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Background: Coronavirus disease 2019 (COVID-19) has caused a large-scale global epidemic, impacting
international politics and the economy. At present, there is no particularly effective medicine and treatment
plan. Therefore, it is urgent and significant to find new technologies to diagnose early, isolate early, and treat
early. Multimodal data drove artificial intelligence (AI) can potentially be the option. During the COVID-19
Pandemic, Al provided cutting-edge applications in disease, medicine, treatment, and target recognition.
This paper reviewed the literature on the intersection of Al and medicine to analyze and compare different
AT model applications in the COVID-19 Pandemic, evaluate their effectiveness, show their advantages and
differences, and introduce the main models and their characteristics.

Methods: We searched PubMed, arXiv, medRxiv, and Google Scholar through February 2020 to identify
studies on Al applications in the medical areas for the COVID-19 Pandemic.

Results: We summarize the main Al applications in six areas: (I) epidemiology, (II) diagnosis, (III)
progression, (IV) treatment, (V) psychological health impact, and (VI) data security. The ongoing
development in Al has significantly improved prediction, contact tracing, screening, diagnosis, treatment,
medication, and vaccine development for the COVID-19 Pandemic and reducing human intervention in
medical practice.

Discussion: This paper provides strong advice for using Al-based auxiliary tools for related applications
of human diseases. We also discuss the clinicians’ role in the further development of Al. They and Al
researchers can integrate Al technology with current clinical processes and information systems into

applications. In the future, Al personnel and medical workers will further cooperate closely.
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Introduction

The coronavirus disease 2019 (COVID-19) pandemic has
caused extreme strains on health systems, public health
infrastructure, and many countries’ economies. It was caused
by the new severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) (1,2). When talking, coughing, or sneezing,
droplets sprayed from the COVID-19 patients were the
most common coronavirus transmission mode. Surface
contact transmission (touching an object’s surface with the
virus) was another possible mode (3). The clinical symptoms
of COVID-19 patients are fever, cough, shortness of breath,
chills, trembling, muscle pain, headache, sore throat, loss
of taste or smell, etc. Severe patients often develop dyspnea
or hypoxemia 1 week after the onset. In severe cases, they
rapidly progress to acute respiratory distress syndrome
(ARDS), septic shock, metabolic acidosis, coagulation
dysfunction, and multiple organ failure (4,5).

Globally, as of March 2021, there have been 119,220,681
confirmed cases of COVID-19, including 2,642,826 deaths,
reported to the World Health Organization. The number of
affected countries, areas, or territories was 223. More than
billions of people were staying home to avoid SARS-CoV-2.
At the same time, a large number of problems emerged (6).
For example, the number of hospital beds and doctors was
scarce. Protective equipment was lacking, and there were
no specific drugs. How to disinfect to protect medical staff
was also essential. Most countries have implemented a
variety of infection control measures, and hospitals have
adopted various treatment options. It is currently difficult
to determine which steps and programs are better. Since
there is no effective treatment, the best way to deal with
the SARS-CoV-2 infection is to control the source of
infection, diagnose, report, isolate, support treatment, and
release epidemic information in time to avoid unnecessary
panic. There is an urgent need to explore a high-efficient
way to assist human experts in overcoming the COVID-19
Pandemic. Multimodal data drove artificial intelligence (AI)
could potentially be the option.

Al technology is gradually moving out of the laboratory
toward clinical and public health applications in recent
years, such as early warning of epidemics and intelligent
analysis of extensive medical data. In fighting on the
COVID-19, Al had dramatically improved our diagnosis,
prediction, and treatment level (7-9). Al could analyze the
epidemiological characteristics, clinical characteristics, and
treatment effects of COVID-19 through extensive data
of clinical cases. Al was also used for quantitative digital
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analysis of medical images and guide diagnosis. It solidified
the expert’s knowledge system into the model. As the
number of learning samples increased, the accuracy of the
analysis increased. So, it could guide the identification and
treatment of the COVID-19 patients. Scientists had made
various new COVID-19 prediction models based on big
data, providing an essential basis for policy formulation.
Through the big data of the COVID-19 patients, many
countries have known about the incubation period and
clinical characteristics. This article provides more details for
Al applying in human diseases.

We present the following article in accordance with the
PRISMA reporting checklist (available at https://dx.doi.
org/10.21037/jtd-21-747).

Methods

We searched PubMed, arXiv, medRxiv, and Google
Scholar through February 2020 to identify studies on
AT applications in the medical areas for the COVID-19
Pandemic. We used the following search terms: [(“artificial
intelligence” OR “AI”) OR (“machine learning” OR “ML”)
OR (“deep learning” OR “DL”)] AND (“covid-19” OR
“sars-cov-2" OR “Coronavirus” OR “pandemic”) (Table SI).
The initial literature search identified 144,735 articles.
After removal of duplicates, an initial screen was conducted
to ensure that articles were related to Al applications for
the COVID-19 Pandemic in the following six medical
areas: (I) epidemiology, (II) diagnosis, (III) progression,
(IV) treatment, (V) psychological health impact, and (VI)
data security. The title of each article was reviewed for
topic relevance, and the abstract was reviewed for further
clarification as necessary. Eighty-two articles were finally
included in this narrative review.

Applications of Al in COVID-19 epidemiology

At the beginning of the Pandemic, the governments and
people’s concerns are concentrated in the following areas:
the duration and peak of the COVID-19 Pandemic,
the number of infected people, the related influencing
factors, and the measurement to reduce infection, etc.
A community of applied mathematicians, virologists,
epidemiologists, and Al researchers did many works to help
the governments making suitable policies in the fighting
(2,3,8,9). This section focuses on Al applications in different
epidemiological areas, such as establishing models to
predict the COVID-19 spread and evaluating the severity,
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identifying and tracing the infection case to control the
infectious rate, and studying the related influencing factors
to prevent the spread (Table 1).

COVID-19 spread prediction and the severity evaluation

The epidemic spread model of infectious diseases is a
traditional epidemiological and mathematical problem
with crucial practical value. The susceptible-infectious-
recovered (SIR) disease model uses the infection data
of the disease itself (including the existing confirmed
cases, mortality, and the route of infection) to predict the
infection speed of a disease in a short time in a particular
area (19). The rapid development of Al technology and
big data has brought new changes to these traditional
infectious disease models. By analyzing unstructured data
(such as social media, transportation, news, government
statements, etc.), Al can combine these data with traditional
infectious disease data to achieve the role of predicting
and monitoring large-scale contagious diseases. Dandekar
et al. (20) encoded the quarantine policy as a vital function
in the optimized neural network-augmented SIR model
to indicate the outbreak size in Wuhan, China. This
model made up for the traditional SIR model’s inability
to discover the effects of more granular interactions such
as social distancing and quarantine policies. Utilizing the
susceptible-infected-recovered-dead (SIRD) pandemic
model for the United States, Russia, China, and the Syrian
Arab Republic, Al-Raeei er 4/. (21) found the coefficient
values of the COVID-19 infection, recovery, and mortality.
It applied the method for the other countries with the
COVID-19 Pandemic and determined the Pandemic
reproduction rates. Aslan et 4/. (10) used the cumulative
number of infected death cases in Hubei, China, to train
the susceptible-exposed-susceptible in quarantine-infected
(asymptomatic or having mild symptoms)-reported cases-
recovered (SEIQR) deterministic type model, highlighting
the effects of quarantine and social distancing in Hubei.
Then they analyzed the COVID-19 outbreak and predicted
the impact of preventive measures and diagnostic tests in
Turkey. It developed accurate local prediction tools, which
could be coupled to create global models. Yang er al. (11)
integrated population migration data and the most updated
COVID-19 epidemiological data into the susceptible-
exposed-infectious-removed (SEIR) model to derive the
epidemic curve. Their dynamic SEIR model was effective
in predicting the COVID-19 epidemic peaks and sizes.
They also used the long short-term memory model (LSTM)
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trained on the 2003 SARS dataset, combined with COVID-
19-related feature data (transmission rate, mortality, etc.) to
predict the spread of COVID-19. These results indicated
that the implementation of control measures was valuable in
reducing the eventual COVID-19 epidemic size.

LSTM is a standard recurrent neural network (RNN)
often used to process data with time series (22). Chimmula
et al. (12) developed LSTM networks to predict Canada’s
pandemic trend and ending point. It captured the
transmission dynamics with minimum loss. The root mean
squared errors (RMSE) was 34.83, with an accuracy of
93.4% for short-term predictions in Canada. Meanwhile,
the RMSE was about 45.70, with an accuracy of 92.67% for
long-term predictions. Kolozsvari ez /. (13) implemented
an RNN to predict the epidemic curve. They concluded
that repeated peaks were anticipated on the COVID-19
epidemic curve. It used official databases trained on the
currently available data, which were validated by root mean
squared logarithmic errors (RMSLE) calculation. The
mean of RMSLE was different in different countries. For
example, the mean of RMSLE in Hungary was 0.06. In
addition to RNN, convolutional neural networks (CNN)
can also predict the spread of infectious diseases. By
converting one-dimensional data into a two-dimensional
matrix and inputting it into a CNN, the cumulative number
of confirmed cases in a region can be accurately predicted
(14,15). Hu et al. (14) proposed a modified stacked auto-
encoder (MAE) to model COVID-19’s transmission
dynamics in China. It employed latent variables to divide
34 provinces or cities into nine groups with the similar
transmission. The error rate can be as low as 0.73%. The
COVID-19 data samples were lacking initially, so Fong
et al. (15) developed a type of CNN called polynomial neural
network with corrective feedback (PNN + cf) to predict
the outbreak. It allowed additional input variables during
polynomials formation to augment the little existing data
and possessed great superiority with a relatively low error.

Trajectory tracking and infectious rate control

Early case identification, quarantining, and preventing
exposure to the communities were crucial pillars in
managing COVID-19 Pandemic (23). Based on many data
such as travel information, social information, consumption
information, and exposure history, Al could establish the
network of potential infections. Combining the time when
the infected person was diagnosed and the spatial location
information of their close contacts, it determined the time
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point and specific transmission path of possible cross-
infection. It could help the disease control departments find
possible transmission sources and potential super-infectors
and quickly cut off the spread. Mao et 4l. (16) reported how
Hainan Province in China relied on the government’s big
data public service platform to gather epidemic multisource
big data and used the graph database model to determine
and trace contacts, which achieved good results. It indicated
that using a centralized model for digital contact tracing
was more effective than the decentralized model in China.
Srinivasa Rao et al. (24) proposed a mobile phone-based
web survey to collect a basic travel history and more
common signs and symptoms. Al framework processed
the data to evaluate individuals and stratify them into no
risk, minimal risk, moderate risk, and high-risk groups. So,
it identified COVID-19 cases more quickly and checked
susceptibility spread. Another machine learning model was
based on Taiwan’s national health insurance, customs, and
immigration database (25). According to several factors (e.g.,
travel history), the population was stratified into lower risk
or higher risk. Those with higher risk were quarantined
at home and were tracked through their mobile phones.
Finally, the number of infected patients was far fewer than
what was initially anticipated.

Uncovering climatic/geographic/social factors of
COVID-19 spread

The COVID-19 Pandemic was showing climatic and
geographic patterns in its spread and development.
Pramanik er /. (17) applied a boosted regression tree
(BRT) model to find the climatic influence on COVID-19
transmission risks in 228 cities globally across three
climatic zones. The number of positive cases decreased
sharply above an average temperature of 10 °C in France,
Turkey, the US, the UK, and Germany. Among the tropical
countries, COVID-19 in Indian cities is most affected by
mean daily temperature and those in Brazil by temperature
seasonality. Travaglio er al. (26) applied the generalized
linear models to find that a slight rise in major fossil fuel-
related air pollutants led to a considerable change in
England’s COVID-19 infectivity and mortality rate. It
also showed that a 1 m’ increase of the PM,; long-term
average was associated with a 12% increase in COVID-19
cases. Mishra et al. (27) implemented a Koppen-Geiger
(KG) climate classification model to analyze the potential
relations with climate, geographical location, and the
COVID-19 Pandemic worldwide. It demonstrated that

© Journal of Thoracic Disease. All rights reserved.

7039

countries in high latitudes with temperate or continental
climates were the most vulnerable to this outbreak.
Different countries and governments have taken
various measures to deal with the COVID-19 Pandemic.
Differences in lockdown, quarantine, and social distancing
may also contribute to differences in the severity of
the COVID-19 Pandemic. Pasayat et a/. (18) used the
exponential growth model and linear regression model to
predict the COVID-19 cases with the continuous flow of
the lockdown in India. The accuracy of the exponential
growth model and the linear regression model was 90.78%
and 99.88%. It showed that lockdown with specific
restrictions had a vital role in preventing the COVID-19
from spreading in this current situation. Zhang et al. (28)
applied supervised learning techniques to identify and train
the non-parametric network-based SIR (NP-Net-SIR)
model. The trained model analyzed the connection between
population flow and cross-regional infection strength. The
model’s accuracy was 99.6%. They found that the non-
lock-down-typed measures reached the same containment
consequence as the lock-down. Vaid ez 4/. (29) used an Al
framework based on policy interventions’ timeline. This
Al model was based on three approaches—the Bayesian
SIR model, Kalman filter, and machine learning. The study
showed that dropped in the COVID-19 infections’ effective
growth rate was sharper in stringent policies (the USA and

Canada) but was more gradual in the relaxed approach
(Sweden).

Applications of Al in COVID-19 diagnosis

At present, the COVID-19 clinical diagnosis is mainly
based on different information such as epidemiological
history, clinical symptoms, laboratory examination results,
chest imaging findings, nucleic acid detection (pharyngeal
swabs or serum antibodies), or homologous comparison
of gene sequencing. Different methods have different
advantages and disadvantages. COVID-19 has high
infectivity, strong pathogenicity, and a long incubation
period. During the treatment of COVID-19 patients,
the disease changed rapidly. Multiple re-examinations
were required in a short period, which generated much
medical data. These problems make the accurate and rapid
diagnosis of COVID-19 extremely difficult for clinicians.
Al can quickly analyze large quantities of test data to find
suspected COVID-19 patients. It also evaluates the degree
of lung damage, compares the patient’s condition before
and after the illness in detail, and quickly assesses the
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disease progress. These works accurately assist the doctor
in diagnosis (30,31). This section focuses on Al applications
in diagnosis areas, such as laboratory-based diagnosis,
medical image diagnosis, respiratory pattern, and symptoms

diagnosis (1able 2).

Laboratory-based diagnosis
The standard diagnostic approach for COVID-19 is

the real-time reverse-transcriptase polymerase chain
reaction (rRT-PCR) technique with DNA sequencing
and identification. Gomes ez al. (32) proposed a pseudo-
convolutional machine learning method to improve the
process of DNA identification by dividing the DNA
sequence into more minor sequences with overlap. Then it
optimized the COVID-19 molecular diagnosis to identify
SARS-Cov-2 DNA sequences faster with higher specificity
and sensitivity by different models, such as random forests
(RF), naive Bayes classifier (NBC), instance-based learner
(IBL), multilayer perceptron (MLP), support vector
machine (SVM). For example, experiments with all 24 virus
families and SARS-Cov-2 resulted in 0.822222+0.05613
for sensitivity and 0.99974+0.00001 for specificity using
RF with 100 trees and 30% overlap. Villarreal-Gonzilez
et al. (40) detected typical profiles in PCR curves caused
by contamination or artifacts. So, they compared the
accuracy and log loss parameters from different ML
methods, such as K-neighbor classifier, SVM, decision tree
classifier, quadratic discriminant analysis (QDA), linear
discriminant analysis (LDA), and RE. LDA presented the
highest accuracy value of 97.6 and a low log loss of 0.1. It
was the best method to optimize PCR tests’ results. Data
of antibodies, antigens, and routine blood exams were
also used to identify the COVID-19 cases. Cady et a/. (33)
used a multiplexed grating-coupled fluorescent plasmonics
(GC-FP) biosensor platform to rapidly and accurately
measure COVID-19 antibodies in human blood serum.
A machine learning approach based on SVM was used to
analyze GC-FP detection data. The measure antibodies
against COVID-19 in human blood serum and dried
blood spot samples were 100% and 86.7% for sensitivity.
Kukar ez al. (34) constructed a CRISP-deep neural network
(DNN) based on routine blood tests to discriminate
COVID-19 patients from patients with other infectious
diseases. According to the feature importance scoring of
the eXtreme Gradient Boosting (XGBoost) model, it used
five usual blood parameters, which were mean corpuscular
hemoglobin concentration (MCHC), eosinophil count,

© Journal of Thoracic Disease. All rights reserved.

Chang et al. Al application in COVID-19

albumin, international normalized ratio (INR), and
prothrombin activity percentage. The sensitivity, specificity,
and area under the curve (AUC) were 81.9%, 97.9%,
and 0.97, respectively. The results were an impressively
low proportion of false positives and a moderately low
proportion of false negatives. The model was helpful in the
early symptomatic phase when COVID-19 was easier to be
missed by the RT-PCR test.

Medical images diagnosis

The advantages of imaging examination are intuitive,
fast, and accurate, making it an essential basis for clinical
diagnosis. The most common imaging examinations for the
COVID-2019 diagnosis and treatment are CT examination
and chest X-ray (41-44). Due to high resolution, low missed
diagnosis rate, and better display of ground-glass opacity
(GGO), CT image has become one of the gold diagnosis
standards in the COVID-2019 Pandemic. Multiple CT
diagnosis results are classified as binary classification
problems, such as COVID-19 negative or COVID-19
positive. Using the CT images of 723 COVID-19 positive
cases and 1,145 negative cases, Wang et al. (35) proposed
a CNN-based model to determine the COVID-19 cases.
The experimental results showed that the proposed model’s
sensitivity was 97.4%, the specificity was 92.2%, and
the AUC was 0.991. It would save about 30-40% of the
check time for physicians and promote the performance of
COVID-19 detection. When Al technology processes CT
images of COVID-19, segmentation is an indispensable
step in image processing and analysis. By segmenting
and extracting regions of interest (ROI), such as lungs,
lung lobes, bronchopulmonary segments, and infected or
diseased areas, Al can further evaluate and quantify, helping
solve the shortage and distribution of human medical
resources. Wang er al. (35) proposed three processes for
screening COVID-19 in CT images. First, it detected
the entire lung area through an effective segmentation
network based on UNet++; then, it located the lesion or
nodule area; finally, it isolated and found the lung lesion
area. Common pneumonia radiological images, especially
viral pneumonia, are similar to COVID-19. Other machine
learning methods attribute diagnosis to three classification
tasks: health, COVID-19 patients, and different types of
pneumonia patients. Xu et /. (36) used the chest CT images
of 110 COVID-19 patients, 224 influenza A patients, and
175 healthy people to classify and utilized a V-Net-based
deep learning model to segment candidate infection areas.
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The relative infection distance characteristics of patches and
edges were sent to the ResNet-18 network together, and the
output was one of these three groups. The overall accuracy
of the model was 86.7%.

X-ray has the advantages of continuous monitoring,
low radiation dose, and easy operation. Narin et a/. (37)
proposed five different CNN-based models to implement
three different binary classifications with COVID-19
patients, healthy cases, and other pneumonia cases from
X-ray images. They used data from the various online
dataset, such as the open-source GitHub dataset and the
Kaggle pneumonia dataset. The evaluation results showed
that ResNet50 had an accuracy of 98.0%, achieving
the highest classification performance. Zhang et al. (38)
proposed a ResNet-based model to detect COVID-19 in
X-ray images. The model had two functions. Not only it
classified cases in COVID-19 or non-COVID-19, but also it
was used for anomaly detection. The anomaly detection task
would give an anomaly score to optimize the COVID-19
score for classification. The two data sets include X-ray
images from 70 COVID-19 patients and 1,008 non-
COVID-19 patients. The sensitivity and specificity were
96.0% and 70.7%, respectively, and the AUC was 0.952.

Respiratory pattern and symptoms diagnosis

Another diagnostic sign of COVID-19 patients was their
different respiratory pattern from common cold and
influenza (45). Abnormally rapid breathing was an essential
indication of COVID-19 infection. Therefore, Wang
et al. (46) developed a COVID-19 diagnostic method based
on respiratory features. They applied a GRU neural network
with bidirectional and attentional mechanisms (BI-AT-
GRU) to classify 6 clinically significant respiratory patterns
(Eupnea, Tachypnea, Bradypnea, Biots, Cheyne-Stokes,
and Central- Apnea). The results showed that the proposed
model could classify six different respiratory patterns with
the accuracy, precision, recall, and F1 of 94.5%, 94.4%,
95.1%, and 94.8%, respectively. Arpaci et 4l. (39) analyzed
114 cases from the Taizhou hospital of Zhejiang Province in
China. They developed six predictive models for COVID-19
diagnosis using six different classifiers based on 14 clinical
features, including Bayes classifier (BayesNet), logistic-
regression (Logistic), lazy-classifier (IBk), meta-classifier
[classification via regression (CR), rule-learner (PART),
and decision-tree (J48)]. As a result, the CR was the most
accurate classifier for predicting the positive or negative
COVID-19 cases with an accuracy of 84.21%. Mouawad
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et al. (47) employed symbolic recurrence quantification
measures with MFCC features to detect healthy people’s
sustained vowels or sick individuals’ cough sounds. The
proposed model achieved a mean classification performance
of 97% and 99%, and a mean Fl-score of 91% and 89%
after optimization, for coughs and sustained vowels,
respectively. These studies could help medical workers to
diagnose COVID-19 patients more effectively and reduce
the current medical system’s detection workload.

Applications of Al in the COVID-19 progression

The AI screening research can detect early COVID-19
cases and improve the doctors’ diagnosis. Similarly, Al
applications in the disease progression are also critical,
helping medical staff find and treat high-risk patients early,
estimate ICU events, formulate treatment plans, allocate
medical resources, and reduce mortality (48-50) (Tuble 3).
Li er al. (51) investigated the Al-assisted quantification
on COVID-19 patients’ initial chest CT to predict their
disease progression and clinical outcome. In this study, they
calculated the CT severity score (CT-SS) according to the
extent of lesion involvement. Al-based quantification of
GGO and consolidation volume were performed. Among
imaging parameters, consolidation volume had the largest
AUC in discriminating non-severe from progress-to-severe
group (AUC =0.796, P<0.001) and patients with or without
critical events (AUC =0.754, P<0.001). The results indicated
that consolidation volume and age were the two strongest
predictors for disease progression.

Moreover, the larger consolidation volume was associated
with unfavorable clinical outcomes. Yang et al. (52)
applied chest CT-SS as an imaging tool for assessing
COVID-19 progression. The optimal CT-SS threshold
for identifying severe COVID-19 was 19.5 (AUC =0.892),
with 83.3% sensitivity and 94% specificity. CT-SS could
evaluate the severity of pulmonary involvement quickly and
objectively in COVID-19 patients. Yan ez 4l. (53) developed
a predictive model based on the XGBoost model. They
identified three vital clinical features: lactic dehydrogenase,
lymphocyte count, and high sensitivity C-reactive protein,
from more than 300 features. The model could predict the
survival rate of COVID-19 patients, with an accuracy rate
exceeding 90%.

Applications of Al in the COVID-19 treatment
So far, there is no cure for COVID-19 disease. The
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Table 3 Applications of AT in COVID-19 progression
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First author [year] Country

(reference)

Result

Sample size

Data source

Modality Model

(region)

(CT-SS) AUC 0.66; accuracy 62.6%:; sensitivity 58.97%; specificity:

COVID-19

COQOVID-19 patients in Shanghai
Jiao Tong University Affiliated

Sixth People’s Hospital from

CTimage U-Net

China

Lietal.

cases classified 64.29% (GGO volume cm® AUC 0.639; accuracy 43.9%; sensitivity

[2020] (51)

79.49%; specificity: 45.24% (GGO volume percentage): AUC 0.694;

as non-severe

group on

accuracy 62.6%; sensitivity 64.1%; specificity: 69.05%; (consolidation

admission: 123 volume cm®: AUC 0.796; accuracy 78.05%; sensitivity 71.79%;

February 10, 2020 to April 9,

2020

specificity: 80.95%; (consolidation volume percentage): AUC 0.79;
accuracy 78.86%; sensitivity 79.49%; specificity: 78.57%

COVID-19 AUC: 0.892; sensitivity: 83.3%; specificity: 94%

CTimage CT-SS COVID-19 patients in

China

Yang et al.

cases: 102

Chongging Three Gorges

[2020] (52)

Central Hospital from January
21, 2020 to February 5, 2020

Al, artificial intelligence; COVID-19, coronavirus disease 2019; CT-SS, CT severity score; AUC, area under the curve; GGO, ground-glass opacity.

Chang et al. Al application in COVID-19

development of vaccines and drugs, coupled with
corresponding valuable clinical treatment plans, is the
ultimate means to solve the COVID-19 Pandemic. Al
can apply to the four stages of drug development: drug
discovery, preclinical research, clinical research, and
marketing approval. It can also reduce the repetitive work in
virus detection to accelerate the development of vaccines by
effectively screening compounds, biomarkers and predicting
drugs’ physical and chemical properties. This section
focuses on Al applications in the COVID-19 treatments,
such as drug designing, drug repurposing, herbal drugs, and
vaccine development (Table 4).

Drug designing

The 3D structure of the protein encoded by the SARS-
CoV-2 gene is used as the main or potential drug treatment
target. Generally, the protein structure can be determined
by experimental methods such as X-ray crystal diffraction
spectroscopy. But these methods are expensive and time-
consuming. Al screening methods can predict the structure
of these related proteins, identify drugs showing high
affinity for different target proteins, and propose new
chemical compounds as potential treatments (60,61). Pfab
et al. (54) applied a fully automated deep learning-based
method called DeepTracer, whose central piece was the
CNN. By predicting four vital pieces of information (the
locations of amino acids, the location of the backbone,
secondary structure positions, and amino acid types), it
could determine the de novo multichain protein complex
structure from high-resolution cryoelectron microscopy
maps fastly. The average percentage of matched model
residues was 84% for DeepTracer, and it also achieved a
sequence matching percentage of 63.08%. This Information
about the macromolecular structure of protein complexes
could assist the development of vaccines and drugs. Magar
et al. (55) proposed different machine-learning models such
as XGBoost, RE, MLP, SVM, and LR for high throughput
screening of synthetic antibodies to discover the possible
inhibitory antibodies for COVID-19. They trained the
ML models with 14 different virus types and achieved
over 90% fivefold test accuracy. The models predicted
the antibodies neutralization, found 18 antibodies highly
efficient in neutralizing SARS-CoV-2. Moreover, it checked
the stability of predicted antibodies and found nine stable
antibodies which could neutralize SARS-CoV-2.
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Drug repurposing

Drug repurposing is a technology that uses existing drugs
to treat emerging and challenging diseases to reduce
development time and overall costs. Among the several
treatment approaches, drug repurposing has an edge in
causing few side effects, making it a promising candidate
for developing new therapeutic strategies. Therefore,
it is urgent to use Al technology to discover drugs with
inhibitory effects on the SARS-CoV-2 from existing
drugs (62-64). There was much complex information
between molecules, such as hydrophobic interactions,
ionic interactions, bonding between hydrogen molecules,
or van der Waals forces. Beck et al. (56) used a pre-trained
deep learning model to predict drug-target interactions
accurately. The model’s core is natural language processing
(NLP) based on the bidirectional encoder representations
transformers (BERT) framework, which had good
performance and reliability in various drug-targeted
interaction data sets. They analyzed the COVID-19
3C-like proteinase and 3,410 existing drugs available in the
market. A popular antiretroviral drug used to treat HIV
called Antazanavir (Kd of 94.94 nM) was the best drug
for COVID-19 medication, followed by efavirenz (Kd
value of 199.17 nM), ritonavir (Kd value of 204.05 nM),
and dolutegravir (Kd value of 336.91 nM). Zeng et al. (57)
proposed an integrative, network-based deep-learning
methodology to analyze many medical literature and
related data, quickly discovered the connections between
drugs and diseases, diseases and genes, and established the
comprehensive knowledge graph. The graph included 15
million edges across 39 relationships connecting drugs,
diseases, pathways, genes, and expressions from 24 million
publications. Using the ongoing COVID-19 trial data as
a validation set, this model had a larger AUC (0.85) for
identifying repurposable drugs. Forty-one repurposable
drugs (including dexamethasone, indomethacin,
niclosamide, and toremifene) with inhibitory effects on the

SARS-CoV-2 were identified and validated.

Herbal drug

Due to the unclear basis and mechanism of active
substances, the discovery, use, and promotion of herbal
medicines have been greatly restricted. Some researchers
found particular effectiveness in treating COVID-19 cases
with the herbal drug (65,66). Liu er al. (67) constructed a
compounds-herb-target organ-function network by the

© Journal of Thoracic Disease. All rights reserved.
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computer-aided drug design (CADD) based molecular
docking technology. They identified potential SARS-CoV-2
3CL protease inhibitors from the traditional Chinese
medicine systems pharmacology database and analysis
platform (TCMSP). This work revealed that, to a certain
extent, Glycyrrhizae Radix et Rhizoma, Rhododendron
dauricum, and Plantaginis Herba, etc. had capabilities to
relieve cough or asthma and dispel lung-draining. Erlina
et al. (58) adopted SVM, MLP, and RF models to study
the Indonesian herbal compound and its effectiveness.
The accuracy and f-measure of the model of each method
were high, around 98%, respectively. The authors
adopted the structure-based method for pharmacophore
modeling, which combined the 3D structure of
COVID-19 main protease. The result showed that six
herbal compounds, i.e., Hesperidin, Kaempferol-3,4’-
di-O-methyl ether (Ermanin); Myricetin-3-glucoside,
Peonidine 3-(4’-arabinosylglucoside); Quercetin
3-(2G-rhamnosylrutinoside); and Rhamnetin 3-mannosyl-
(1,2)-alloside, could serve as effective COVID-19 drugs.

Vaccines development

To resist the high viral infection rate, it is essential to
determine the best target for developing a vaccine. The
host immune system fights virus-infected cells by B cells
producing antibodies or the direct attack of T cells. HLA
genes encode MCH-I and MCH-II proteins, which present
epitopes as antigenic determinants. These proteins assist
the ability of B cells and T cell antibodies to bind and
attack invaders. Machine learning methods, including RE,
SVM, and RFE, have become essential tools for identifying
antigens from protein sequences. However, due to their
low sensitivity in predicting local clustering interactions in
some cases, deep CNN (DCNN) have always been a more
practical choice for the combined prediction of MHC and
peptides (68-70). Ong et al. (59) used the newly developed
machine learning model and Reverse Vaccinology (RV)
tools to predict COVID-19 vaccine candidates. Besides the
commonly used structural protein (Sp), they prioritized
non- Sps as vaccine candidates for SARS-CoV-2. As the
most significant non-Sp in the coronavirus family, non-
Sp 3 (Nsp3) was considered the most promising vaccine
development target after Spike. The “Sp/Nsp cocktail
vaccine” containing an Sp and an Nsp would stimulate
effective complementary immune responses. Malone
et al. (71) also studied the entire SARS-CoV-2 proteome
except for Spike, identified a subset of epitope hotspots
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that could be harnessed in a vaccine formulation, and
used NEC immunoassay analyzer, IEDB, and BepiPred
tools, demonstrating accuracy of 87%, to establish epitope

maps of different HLA alleles. It provided a SARS-CoV-2

comprehensive vaccine design blueprint.

Applications of Al in the COVID-19 psychological
effects

COVID-19 Pandemic had unprecedented and far-
reaching impacts on mental health. Severe SARS-
CoV-2 infection may produce mental symptoms for the
following reasons: direct effects caused by viral infection
(such as hypoxemia), immune response, and medical
intervention. Other explanations involve broader social
impacts, including psychological impacts due to social
isolation, unemployment, the fear of getting infected,
inadequate psychological support, racial discrimination,
or the psychological burden caused by fear of infecting
others (72,73) (Table 5). Choi et al. (74) used the ANN
model to research the mental health effects of racial
discrimination targeting the Asian population in the U.S.
during the COVID-19 Pandemic. They unveiled the most
critical factors affecting Korean immigrants’ psychological
distress, such as individuals’ level of resilience, the
experience of everyday discrimination, and intensified racial
discrimination toward Asian populations. The model’s AUC
was 0.806. Wang et 4l. (75) implemented XGBoost models
to investigate the prevalence and severity of anxiety among
Chinese non-graduating college students. It also compared
the difference between the anxiety status 1 month before
and after starting the new semester of online learning
during COVID-19. The accuracy rate was approximately
80%. It could help related departments implement adequate
measures, such as timely psychological intervention before
the anxiety levels increase. They used Integrating Bayesian
networks with classical machine learning to identify factors
that significantly impacted mental health during COVID
Pandemic (76). The mode analyzed 17,764 adults in the
USA at different age groups, genders, and socioeconomic
statuses. They observed the accuracy in model predictability
decayed from 0.80 to 0.64 when they moved from high risk
of depression to low risk of depression. Overall, females
were more stressed than males, and people of age-group
18-29 were more vulnerable to anxiety than other age
groups. Cosi¢ et al., conducted a comprehensive approach
to address the lack of access to psychiatric services. The
process included Al, telepsychiatry, and a range of novel
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technologies, like internet-based computer-aided mental
health tools (78).

Al in medical data during COVID-19 pandemic

In the era of big data, as the main body of responding to
public emergencies, governments of various countries used
big data to control the COVID-19 Pandemic in real-time.
Al needs to store a large amount of medical data to analyze,
most of which are patients’ private medical information,
such as the medical history of present disease, genetic
history, physical defects, treatment conditions, etc. With the
increasing awareness of people’s privacy protection and data
security, striving to strike a balance between the three social
goals of digital technology advancement, patient privacy
protection, and public health maintenance is an eternal
topic that needed attention at this time (79,80) (Table 5).
Social media like Facebook, Twitter, YouTube, Instagram,
Snapchat, and WhatsApp were the primary source for
spreading information and news in the COVID-19 period.
Facebook also shared anonymized population flow data
and population density summary maps with other scientific
research institutions to build the COVID-19 infection
chain model (81). Kang ez 4/. (77) developed a web-based
data Al platform to share massive pathological image data.
This platform included 3,100 images for Al researchers
to quickly load images into their learning models. Several
precautions were followed to ensure that any information
potentially identifying subjects, including the patients, was
not contained in the collected dataset. After submitting the
consent forms for the use of data [“data use agreement”
(DUA)], researchers receiving approval could download
the data. However, to prevent reckless data leakage and
usefulness, users were managed at four levels based on their
right to use the data. Kumar et /. (82) presented a deep
learning model to predict lung cancer in the healthcare
system by filling the defined gap. They proposed a method
to secure medical data by only sharing the weights of the
trained deep learning model via smart contract.

Discussion

As an empirical science, medicine itself has many

uncertainties. Al in the medical field still has the following
problems worthy of our consideration.

(I) From a technical perspective, Al development

requires many shared data platforms composed

of a large amount of data. Different data needs
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to be unified in format, type, and label code. The
continuous growth of data requires incremental
learning methods. How to reduce the noise of
the data set is also essential. We need to promote
and use the related intelligent devices. Al will be
popularized when the technological problems were
solved (83,84).

(II) From the perspective of clinical applications,
although black box models such as neural networks,
DNN:s, deep learning, or gradient enhancement
models have high accuracy, their internal working
mechanisms are complicated for medical staff
to understand. It is difficult for medical users
to find product errors after long-term use. The
front-line clinical team has the most profound
and direct feelings about the prevention and
control of diseases. They can dig out professional
needs from medical practice, carry out clinical
trials, collect adequate evidence, and evaluate Al
technology. They and Al researchers can integrate
Al technology with current clinical processes
and information systems into applications. In the
future, Al personnel and medical workers will
further cooperate closely (85,86).

(III) From the perspective of data safety, Al learning
requires more high-quality data for training. Due
to the complex characteristics and the unclear
property relationship of medical data, fewer data
meet the training conditions. The medical data
involve patient’s privacy, so it is easy to cause
leakage of patient data. How to protect patient’s
privacy will become a focal part of Al research (77).

In the process of Al application, what changes will

medical care have in the future? China has a large
population, vast land, and abundant resources. The medical
market is enormous and rich. How to seize the opportunity
to promote Al medical technology to a world-class level
is a big challenge. More and more Al medical processes
begin to pay attention to integrity and integration, from a
single disease to multiple diseases, from single information
to numerous information. Al technology will apply in the
whole life cycle of health management, including pre-
diagnosis, during-diagnosis, and post-diagnosis. It integrates
the prevention, diagnosis, treatment, rehabilitation, follow-
up, and other links. We need to do more to prevent disease
before the disease epidemic. Medical staff, including
clinicians, disease control personnel, clinical auxiliary
departments, and administrative management personnel, will

© Journal of Thoracic Disease. All rights reserved.
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become the leading force of Al medical care in the future.
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