signed error of the synthetic training and synthetic test

data (p = 0.998), training and actual test data (p = 0.0635), or synthetic test data and actual test

data (p = 0.224).

4. Discussion

The aim of this work was to build a predictive model that uses minimal clinical data to estimate

reduction in the first peak of KAM during a toe-in gait retraining. On data collected in a sepa-

rate gait laboratory, the model could predict KAM reduction with an error of 0.134%BW�HT,

which falls within the range of step-to-step KAM peak variation (0.306%BW�HT). This valida-

tion on independent data, in addition to the traditional approach of validating on left-out test

data, gives us cautious optimism in the model’s generalizability. Gait retraining is not yet stan-

dard in clinical practice, in part because a full gait analysis is required to identify whether a

patient would respond to the therapy. With this predictive model and emerging lightweight

haptic feedback systems [29], we hope that clinicians may one day be able to identify respond-

ers and prescribe therapeutic gait retraining in a matter of minutes.

Several study characteristics and limitations should be considered when interpreting the

reported findings. In this study, KAM was computed using the lever-arm method. Although

the inverse dynamics link-segment method is sometimes preferred when real-time KAM esti-

mates are not imperative [8], the two methods show agreement in assessing percent change

with a gait intervention, with a mean (±STD) difference of 5% (±14.1%) [30]. When synthesiz-

ing toe-in KAM, a 5% error in estimating toe-in peak KAM reduction would have resulted in a

difference of 0.0298%BW�HT, which is an order of magnitude less than the Carnegie Mellon

University subjects’ step-to-step KAM variation (0.306%BW�HT). Another limitation is that

some subjects in the Stanford University dataset increased the second peak of the KAM with

toe-in, resulting in a falsely predicted second peak increase for the Carnegie Mellon University

dataset. However, the average estimated second peak increase was smaller than the estimated

first peak reduction, resulting in an overall smaller KAM impulse, which may still provide

Fig 7. Validation of the predictive model (Carnegie Mellon dataset). An independent dataset of toe-in gait from 15

subjects was used to evaluate the predictive model, which achieved an MAE of 0.134%BW�HT (±0.0932%BW�HT).

The line of best fit (dashed line) has an R2 of 0.55. The mean signed error of the model was not significantly different

between the Carnegie Mellon University test data and the synthetic training or synthetic testing data.

https://doi.org/10.1371/journal.pcbi.1009500.g007
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therapeutic benefit [31]. Toe-out gait modifications typically aim to reduce the second KAM

peak [19], so future addition of toe-out gait data may facilitate more accurate prediction of

first and second peak changes. Finally, as all of the subjects in the Carnegie Mellon University

dataset reduced their first KAM peak with toe-in, it is not clear if the model could accurately

predict a clinical non-responder [32,33]. While within the range of reported values [15,19,34],

the Carnegie Mellon University dataset average reduction in first peak KAM (0.62 ± 0.226%

BW�HT) trended toward being greater than that of the Stanford University dataset

(0.44 ± 0.242%BW�HT). This difference may be due to disparities in pain-free mobility

between healthy and osteoarthritic cohorts, as well as the method of toe-in gait retraining:

here, we provided vibration feedback based on the toe-in angle, whereas the Stanford Univer-

sity researchers provided feedback on the tibial angle in the frontal plane, indirectly inducing a

toe-in gait that reduces KAM. The predictive model, built upon patterns learned from a cohort

with a smaller KAM reduction, slightly underestimated the real KAM reduction (mean signed

error = 0.068%BW�HT), although we did not find this difference to be significant (p = 0.082).

Incorporation of several representative datasets from multiple laboratories would further the

generalizability of such a model.

KAM reduction with toe-in gait could be predicted using only a limited set of features. As

previously reported [15], the toe-in angle positively correlated with KAM reduction. However,

using only toe-in angle as a predictor estimated KAM reduction to an MAE (±STD) of 0.187

(± 0.151) %BW�HT, compared to 0.134 (±0.0932) %BW�HT using the full set of six features.

The next most salient predictor was the increased valgus angle during static alignment, which

was related to a smaller KAM reduction. This result supports previous findings that KAM

reduction is greater in participants with more varus alignment [34], which may be due to their

inherently larger KAM, permitting a greater reduction [35]. Holding all other inputs constant,

the model’s sensitivity to a 12˚ change toward a more valgus alignment changed the mean

KAM peak reduction to less than 0.50%BW�HT, which has previously been used as the clini-

cally meaningful threshold related to risk of disease progression [6,11,28]. The amplitude of

this reduction is less than the 16˚ valgus change found to persist six months after a high tibial

osteotomy surgery [24], suggesting that the model’s sensitivity is physiologically feasible and

that static alignment is a relevant predictor for KAM reduction. Although KAM was normal-

ized to height and body weight, higher weight was predictive of a smaller KAM reduction.

Here, the model’s sensitivity to an added 40 kg resulted in a mean KAM peak reduction that

was below the clinically meaningful threshold; at an average height of 170 cm, this added

weight would increase BMI from 21 to 35, which is the threshold for obesity [36]. Since knee

osteoarthritis patients with a higher weight have a larger weight-normalized KAM than their

lean age-matched osteoarthritic controls [37], further investigation is warranted to determine

why individuals at a higher weight may be unable to achieve significant reductions to KAM

despite their larger KAM.

In a previous study by Boswell et al. [28], a neural network trained on time-discretized 3D

anatomical features from 86 subjects was used to classify whether an individual would increase

or reduce their first peak KAM with toe-in or toe-out gait modifications, attaining accuracies

of up to 85%. Their models predicted the peak KAM during baseline walking with MAE rang-

ing from 0.37–0.49%BW�HT. The most salient features of this model included those related to

the position of the pelvis, knee angle in the frontal plane, and sway of the trunk; in the future, a

sensor-fusion approach that combines wearable sensing and vision-based motion capture

could make use of these additional pelvis and trunk features to improve our predictive model.

However, while our model was capable of correctly predicting a KAM reduction for all subjects

in the external dataset, we sought to estimate the extent of KAM reduction, rather than classify
subjects based on whether KAM would decrease or not. Furthermore, estimating KAM
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reduction from minimal clinical data, as we have done here, instead of computing KAM from

cameras or wearable sensors [26,27], eliminates the need for gait analysis. A fast estimate of the

KAM reduction with gait retraining may empower clinicians to weigh the expected benefit of

retraining against that of other treatment alternatives.

The accuracy of the knee joint center and foot center of pressure predictions were within

the error range of joint center location estimates obtained with optical motion capture.

Although divergent experimental protocols prevent a meaningful meta-analysis [38], estimates

of the knee joint center position have been found to vary from 14 mm to up to 40 mm due to

soft tissue artifacts [39–41]. Compared to gold-standard position tracking with intra-cortical

bone pins, optical motion capture suffers from skin movement artifacts and inconsistency in

marker placement across subjects, experimenters, and laboratories [42]. The inter- and intra-

dataset validation of the learned gait patterns showed comparable accuracy between the Stan-

ford University and Carnegie Mellon University datasets, giving us further confidence in this

method of generating the synthetic KAM data. The use of these validated toe-in gait patterns

may therefore enable reliable predictions of changes in joint kinetics by any research group,

without the need for additional motion capture trials.

Accurate prediction of an expected gait change without baseline kinetic data is a significant

step toward moving gait retraining prescriptions to the clinic. Collecting gait data with altered

foot progression angles is a time-consuming iterative process: after becoming acquainted with

the biofeedback paradigm, subjects must acclimate to each new gait pattern, at which point

their kinetics may be evaluated. In the absence of universal guidelines on short- and long-term

gait retraining learning rates [43], experimenters allow subjects a minimum of 2 minutes to

acclimate to the new foot progression angle, with 10–30 minutes of training to enforce the

modified gait strategy [17–20]. With the use of the predictive model, this experimental time

may be reduced drastically: height, weight, walking speed, and static knee alignment are

already commonly measured in the clinic, whereas wearable sensors and vision-based motion

capture can one day allow gait kinematics such as foot progression angle to be standard vitals

that comprise a patient’s unique gait health profile [44].

Modern data science methods offer biomechanists new ways to creatively solve long-standing

scientific and clinical challenges [45]. These methods require large and heterogeneous data to

avoid overfitting and to generalize well to unseen subjects [46]. Although sharing normative data-

sets is becoming more common [47,48], these datasets do not yet exist for more specialized needs

such as gait retraining. Here, we demonstrate one promising method to overcome the present

paucity of data by generating synthetic data based on limited ground-truth examples. With con-

tinued exploration of synthetic data-generation approaches, we hope to move toward a future in

which the therapeutic benefit of a potential treatment can be assessed to determine a custom treat-

ment path for any patient.

In conclusion, this work demonstrates that it is possible to predict the extent to which a

patient will benefit from gait retraining therapy using clinically available measures. It also illus-

trates the feasibility of training predictive models with synthetic data. By further harnessing

the growing capabilities of emerging motion capture techniques, including ones that fuse

wearable sensing and computer vision, these models should empower clinicians to prescribe

gait retraining therapy in the clinic.
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