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Abstract

Degenerative aortic valve disease (DAVD) represents the most 
prevalent valvular ailment among the elderly population, which sig-
nificantly impacts their physical well-being and potentially poses a 
lethal risk. Currently, the underlying mechanisms of DAVD remain 
incompletely understood. While the progression of this disease has 
traditionally been attributed to degenerative processes associated with 
aging, numerous recent studies have revealed that heart valve calci-
fication may represent a response of valve tissue to a specific initiat-
ing factor, involving the interaction of various genes and signaling 
pathways. This calcification process is further influenced by a range 
of factors, including genetic predispositions, environmental expo-
sures, metabolic factors, and hemodynamic considerations. Based on 
the identification of its biomarkers, potential innovative therapeutic 
targets are proposed for the treatment of this complex condition. The 
present article primarily delves into the underlying pathophysiologi-
cal mechanisms and advancements in diagnostic and therapeutic mo-
dalities pertaining to this malady.
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Introduction

Degenerative aortic valve disease (DAVD) is a valvular heart 

disease prevalent in the elderly population that has superseded 
rheumatic valve disease as the principal clinical manifestation 
of heart valve disease [1]. The dysfunction of the aortic valve 
typically arises from degeneration, fibrosis, and calcification, 
and the progression of this condition ultimately culminates in 
aortic valve stenosis and incomplete closure [2], which is a 
significant factor contributing to decreased activity tolerance, 
heart failure (HF), arrhythmia, recurrent hospitalizations, and 
mortality among the elderly population [3]. The frequently 
encountered form of DAVD is calcific aortic valve disease 
(CAVD) in clinical practice, which is a progressive dystrophic 
calcification of the aortic valve that eventually advances to 
aortic stenosis (AS) [4]. In the past, this procedure was per-
ceived as a degenerative and senile-like mechanism due to 
the time-dependent attrition of the leaflets, leading to passive 
calcium deposition [5]. But immunohistological studies dating 
back to 30 years ago had demonstrated that the pathological 
mechanisms underlying aortic valve degeneration are simi-
lar to those active in the process of atherogenesis [6]. These 
similarities include the disruption of valve endothelial archi-
tecture, the localized infiltration of inflammatory cells, such as 
monocytes and T lymphocytes, the secretion of inflammatory 
cytokines, the proliferative activity of valve interstitial cells, 
the restructuring of the extracellular matrix, and the calcifica-
tion process [7, 8]. Up until now, the precise pathogenesis of 
DAVD has remained incompletely understood. It is known to 
be associated with genetic factors, environmental conditions, 
metabolic processes, and hemodynamic mechanisms. This re-
view aims to concentrate on the investigation of pathophysi-
ological mechanisms, ranging from the molecular basis to the 
clinical significance, and to provide comprehensive insights 
into the current status of the disease.

Epidemiology

In recent years, with the aging population, the incidence and 
related health burden of DAVD are increasing. From 1990 to 
2017, across 195 countries and territories, the number of dis-
ability-adjusted life years (DALYs) attributable to cardiovas-
cular, atherosclerotic, and related diseases (CAVD) increased 
by 101%. Moreover, the age-standardized rate of DALYs due 
to CAVD is observed to be highest in high-income nations [9]. 
In the 2021 global epidemiological survey on valvular heart 
disease, DAVD emerged as a prevailing worldwide concern, 
exhibiting notable regional disparities. Its impact remains 
substantial even in affluent regions like Oceania, Europe, and 
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North America [10]. A recent survey investigating the preva-
lence and causes of valvular heart disease in China examined 
31,499 individuals, among whom 1,309 were diagnosed with 
cardiac valvular disease. Of these cases, 21.3% were attributed 
to degenerative causes, with the incidence rising as the age of 
the subjects increased [11].

In the population over 80 years of age, this figure is ex-
pected to approximately double, reaching 8-10% [12]. Recent 
years’ data indicate that up to 13% of individuals aged 65 and 
older are affected by DAVD [13]. According to retrospective 
and prospective studies, the key risk factors for developing 
CAVD also include male gender (women have an increased 
risk after postmenopausal period) [14], hypertension (primar-
ily manifesting as elevated systolic blood pressure and pulse 
pressure) [15], hyperlipidemia (particularly elevated levels 
of plasma lipoprotein(a) (Lp(a)) and low-density lipoprotein 
(LDL) cholesterol) [16], diabetes and genetic history [17].

DAVD may result in a range of severe complications, 
including HF, arrhythmia (particularly atrial fibrillation) and 
valvular endocarditis, among others [18]. A previous study 
showed that the 5-year survival rate was less than 50% [19]. 
In particular, the trends in DAVD-related HF from 1990 to 
2019 and the forecast to 2030 in 20 countries, indicate that 
the prevention and treatment of DAVD-related HF remains an 
urgent and unaddressed global public health challenge. Variety 
countries must develop comprehensive health policies that pri-
oritize early screening, early prevention, and early treatment 
to effectively address the significant burden of DAVD-related 
HF [20].

Valvular anatomy

The aortic valve is composed of three semilunar leaflets: the 
left, right, and non-coronary. These leaflets are anchored to the 
aortic annulus and open during the heart’s contraction phase 
to permit blood flow from the left ventricle into the aorta. 
Conversely, they close when the heart relaxes to prevent the 
backflow of blood [21]. Degenerative alterations can cause 
the valve to stiffen and become calcified, resulting in valve 
dysfunction. At the cellular level, the normal cardiac valve 
consists of the valvular interstitial cells (VICs), valvular en-
dothelial cells (VECs) and extracellular matrix (ECM) [22]. 
In healthy valves, ECM is meticulously arranged into three 
distinct layers according to blood flow, including the fibrosa, 
ventricularis and spongiosa [23]. The fibrous membrane layer, 
situated proximally to the effluent surface, comprises densely 
packed type I and III collagen fibers, accountable for maintain-
ing the mechanical integrity [24]. Conversely, the ventricular 
layer, positioned on the opposing inflow surface, is abundant 
in elastin, effectively distributing the hydrodynamic pressure 
and ensuring flexibility and resilience within the cardiac cy-
cle [25]. Interposed between these two layers is the cavernosal 
layer, which exhibits a loosely organized central connective 
tissue enriched with proteoglycans (PGs) and glycosaminogly-
cans (GAGs) [26]. This arrangement facilitates the rearrange-
ment of collagen and elastic layers during the cardiac cycle, 
accommodating the relative movement of adjacent layers [5]. 

The VECs cover the surface of the heart valve in direct contact 
with the blood, serving as a physical barrier between the VICs 
and the hemodynamic environment, and have been shown to 
influence the behavior of the VIC, modulating its phenotype 
[27, 28]. VICs are distributed sporadically within the valve 
interior, serving as the essential cellular constituents of the 
valve leaflet [29]. They are also capable of secreting a diverse 
array of ECM components, such as collagen and elastic fib-
ers, thereby ensuring that the free collagen content within the 
valve remains at a relatively low level [30]. VICs possess the 
capability to transform into numerous phenotypic expressions, 
facilitating their adaptability to varying physiological envi-
ronments [31, 32]. The valve structure (Fig. 1) illustrates that 
DAVD originates from ECM remodeling, which is induced by 
VICs and VECs under pathological conditions.

Pathophysiological Mechanisms

Cellular and molecular mechanisms

The pathophysiology of DAVD encompasses a range of cellu-
lar and molecular alterations, which are evident in the degen-
eration of valve structure, calcification, and cellular apoptosis.

Degeneration and apoptosis of the heart valve cells

From Figure 1, which shows the main components of the aortic 
valve, VICs have the ability to maintain the structural integrity 
and function of the valve under normal physiological condi-
tions. However, in the event of alterations in valve homeo-
stasis, including lipid oxidative stress, mechanical stress, and 
inflammatory cytokines, cardiomyocytes initiate the activation 
of VICs, ultimately resulting in their transformation into acti-
vated VICs [33, 34]. In its normal state, upon completion of 
the repair function for damaged valve tissue, activated VICs 
transition to the static phase or undergo spontaneous apoptosis 
to preserve the homeostasis of the valve tissue [35]. However, 
in the event that the activator remains persistent, VICs will 
continue to undergo differentiation into myofibroblasts and 
osteoblast-like cells, which are primarily accountable for the 
progression of valvular fibrosis and calcification, respectively 
[36].

Studies have indicated that VICs can be stimulated by in-
flammatory mediators, leading to diminished proliferative ca-
pabilities in fibroblasts. Concurrently, it has been found that an 
elevated propensity for apoptosis accelerates the degenerative 
processes within the valve [37]. Prior studies have established 
that an imbalance in the expression of some inflammatory me-
diators, such as tumor necrosis factor-α (TNF-α) and interleu-
kin (IL) family, is potentially contributory to the development 
of DAVD [38]. TNF-α is an inflammatory factor secreted by 
numerous types of cells, including macrophages and T cells, 
and the existence of oxidized Lps within the valve promotes 
activated macrophages to express an increased amount of 
TNF-α [39]. TNF-α can activate signaling pathways such as 
cAMP/PKA to initiate calcification and promote valve fibrosis 



Articles © The authors   |   Journal compilation © Cardiol Res and Elmer Press Inc™   |   https://cr.elmerpub.com88

Advances in Mechanisms of DAVD Cardiol Res. 2025;16(2):86-101

[40]. The potential involvement of the MAPK/ERK cascade 
and TNF-α interaction in the differentiation of the osteogenic 
phenotype in VICs is also noteworthy [41]. There are two cy-
tokines in the IL family: one pro-inflammatory and one anti-in-
flammatory. IL-17 induces valvular endothelial inflammation 
and aggravates CAVD, while intracellular IL-37 exerts an an-
ti-inflammatory effect through a nucleus-targeting mechanism 
[42, 43]. Recently, Candellier et al showed that indoxyl-sulfate 
activation of the AhR-NF-κB pathway promotes IL-6 secretion 
and the subsequent osteogenic differentiation of human VICs 
from the aortic valve [44]. IL-18, via the NF-κB pathway, is 
capable of facilitating VICs differentiation and triggering the 
production of TNF-α. This process creates a positive feedback 
loop, leading to the sustained generation of inflammatory cy-
tokines and the exacerbation of osteogenic alterations. Ulti-
mately, these effects contribute to the advancement of DAVD 
progression [45]. In this case, proapoptotic factors (e.g., cy-
tochrome C and Bax) are upregulated, while the expression 
of anti-apoptotic factors (e.g., Bcl-2) decreases, leading to the 
activation of the apoptotic program and ultimately accelerating 
the degenerative changes of the valve [46].

Inflammatory factors not only stimulate apoptosis but 
also facilitate the breakdown of collagen, disrupting the main-
tenance of the ECM. This mechanism could result in struc-
tural alterations of the valve, potentially culminating in val-
vular dysfunction. The extensive remodeling of the ECM is 
accompanied by a series of cellular modifications throughout 
the process of DAVD [47]. This remodeling is characterized 
by the increased activity of various matrix metalloproteinases 

(MMPs), such as MMP-1 (fibroblast type collagenase), MMP-
3(stromelysin-1), MMP-9 (gelatinase B), and MMP-13 (colla-
genase-3) [48], and the production and dysregulation of cath-
epsins and other proteolytic enzymes, as well as alterations 
in collagen [49]. Yu et al had showed that thrombospondin 2 
expression was upregulated in CAVD and positively corre-
lated with ECM-related (MMP-2 and MMP-13) factors in the 
process of osteogenic differentiation [50]. As MMPs promote 
valve remodeling and calcium in CAVD, studies with more 
potent and specific inhibitors are needed to establish any po-
tential role of MMP inhibition in CAVD treatment [51].

The biological mechanism of the valve calcification

Valve calcification represents a crucial characteristic of 
DAVD, involving intricate biological processes primarily cen-
tered on the transformation of valvular cells. The osteogenic 
potential of endothelial-mesenchymal transition (EndMT) has 
been proposed as a mechanism underlying DAVD, primarily 
through the interaction and transformation of VECs and VICs 
[52]. EndMT plays an important pathophysiological role in the 
development of the embryonic cardiovascular system, cardiac 
fibrosis, atherosclerosis, and pulmonary hypertension [53-55]. 
The role of EndMT in adult valves remains enigmatic, yet it 
is believed to be a reaction to mechanical and biochemical 
stimuli that result in the remodeling of the underlying tissue 
[26]. Certain transcriptional factors (TFs) that have been im-
plicated in the pivotal role of EndMT during valvular develop-

Figure 1. Anatomy of the normal human aortic valve. VICs: valvular interstitial cells; VECs: valvular endothelial cells.
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ment may likewise become activated in the context of DAVD, 
potentially exerting pathological functions through the media-
tion of EndoMT [56]. In recent study, dual-specificity phos-
phatase 1 (DUSP1) potentially exerts a safeguarding function 
against the valve in inflammatory responses and mechanical 
stress, and pyruvate dehydrogenase kinase-4 (PDK-4) holds a 
pivotal position in regulating metabolic processes, EndMT and 
osteogenic transformation, presenting novel targets for future 
interventional strategies focused on EndMT.

During the development of DAVD, valve cells display re-
markable characteristics of a bone-like transformation. VICs 
trigger the expression of genes associated with bone forma-
tion within a pathogenic setting, such as osteocalcin and bone 
sialoprotein (BSP) [57]. Osteocalcin serves as a distinctive in-
dicator of cellular osteogenic transformation, playing a crucial 
role in bone formation and calcium metabolism [58]. The ex-
pression of BSP increases during the process of calcification, 
facilitating the deposition of calcium salts and augmenting 
calcium accumulation within the valve [59]. Proinflammatory 
factors play an important role in the regulation of the bone-like 
transition of VICs, especially the transforming growth factor β 
(TGF-β) and certain fatty acids. The TGF-β signaling pathway 
induces bone-like phenotypic alterations in VICs, triggering 
the expression of genes like osteocalcin and hastening the de-
velopment of calcified nodules [60]. The synergistic effect of 
sphingosine 1-phosphate and lipopolysaccharide (LPS) signal-
ing enhances angiogenesis and osteogenic responses in VICs 
[61]. Certain saturated fatty acids can induce the production 
of proinflammatory factors by VICs, such as TNF-α and IL-6, 
promoting the development of valve calcification through bone 
morphogenetic protein (BMP), Notch, Wnt/β-catenin, and NF-
κB [39, 62]. Calcium deposition and alterations in membrane 
structure can lead not only to suboptimal valve coupling but 
may also result in valve stenosis and degeneration. These con-
ditions can ultimately impair the heart’s pumping function and 
systemic blood flow dynamics.

Genes and the signaling pathways

The core feature of DAVD disease is the calcification of the 
valves, this process involves the complex regulation of multi-
ple genes and signaling pathways. Several important genes and 
signaling pathways are proposed here.

Changes in expression of the associated genes

In recent years, more and more studies have shown that mi-
croRNA (miRNA) and long non-coding RNA (lncRNA) in 
non-coding RNA are closely related to DAVD, via promot-
ing osteogenesis and calcification by targeting many genes 
[63, 64]. For example, Zheng et al [65] successfully identi-
fied the differentially expressed circular RNAs (circRNAs), 
lncRNAs, miRNAs, and mRNAs in CAVD, and subsequently 
established a comprehensive circRNA/lncRNA-miRNA-mR-
NA interaction network. Following rigorous verification us-
ing independent data sets and quantitative reverse transcrip-

tion polymerase chain reaction (qRT-PCR) techniques, a final 
network encompassing hsa-circ-0073813/hsa-circ-0027587, 
hsa-miR-525-5p, and SPP1/HMOX1/CD28 was firmly es-
tablished [65].

MiRNAs constitute a distinct class of short non-coding 
RNAs, approximately 22 nucleotides in length, which exert 
crucial functions in the post-transcriptional regulation of 
gene expression, involving in the occurrence and develop-
ment of various cell biological processes, such as apoptosis, 
angiogenesis, inflammation, and ischemic preconditioning 
[66-69]. Genetic testing found that miRNA was differentially 
expressed in normal and calcified valves, which could pro-
mote or inhibit the differentiation of VICs to osteogenic-like 
phenotype and regulate the progression of DAVD [70]. It has 
been demonstrated that in DAVD, myocardial fibrosis (MF) 
is associated with regional and global strain alterations. Plas-
matic miRNA-21 has been found to be directly related to MF 
and associated with left atrium (LA) structural and functional 
impairment. And miRNA-21 is a biomarker associated with 
MF in pressure overload. Study had found a comprehensive 
algorithm for detection of MF using a combinatorial ap-
proach of biological and functional markers [71]. The miR-
125b is a potential regulator of the chemokine CCL4 in mac-
rophages, and both exhibit upregulation in DAVD [72]. The 
direct target of miR-138 is FOXC1, and it has been observed 
that the overexpression of FOXC1 facilitates the osteogenic 
differentiation of VICs. Consequently, miR-138 impedes aor-
tic valve calcification (AVC) by suppressing the osteogenic 
differentiation of VICs, indicating a potential focal point for 
targeted therapeutic intervention [73]. Low expression levels 
of miR-214 can eliminate the transcription factors Sp7 and 
ATF4, which inhibit osteogenesis, leading to increased ex-
pression of downstream genes such as CHOP and BCL2L1, 
and promoting the development of DAVD [74]. miR-222 not 
only plays a role in regulating calcification but is also inde-
pendently associated with atrial fibrillation (AF) in patients 
with DVHD [75]. The activation of miR-486 within the ser-
ine/threonine protein kinase signaling pathway leads to an 
upregulation of α-smooth muscle actin (α-SMA) expression 
and concurrent downregulation of Smurf2 expression, result-
ing in the downregulation of miR-204 levels, ultimately fa-
cilitating accelerated valve calcification [76]. The miR-195 
and miR-582 exert inhibitory effects on the expression of en-
dothelial nitric oxide synthase (eNOS), thereby regulating the 
release of nitric oxide (NO) through post-transcriptional tar-
geting of nitric oxide synthase 3 (NOS3) [77]. Consequently, 
this regulatory mechanism suppresses the calcification pro-
cess mediated by VICs, offering insights into the intricate 
regulatory mechanisms that govern endothelial function and 
vascular homeostasis [78].

LncRNA also plays a significant role in the calcifica-
tion process. LncRNA is a non-coding RNA of more than 
200 nucleotide units in length, involved in vascular aging 
and calcification by interacting with miRNA or directly bind-
ing to proteins, and may have a regulatory role in the patho-
genesis of DAVD [79]. Based on target gene prediction and 
co-expression network construction, 12 lncRNAs (CDKN2B-
AS1, AC244453.2, APCDD1L-DT, SLC12A5-AS1, TGFB3, 
AC243829.4, MIR4435-2HG, FAM225A, BHLHE40-AS1, 
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LINC01614, AL356417.2, LINC01150) were identified as 
the hub cis- or trans-regulatory genes in the pathogenesis of 
DAVD [80]. LncRNA MALAT1 exhibits regulatory effects on 
the proliferation and calcification of VICs, exacerbating calci-
fied aortic valve in conjunction with miR-195 [81]. The find-
ings indicate that the lncRNA AFAP1-AS1 is crucial for facili-
tating the M1 polarization of macrophages and the osteogenic 
differentiation of VICs through the modulation of the miR-
155/SMAD5 axis [81, 82]. The lncRNA OIP5-AS1 exerts its 
regulatory function by upregulating the miR-137 target gene 
TWIST1, alleviating the osteogenic differentiation of VICs and 
shedding light on the therapy for DAVD [83].

The Runt-related transcription factor (Runx2) is a pivotal 
regulator of osteogenesis and calcification. Elevated expres-
sion of Runx2 is linked to the bone-like transformation of 
VICs. In conjunction with the involvement of miRNAs and 
lncRNAs, it establishes the foundation for the development 
of calcification. Overexpression of Runx2 may cause osteo-
genic differentiation in DAVD patients on inhibiting miR-138 
by regulating the effect of Wnt/β-catenin signaling [73]. The 
regulation of miR-30b on the expression of Runx2, Smad1, 
and caspase-3 has elucidated its function in modulating the 
calcification process of human aortic VICs under in vitro con-
ditions [84]. LncRNA MALAT1 attenuated the inhibitory ef-
fect of Runx 2 and Smad 4, and enhanced the calcification-
inducing factor TGF-β1 by sponging miR-204, leading to the 
accelerated transformation of VICs to osteogenic phenotype 
[82]. LncRNA H19 upregulates p38 and p65, which are piv-
otal components of the MAPK and NF-κB signaling pathways, 
respectively, enhances the expression of Runx 2 and BMP-2 
within VICs, and suppresses the transcription of Notch1, fa-
cilitating the osteogenic differentiation of VICs [85].

The role of the important signaling pathways

Notch1 serves as a crucial protein within the Notch signaling 
pathway, playing a pivotal role in diverse biological processes 
of cardiomyocyte, such as cell proliferation, differentiation, 
and apoptosis [86]. In DAVD, Notch signaling modulates the 
behavior of VICs, encompassing proliferation, migration, and 
osteogenic differentiation [87]. In a past study, intercellular ad-
hesion molecule-1 (ICAM-1) and its ligand LFA-1 stimulated 
the activation of Notch1, leading to the upregulation of BMP-
2/4 expression. This process triggered the activation of the 
nuclear transcription factor NF-κB and the MAPK/ERK (1/2) 
cascade, ultimately resulting in enhanced alkaline phosphatase 
activity and the formation of calcification nodules [88]. Bac-
terial LPS or peptidoglycan (PG) triggers the engagement of 
Notch1 protein with its cognate ligand, resulting in the forma-
tion of NIC and the activation of numerous cellular signaling 
cascades pertinent to inflammation and calcification, including 
NF-κB, ERK 1/2, and JAK-STAT [89, 90].

TGF-β signaling pathway plays a pivotal role in tissue 
remodeling and healing, and it also exerts a substantial influ-
ence on cellular activities in the context of cardiovascular dis-
eases [91]. The TGF-β family comprises three distinct types: 
TGF-β1, TGF-β2, and TGF-β3, and TGF-β1 is the most ex-

tensively researched subtype. Stimulation of TGF-β1 induced 
VICs to display osteogenic-like characteristics, along with 
the upregulation of osteogenic genes including Runx2 and 
Osterix, and a positive correlation with the accumulation of 
phosphorylated Smad3 in the nucleus [92]. In DAVD, TGF-β1 
not only enhances collagen production by VICs but also fos-
ters the equilibrium between MMPs and their inhibitors, tis-
sue inhibitors of metalloproteinases (TIMPs), influencing the 
progression of calcification [93]. The expression of ALP and 
genes associated with osteogenesis, including osteocalcin, was 
markedly elevated in VICs exposed to high levels of TGF-β1, 
indicating an augmentation in calcification deposition [94]. 
Association of TGF-β1 with inflammatory factors (such as 
IL-6 and TNF-α) exacerbated the calcification of VICs, and 
inhibition of the activity of these adenylate acylases signifi-
cantly reduced the degree of calcification [95].

Furthermore, the Wnt/β-catenin signaling pathway fosters 
an osteogenic transformation in VICs, resulting in the accu-
mulation of calcium salts and exacerbating the calcification 
process. When Wnt proteins interact with receptors on the cell 
membrane, they trigger signal transduction and inhibit GSK3β 
activity. This leads to the accumulation of β-catenin in the 
cytoplasm and its subsequent translocation into the nucleus. 
Within the nucleus, β-catenin binds to transcription factors, 
activating the expression of numerous genes associated with 
osteogenesis (Runx2, Osterix and ALP) [96]. The NF-κB sign-
aling pathway is primarily linked to inflammatory responses 
and immune regulation. When NF-κB is activated, it triggers 
the release of proinflammatory factors, which subsequently 
amplify the calcification capabilities of VICs [97]. Therefore, 
inhibiting NF-κB can diminish the extent of calcification, 
underscoring its pivotal role in the calcification process. The 
MAPK signaling pathway is characterized by the activation 
of p38 MAPK and ERK, which correlates with the osteogenic 
transformation and calcification of VICs [98]. At the same 
time, ERK1/2 inhibition-reduced expression of ALP, BMP-2 
and Runx2 by activating DKK1 and LRP6 expression could 
reduce calcification [99].

Other influencing factors

Genetic predisposition

The development of DAVD exhibits a prominent hereditary as-
pect, evidenced by the clustering of patients afflicted with the 
condition across multiple generations within extended fami-
lies in Western France [100]. According to available data, indi-
viduals who are siblings of AS patients possess a significantly 
increased risk of developing AS, exceeding four times that of 
the general population [101]. In addition to family aggrega-
tion, there are genetic polymorphisms, such as certain single-
nucleotide polymorphisms (SNPs) in the BMP-2 and BMP-4 
genes that are significantly associated with AVC [102]. These 
findings underscore the significant role of genetics in deter-
mining risk, and the potential for identifying genetic markers 
to offer innovative approaches for therapeutic strategies and 
enhanced risk assessment.
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Metabolism

In the process of DAVD, metabolic disorders pertaining to li-
pids, glycolipids, calcium, and phosphorus all play a crucial 
role in the thickening and calcification of cardiac valves. Com-
mon metabolic disorders encompass hyperlipidemia, diabetes, 
and chronic renal insufficiency, which impact valve structure 
and function via various mechanisms.

Within calcified valve tissue, the presence of inflamma-
tory cell infiltration, lipid deposition, and the formation of 
foam cells can be observed. This morphological evidence 
indicates a potential involvement of hyperlipidemia in the 
pathological processes leading to aortic valve degeneration 
[103]. Fibroblasts exposed to oxidized LDL (OxLDL) are 
able to release stromal vesicles and osteocyte-associated pro-
teins that constitute the core of calcification [104]. Down-
regulation of Sestrin2 (Sesn2) in the Nrf 2 pathway increases 
the VICs’ osteogenic differentiation induced by OxLDL, 
regulating the oxidative stress involved in the development 
of DAVD [105]. The catabolism of oxidized phospholipid 
(OxPL) into lysophosphatidylcholine (LPC) and free fatty 
acids triggers activation of the cAMP/PKA signaling cas-
cade, ultimately leading to the transition of VICs into an 
osteogenic-like phenotype [106]. Lp is the main carrier of 
OxPL, which is considered to a major contributor to CAVD 
[107]. Some scholars believe that the combination of the two 
can predict the risk of AVC in patients with AS [104]. The 
core protein particle structure of Lp(a) is similar to that of 
LDL. Since LDL functions as the primary transporter of cho-
lesterol, lowering LDL levels is central to cholesterol-lower-
ing therapy, thereby alleviating valve calcification [108]. In 
recent years, due to the limited effectiveness of increasing 
statin doses in reducing LDL and the significantly higher side 
effects associated with such increases, the possibility of fur-
ther lipid lowering through high-dose statins has been limited 
[109]. Cardiologists are beginning to explore new strategies, 
such as ezetimibe and PCSK9 inhibitors, which can effec-
tively attenuate the progression of mild-to-moderate CAVD 
in patients by decreasing the concentrations of Lp (a) and 
LDL [110]. In a secondary analysis from a prospective ran-
domized clinical trial, treatment with simvastatin/ezetimibe 
combination reduced the need for aortic valve replacement 
in a subset of patients with mild AS and high pretreatment 
LDL levels [106]. Proprotein convertase subtilisin/kexin type 
9 (PCSK9), a circulating plasma protein that is mainly pro-
duced and secreted by the liver, can promote the lysosomal 
degradation of LDL-R, leading to elevated LDL levels, and 
PCSK9 inhibitors can lower lipid [111]. Compared with high-
intensity statin monotherapy, the combination of statin treat-
ment with ezetimibe or PCSK9 monoclonal antibodies can 
reduce LDL to 0.8 to 1.4 mmol/L, further decreasing the risk 
of cardiovascular death, myocardial infarction, and stroke in 
patients with CAVD [112, 113]. Recent studies have shown 
that PCSK9 monoclonal antibodies can reduce Lp(a) levels 
while also lowering LDL, offering a greater cardiovascular 
protective effect in patients with higher baseline Lp(a) levels. 
Currently, new small nucleic acid drugs targeting Lp(a) are 
in the development stage, and clinical trials of these drugs 

are designed to evaluate their efficacy and safety in reducing 
Lp(a) levels [114-117].

The impaired insulin sensitivity in patients with type 2 
diabetes mellitus is an important trigger for the degenerative 
process of the cardiovascular system [118]. Retrospective and 
prospective clinical studies have shown an association between 
diabetes and an increased risk of severe AS [29, 119]. An envi-
ronment with high glucose levels can intensify oxidative stress 
in VICs, exacerbate inflammatory responses, and further lead 
to the degeneration and calcium deposition of the extracellu-
lar matrix. In a study, metformin has demonstrated the ability 
to alleviate calcification and apoptosis in aortic VICs, thereby 
presenting a promising therapeutic option for future patients 
[120]. Advanced glycation end-products (AGEs) are the focus 
of the current study. Poorly controlled diabetes leads to in-
creased AGEs accumulation in valve, which at least partially, 
might result in AS progression in diabetes patients [121]. Thus, 
trying to reduce the accumulation of AGEs in patients with 
type 2 diabetes may reduce the severity of AS.

An elevated risk cardiovascular calcification is associated 
with the existence of chronic kidney disease (CKD) [122]. 
Certain studies have revealed that individuals suffering from 
DHVD exhibit elevated levels of blood phosphorus, as well 
as elevated blood calcium phosphorus products. These find-
ings suggest a potential association between this disease and 
aberrant calcium and phosphorus metabolism. A statistically 
significant correlation was observed between blood phospho-
rus levels and the occurrence of AVC, indicating a potential 
association between phosphorus metabolites in the blood and 
the development of AVC [123]. Serum alkaline phosphatase 
levels, which play a crucial role in calcium and phosphorus 
metabolism, serve as an independent biomarker for AVC in-
cidence and potentially possess the capacity to serve as a pre-
dictor of AVC risk factors [124]. Consistently strict phosphate 
control may slow the progression of coronary and valvular 
calcifications in patients undergoing hemodialysis [41]. But a 
latest study showed that the use of vitamin D receptor acti-
vators does not reduce the risks of cardiovascular events or 
all-cause mortality in patients on dialysis with well-controlled 
secondary hyperparathyroidism [125]. Consequently, ongoing 
research and exploration are essential to significantly mitigate 
valve calcification in patients undergoing dialysis.

Moreover, increasing evidence suggests that DAVD 
could be described as a specific phenotype of heart failure 
with preserved ejection fraction (HFpEF) [126]. DAVD 
with preserved ejection fraction and HFpEF display intrigu-
ing similarities, especially the inflammatory-metabolic phe-
notype of the disease is one of the most cardiovascular risk 
factors, through regulating the inflammatory and atherogenic 
balance at a local and systemic level by epicardial adipose 
tissue (EAT) [127, 128]. EAT produces large quantities of 
anti-inflammatory and pro-inflammatory adipokines through 
paracrine and vascular secretion, influencing the balance of 
glucose and lipid metabolism, inflammation and atherogenic 
factors at both local and systemic levels [129]. Excessive EAT 
accumulation is associated with hemodynamic disturbances 
and impaired peripheral oxygen uptake, increasing the risk of 
major adverse cardiovascular events [130]. The direct asso-
ciation of EAT thickness with more pronounced valve calcifi-
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cations further supports the relationship between EAT and the 
severity of DAVD [131].

Hemodynamics and shear stress

With the advancement of DAVD, leaflet flexibility decreased, 
leading to a significant increase in transaortic jet velocity and 
hemodynamic impediment. Subsequently, a pressure gradi-
ent arises between the LV and the aorta [132]. These localized 
hemodynamic abnormalities, in turn, can exacerbate the pro-
gression of the disease, thus constituting a positive feedback 
mechanism in biological effects [133]. DAVD is distinguished 
by the presence of pulsatile shear stress on the ventricular as-
pect, coupled with low and alternating shear stress on the aor-
tic aspect [134]. Animal model studies have revealed that the 
application in shear stress is capable of activating the latent 
TGF-β1, thereby triggering the processes of fibrosis and cal-
cification [135]. Mechanosensitive ion channel Piezol senses 
shear stress and in turn affects multiple signaling pathways 
such as BMP/TGFP signaling in aortic valve interstitial cells, 
leading to changes in cell function and phenotype, gene ex-
pression and cell behaviors such as proliferation, migration, 
apoptosis and remodeling, which subsequently lead to CAVD 
[136]. An investigation pertaining to the mechanosensitive pro-
teins in valvular cells revealed that the expression levels of CC 
chemokine ligands, thrombospondin, growth factors, and IL 
tend to counteract the action of mechanical forces [137]. Aortic 
valve local turbulent shear can also change and activate several 
different signal pathways associated with valve calcification 
stenosis. This leads to the change of the cell cycle, resulting 
in the release of nitric oxide and prostacyclin, increased oxida-
tive stress response, Lp deposition in the valve of interstitium, 
inflammatory cells and vascular smooth muscle cell migration, 
differentiation and hyperplasia, and neoangiogenesis [138]. 
The role of neoangiogenesis in the development of aortic valve 
stenosis suggests a potential therapeutic approach in a domain 
devoid of established effective medical treatments [139].

The bicuspid aortic valve (BAV) malformation is a structure 
that results from the partial fusion of three aortic leaflets, lead-
ing to a valve disease characterized by the presence of only two 
leaflets instead of the normal three [140]. BAV malformation 
is the most common congenital heart disease. It is an autoso-
mal dominant condition caused by mutations in chromosomes 
18q, 5q, and 13q, with a low population incidence of 1% [141]. 
It is often accompanied by valve stenosis resulting from dys-
trophic calcification and progressive dilation of the ascending 
aorta [142]. Common structural features include variable sizes 
of leaflets, junction fusion of the leaflets, and irregular morphol-
ogy. Since the patient’s open valve area is reduced and the size 
of the leaflets varies, this blocks the flow from the left ventricle 
into the aorta, causes uneven blood flow distribution, increases 
flow velocity, and leads to left ventricular hypertrophy. The un-
stable hemodynamic states produce abnormal shear stress [143, 
144], which continuously affects the aortic valve tissue. Over 
time, the leaflets not only gradually thicken but also exhibit cal-
cification, accompanied by fibrosis and other adverse changes. 
Ultimately, these alterations can severely impair the heart’s nor-
mal systolic and diastolic functions [145].

Clinical Status

Diagnosis

Imaging examination plays a crucial role in the diagnosis and 
evaluation of DAVD. Echocardiography serves as a frequently 
utilized diagnostic tool for degenerative heart valve disease in 
the elderly population, affording precise and comprehensive 
insights into the nature of the lesions [146]. As the gold stand-
ard for valvular heart disease, echocardiography not only eval-
uates the valve morphology and function, but also allows for 
the quantitative analysis of the degree of valve stenosis. It was 
observed that the primary pathological alterations observed 
in DAVD by echocardiography encompass degeneration of 
the valvular connective tissue, augmentation in leaflet thick-
ness, calcification, and the development of fibrosis. By further 
measuring the aortic valve orifice area, maximum flow rate, 
and mean pressure difference, the physician can determine the 
severity of the aortic valve degeneration [147]. The diagnostic 
criteria of echocardiography in valvular heart disease adhere 
strictly to the guidelines issued jointly by the European As-
sociation of Cardiovascular Imaging and the American Soci-
ety of Echocardiography [148]. Furthermore, transesophageal 
echocardiography offers superior clarity in visualizing struc-
tural details, making it ideal for assessing the anatomy in the 
vicinity of the valve [149]. Since more and more patients with 
DAVD are asymptomatic at rest, the role of stress echocardi-
ography in the diagnostic workup of DAVD becomes more and 
more important, which can unveil many relevant hemodynam-
ic and clinical abnormalities [150]. In certain instances, par-
ticularly when dealing with complex cases, computed tomog-
raphy (CT) and nuclear magnetic resonance imaging (MRI) 
can also be employed to further assess the anatomical structure 
and function of the valve [151].

Recently, the application of biomarkers has introduced 
innovative methods for diagnosing DAVD. In particular, pro-
teins associated with heart structure, such as B-type natriuretic 
peptide (BNP) and its N-terminal precursors (NT-proBNP), 
are elevated in cases of HF and help physicians assess the car-
diac function status of patients [152]. Research has indicated 
that the concentrations of BNP and NT-proBNP are markedly 
correlated with the severity of AS [153]. Moreover, biochemi-
cal markers associated with MF (markers of collagen metabo-
lism, galectin-3, soluble ST2) and myocyte death/myocardial 
ischemia (high-sensitivity cardiac troponins, heart-type fatty 
acid binding protein, myosin-binding protein C) may be future 
directions of diagnosing biomarkers [154]. Previous studies 
put forward additional potential biomarkers, including pro-
teins associated with calcification and inflammatory factors, 
etc. [155, 156].

Treatment progress

Since the drug has no reversal effect on the structural lesions 
of the aortic valve, patients with DAVD may eventually re-
quire surgical intervention. As the sole radical treatment for 
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DAVD, surgical interventions encompass primarily valvuloplas-
ty and valve replacement procedures (Fig. 2) [156]. Presently, 
a minimally invasive transcatheter aortic valve replacement 
(TAVR) has emerged as a successful treatment option for severe 
AS in elderly patients who are unable to endure major surgery 
[157]. Studies showed comparable safety and efficacy of TAVR 
in short-term and long-term outcomes compared to traditional 
surgical procedures, which provides opportunities of surgical in-
tervention to numerous high-risk patients, markedly enhancing 
their survival rates and quality of life [158]. Especially, TAVR 
is effective and safe for patients with severe AS, offering results 
comparable to those of early surgical intervention [159]. Over 
the past two decades, TAVR has been found to have several 
limitations. Consequently, there has been a rise in the number of 
aortic transcatheter heart valves available on the market, aimed 
at reducing or eliminating adverse outcomes such as paravalvu-
lar leakage and conduction barriers that may require permanent 
pacemaker implantation. These valves are also designed for the 
long-term durability of biological valves [160]. There were no 
apparent differences in procedure-related adverse events be-
tween patients in the TAVR group and those in the clinical sur-
veillance group who underwent aortic-valve replacement [161].

With a deeper understanding of the pathogenesis of 
DAVD, biomarkers possessing specificity are considered po-
tential therapeutic targets. Goody et al authored an outstanding 
review that succinctly summarized the latest therapeutic strate-
gies proposed for AVC, based on the underlying pathological 
mechanisms [162]. Di Fusco et al also explored whether medi-

cations can prevent or decelerate the progression of DAVD by 
inhibiting its primary pathophysiological mechanisms [163]. 
Researchers are investigating cutting-edge approaches, includ-
ing gene therapy and stem cell therapy, to explore the potential 
for repairing and regenerating a valve that has already under-
gone degeneration. A meta-analysis of genome-wide associa-
tion studies (GWAS) aimed at identifying specific genes [164], 
or tissue-engineered heart valves (TEHVs) that leverage the 
multidirectional differentiation potential of stem cells [165], 
both seek to promote the regeneration of valve cells and slow 
down the disease process.

Future research direction

Future research of DAVD in the field of pathophysiological 
mechanisms should be aimed to enhance diagnosis, treatment, 
patient outcomes and medical resource utilization [166, 167]. 
The emphasis lies in gaining a profound comprehension of the 
pathophysiological mechanisms, anatomical structures, and 
the driving force of the microenvironment, identifying phar-
macological interventions aimed at preventing or decelerating 
the advancement of AS [168, 169]. To enhance the precision 
of early diagnosis, it is imperative in the future to advance the 
development of innovative imaging technologies and refine 
multimodality cardiovascular imaging [170]. Emerging tech-
nologies, including optical coherence tomography (OCT) and 
three-dimensional imaging, have the capability to offer more de-
tailed insights into valve structure and function [171, 172]. Fur-
thermore, the application of genomics and proteomics can also 
uncover potential biomarkers, facilitating early identification 
and enabling individualized treatment [173, 174]. There have 
been studies utilizing clustered regularly interspaced short pal-
indromic repeats (CRISPR)/Cas9-engineered isogenic induced 
pluripotent stem cells for hypertrophic cardiomyopathy. Future 
research may also investigate the application of techniques like 
CRISPR to directly repair defective genes in DAVD [175, 176].

Conclusions

This review has primarily concentrated on the extant evidence 
pertaining to the fundamental mechanisms responsible for 
aortic valve degeneration. The precise mechanisms underly-
ing degenerative heart valvular disease remain enigmatic, 
and the advancement of novel pharmacological interventions 
or prophylactic measures for this disease necessitates a more 
profound comprehension of its pathogenic processes. Compre-
hensive understanding can identify and develop targeted thera-
peutic strategies and effectively mitigate the adverse outcomes 
of this disease. In summary, this review encompasses patho-
physiological mechanisms of DADV identified in recent years, 
indicating the existence of promising therapeutic methods.
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