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Background: Determining the DNA fragmentation index  (DFI) by the sperm 
chromatin dispersion  (SCD) test involves manual counting of stained sperms 
with halo and no halo. Aims: The aim of this study is to build a robust artificial 
intelligence‑based solution to predict the DFI. Settings and Design: This is a 
retrospective experimental study conducted in a secondary in  vitro fertilisation 
setup. Materials and Methods: We obtained 24,415 images from 30 patients after 
the SCD test using a phase‑contrast microscope. We classified the dataset into two, 
binary (halo/no halo) and multiclass (big/medium/small halo/degraded (DEG)/dust). 
Our approach consists of a training and prediction phase. The 30 patients’ images 
were divided into training (24) and prediction (6) sets. A pre‑processing method M 
was developed to automatically segment the images to detect sperm‑like regions 
and was annotated by three embryologists. Statistical Analysis Used: To interpret 
the findings, the precision‑recall curve and F1 score were utilised. Results: Binary 
and multiclass datasets containing 8887 and 15,528 cropped sperm image regions 
showed an accuracy of 80.15% versus 75.25%. A  precision‑recall curve was 
determined and the binary and multiclass datasets obtained an F1 score of 0.81 
versus 0.72. A  confusion matrix was applied for predicted and actuals for the 
multiclass approach where small halo and medium halo confusion were found to 
be highest. Conclusion: Our proposed machine learning model can standardise 
and aid in arriving at accurate results without using expensive software. It 
provides accurate information about healthy and DEG sperms in a given sample, 
thereby attaining better clinical outcomes. The binary approach performed better 
with our model than the multiclass approach. However, the multiclass approach 
can highlight the distribution of fragmented and non‑fragmented sperms.
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unexplained infertility have extraordinarily high levels 
of fragmented sperm DNA.[2] High DNA fragmentation 
index  (DFI) is also associated with increased miscarriage 
and lower live birth rate.[3,4] In such cases, performing 
sperm function tests specifically, DNA fragmentation can 
aid in understanding the reason for infertility in the couple.

Introduction

Over the past 10  years, the percentage of infertile 
couples with a male component has grown to almost 

40%. Unexplained infertility is detected in about 30% of 
these couples. Semen analysis is the primary diagnostic 
test to evaluate the male partner. However, most often it 
is not sufficient to determine the reason for infertility in 
case of unexplained infertility.[1] In a study conducted by 
Oleszczuk et al., it is stated that in conventional diagnostic 
techniques, a sizable portion of males identified as having 
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Assessing the gametes and embryos is solely based 
on morphological evaluation and results show high 
inter‑  and intrapersonnel variability which also lacks 
standardisation. Computer‑assisted/aided semen 
analysis  (CASA) offers testing with reduced variability, 
however, is expensive and limits its use in clinics. The 
automated interpretation of semen parameters produced 
by computed‑aided systems such as CASA has shown 
to decrease operator subjectivity when compared to 
manual testing.[5] Although the precision of results is 
being maintained, according to Talarczyk‑Desole et  al., 
the technician’s personal interpretation could skew the 
computer‑assisted study. The technicians need not be 
experts in semen analysis, however, basic knowledge of 
seminology is required and to get accurate findings, it is 
crucial to strictly follow CASA’s producer settings and 
to evaluate human sperm in Leja chambers.[6]

The aim and objective of the current investigation 
are to build a robust artificial intelligence  (AI)‑based 
solution to predict the DFI of samples subjected to 
sperm chromatin dispersion  (SCD) test by leveraging 
human‑annotated stained images to produce unbiased 
results inexpensively.

Determination of sperm DNA fragmentation can be 
done using multiple tests. The most popular ones 
include Sperm Chromatin Structure Assay  (SCSA), 
terminal deoxynucleotidyl transferase dUTP nick end 
labelling  (TUNEL), COMET and SCD. The SCSA 
analyses the sperm DNA’s sensitivity to denaturation 
when subjected to heat or acids. TUNEL assay uses 
fluorescent nucleotides to identify DNA ‘nicks’ or free 
ends. The comet assay employs neutral and alkaline 
electrophoresis to assess the many patterns of DNA 
damage per cell. SCSA and TUNEL require a flow 
cytometry and/or fluorescence microscope which 
reduces their appeal to clinical andrology laboratories 
due to the expense of the necessary equipment. COMET 
assay is not appropriate for rapid diagnosis and requires 

highly specialised staff to interpret the results. Based 
on the idea that fragmented sperm do not create the 
distinctive halo of dispersed DNA loops that are seen in 
sperm with non‑fragmented DNA after acid denaturation 
and removal of nuclear proteins, the SCD, also known 
as the halo test, is used to identify sperm. The method 
is straightforward and does not call any sophisticated 
equipment. Although a competent assay for DFI 
quantification, the classification of the halos may have 
some interobserver subjectivity.[7,8]

McCallum et  al. developed a deep‑learning model to 
predict the DFI of sperm based on sperm morphology. 
The DNA fragmentation test was performed by SCSA 
and acridine orange (AO) and results were obtained. The 
images of sperms that underwent DNA fragmentation 
test were mapped with the morphology of the same 
cohort of sperms subjected to the test. These images 
were then fed into the deep‑learning model. The study, 
however, was conducted only on 6 donors and 1064 
images were extracted which offers very little scope for 
accuracy when compared to a large dataset.[9] A recent 
study comparing sperm morphology with DFI found that 
8.23% of sperm in their dataset with normal morphology 
were apoptotic.[10] Avendano et  al. have reported 
that in infertile men, spermatozoon with apparently 
normal morphology may have DNA fragmentation, 
and the presence of an increased proportion of normal 
spermatozoon with damaged DNA was negatively 
associated with embryo quality and pregnancy outcome 
after intracytoplasmic sperm injection (ICSI). Therefore, 
morphology cannot be solely depended upon for testing 
the DFI of sperms.[11]

Our research is an experimental attempt to create a 
machine learning  (ML) model that can calculate the 
DFI of sperms that have undergone an SCD test to 
produce more accurate findings without the use of costly 
equipment.

Subjects and Methods
This is an experimental retrospective study conducted 
in a secondary in  vitro fertilisation  (IVF) setup. The 
patient data used in the study maintain anonymity, 
the institution’s ethics committee has granted ethical 

Figure 1: Image pre‑processing. Full image of a single field as seen under 
the microscope. (a) Raw image of field seen under the microscope, (b) 
Masking applied, (c) After removing the mask the field is exposed showing 
dust and other artifacts in the image, (d) Segmentation applied to separate 
the sperm and non‑sperms cells

dcba

Figure 2: Images of sperms after segmentation.  (a) BH,  (b) MH,  (c) 
SH, (d) DEG. BH = Big halo, MH = Medium halo, SH = Small halo, 
DEG = Degraded

dcba
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clearance and waived off consent as it involves 
retrospective data. Thirty patients’ samples were taken 
for this study. Inclusion criteria were patients who 
underwent the SCD test for determining the cause of 
infertility. No patients were recruited specifically for the 
purpose of this study.

We obtained 24,415 images from 30  patients after the 
SCD test using a phase‑contrast microscope. Different 
approaches were explored to classify sperm appearance 
into binary  (halo/no halo) and multiclass  (big/medium/
small halo/degraded  (DEG)/dust) problems. Our 
approach consists of  (1) training and  (2) the prediction 
phase.

The SCD test was performed using the sperm chroma 
kit  (Cryotec, SAR HEALTHLINE). The sperms were 
classified into four types based on the dispersion of 
stain, referred to as halo, big halo  (BH), medium 
halo  (MH), small halo  (SH) and DEG. Sperm with big 
and MH were considered to have intact DNA, sperms 
with SH and those that were DEG were considered to 
have poor DNA integrity. The sperms were counted as 
per the manufacturer’s instruction manual.

Image pre‑processing included hue separation and 
morphological operation which were used to reduce the 
noise from the images. Sperm cells take up the purple 
stain when subjected to the test and therefore, were 
isolated by hue and they were segmented according to 
their respective dimensions [Figure 1]. The sperm cells 
were separated from dust based on their size. The sperm 
cells were then separately cropped with the help of a 
segmentation technique known as connected‑component 
analysis [Figure 2]. These images of single sperms were 
then augmented using rotation, saturation and Gaussian 
blur/noise. These images were then annotated by three 
experienced embryologists.

The dataset was classified into two:
1.	 Multiclass: Having distinct classifications between 

the sperms, big, medium small halo and DEG
2.	 Binary: Having two classes: Fragmented  (Small- 

Deg (SD): SH and DEG) and unfragmented  (Big- 
Medium (BM): BH and MH) sperm DNA.

For training both the multiclass and binary approaches, 
we took 110 full images for training and 33 full images 
for testing. The images were randomly assigned to the 
training and testing groups to avoid investigator bias 
and to test the efficiency of the model. In this study, 
an image classifier was used to train a unique classifier 
to differentiate between various sperm cell types by 
utilising custom vision. Until the loss was as small 
as possible and the value plateaued, this process was 
repeated thousands of times. Azure’s custom vision 

is trained on various models including deep network, 
clustering algorithms and selected best‑trained model 
for testing. Custom vision is part of the family of 
cognitive services. It enables to quickly customise 
state‑of‑the‑art computer vision models for a particular 
scenario, with a small set of labelled images, and image 
processing algorithms that provide image classification, 
captioning, optical character recognition and content 
moderation. Computer vision application programming 
interface  (API) provides information about the objects 
that are found in an image. The APIs return the tags 
that are most pertinent to the image and a caption that 
describes it after the image has been evaluated. The 
APIs identify the text in the image and deliver the 
recognised characters as a JSON payload. Custom vision 
trains a specific model for a particular scenario using 
transfer learning and data augmentation methods.[12] 
In our study, the training set was rerandomised, and 
training was repeated once all batches in the training 
dataset had been evaluated  (i.e. after 1 epoch), covering 
the full training set. To avoid overtraining, the model 
was run on a predefined subset of photos put aside for 
use in the training process. The overall precision and 
recall measures are provided following training. In 
addition, each tag’s  (i.e.  label’s or class) performance 
was displayed.

Several epochs of the train–validate cycle were 
completed before a sufficiently stable model with a 
low loss function was produced. The best models 
were integrated into a final ensemble model at the 
end of the series of train–validate cycles. The same 
dataset was used to train a variety of models, including 
convolutional neural networks, clustering algorithms and 
random forests [Figure 4]. The best model was chosen 
based on the parameters of precision, recall and average 
precision. Models received training for about 8  h. For 
both models, the probability threshold employed in the 
results was set at 50%.

Results
110 and 33 full images were taken for training and 
testing. A  total of 24,415 images from 30  patients were 
obtained after a series of image pre‑processing methods 
and augmentation. The multiclass dataset included 
15,528 images  (BH  ‑  2763, MH  ‑  3265, SH  ‑  3254, 
DEG  ‑  3208 and dust  ‑  3038). To prevent the model 
from overtraining, the images were augmented to avoid 
having an unequal number of images in each. Multiclass 
dataset showed an accuracy of 75.25% [Figure 5]; an 
F1 score of 0.72. A  confusion matrix [Figure 6] was 
applied to the multiclass dataset with class accuracy 
measures. The confusion matrix assessed true positives, 
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false negatives, false positives and true negatives as 
the basis for model classification and misinterpretation. 
From Figure  5, it is observed that maximum confusion 
occurred between classifying SH and MH. The binary 
class data set included 8887 images  (BM  ‑  2814, 
SD ‑ 2871 and dust ‑ 3202). Dust was included only for 
training and not for testing, therefore, testing was done 
only on two variables. The binary class dataset showed 
an accuracy of 80.15%; an F1 score of 0.80.

Discussion
Different AI algorithms are being developed to identify 
the various sperm parameters as ML in sperm parameter 
analysis is attracting increasing attention. The purpose 
of our study is to determine sperm DNA fragmentation 
using custom vision employing deep learning algorithms. 
The absence of standardisation is the primary problem 
with determining results manually or using automated 
machines. However, ML models can lessen this 
variability and deliver more precise outcomes. Our deep 
learning model, which categorises sperms, was trained 
using two different ways. Knowing only the DFI is 
insufficient, therefore, it is also vital to understand how 
many sperms in the sample have different degrees of 
DNA fragmentation which our study provides. So far, 
ML models have been developed for determining DFI 
preliminarily using tests such as SCSA, AO, single 
sperm DFI assay as well as SCD.[5,9,13,14]

The outcome of our investigation contrasts the manual 
counting of DFI calculations using our deep‑learning 
model. To calculate the DFI of sperms subjected to 
single‑cell sperm DNA fragmentation experiment, 
Wang et  al. developed an ML model. Although the 
sample size was limited  (1056 sperm from six donors), 
their test had an accuracy of 0.827. However, without 
making any apparent distinctions between the physical 
characteristics, they divided the sample set into 
excellent and bad sperm. The small sample size and 
unclear distinction between good and bad sperms leave 
this study to be implored further.[13] In a recent study 
conducted by Yang et  al., the rates of pregnancy, early 
abortion, oocyte fertilisation and high‑quality embryos 
from IVF and ICSI cycles were compared between the 
low DFI  (DFI 15%) and medium DFI  (15 DFI groups. 
In the high, medium and low sperm, DFI groups after 
IUI, the clinical pregnancy rates were not statistically 
significant. However, these groups had statistically 
significant early abortion rates  [P  =  0.02]). They also 
found that sperm DFI was negatively associated with 
sperm density, vitality and normal morphology; It 
was positively correlated with age, abstinence time 
and unhealthy lifestyles.[15] Therefore, this does not 
support the study conducted by McCallum et  al. which 

determines the DFI of sperms using brightfield images 
of the raw sample.[9]

In our study, the multiclass dataset’s confusion matrix 
is shown in Figure  3. With respect to a recent study 
which claims to be the first to assess the intraclass 
agreement amongst testers of the SCD assay to 
evaluate DFI in men shows  >80% agreement with 
normal and high DFI categories, 60% intermediate 
DFI categories.[16] Our model shows agreement of 
90% of normal sperms and 81% of DEG sperms, 65 
and 66% of intermediate DFI, seen in the confusion 
matrix. The setback of the study is that only 400 
sperms were assessed from each recipient. Meanwhile, 
our model can assess million sperms and maintain the 
same accuracy.

On the other hand, our model misidentifies SH as MH 
31% of the time and MH as BH 29% of the time, 
reducing model accuracy. Although the multiclass data 
performed less well than expected when compared to 
the binary class dataset, we still regard it as a superior 
classification approach because it makes a clear 
distinction between the degree of sperm fragmentation, 
which can help us understand the DNA damage that is 
present in sperms.

The drawbacks of our study are that it did not assess 
the model’s accuracy using expert calculations and that 
it does not offer any information on the developmental 
status of the embryo that leads to a miscarriage or clinical 
pregnancy. As of now, there are no imaging or testing 
techniques to identify the sperm DNA fragmentation of 
live samples which will help in the selection of sperms 
with low DNA fragmentation during IVF or ICSI. The 
stained sperm sample used for the SCD test cannot be 
used for egg insemination. Our model only provides 
results for the samples that were tested and cannot be 
used to identify live sperm cells with minimal DNA 
fragmentation.

DFI plays a vital role in predicting clinical pregnancy. 
Our AI model offers insights to determine the best 

Figure 3: Classification of the image dataset



20 Journal of Human Reproductive Sciences  ¦  Volume 16  ¦  Issue 1  ¦  January-March 2023

Kumar, et al.: Determining DFI using AI

sperm selection process by giving accurate information 
of healthy and DEG sperms in a given sample, thereby 
attaining better clinical outcomes. A  confusion matrix 
clarified that the binary experimental data set performed 
better with our model. However, the multiclass approach 
can highlight the distribution of fragmented and 
non‑fragmented sperms. Our proposed ML model can 
aid in arriving at accurate results without the use of 

expensive software and reduce intra‑  and interobserver 
variability.
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