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Abstract

Fast neutron therapy has been used for decades. In conjunction with recent advances in

photonic techniques, fast neutrons are no longer of much oncologic interest, which is not

unequivocally positive, given their undoubted therapeutic value. This mini-review recalls

the history of medical research on fast neutrons, considers their physical and

radiobiological properties alongside their benefits for cancer treatment, and discusses

their place in modern radiation oncology.
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Introduction
Over the past 2 decades marked by the emergence of intensity-modulated radiation

therapy (RT), volumetric-modulated arc therapy, and image guidance, photon therapy

more or less has reached its limits. Its further development is restricted by the physical

nature of photons. In this context, hadron-based therapies come to the fore as a novel

promising option, with proton therapy and carbon-ion therapy centers being the main

focus. By 2023, the number of particle facilities in Europe will be increased to 45 [1]. At

the same time, the huge potential of particle therapy remains largely underestimated. For

instance, classical fast neutron therapy (FNT), a plausible treatment option for cancers at

high risk of local recurrence and radioresistant tumors, has been left behind [2, 3].

Neutrons, one of the first known hadrons, have been applied in medicine since their

discovery by Chadwick in 1932 [4, 5]. Despite some remarkable clinical outcomes

achieved at the dawn of FNT in the 1930s, the growing evidence of severe complications

affecting normal tissues put the clinical use of neutrons on a long pause. The approach

was reborn in the 1970s after extensive radiobiological research on the dependence of

biological endpoints on the linear energy transfer (LET) of the radiation modality.

However, after the great splash of interest in the 1970s and 1980s, by the beginning of

the 21st-century neutron facilities have all but disappeared and only a few such centers

are still functioning.

The unique radiobiological properties of neutrons allow overcoming the multifaceted

mechanisms of resistance executed by tumor cells [6–12]. Regardless of the wide

availability of conventional photon radiation units and the growing number of proton and

C-ion centers, FNT remains a relevant option for certain tumors [13].

The current number of patients having received FNT is just over 35 000, and the

sources are restricted to a few databases. The aim of this review was to recall the history

and radiobiology of FNT to discuss the experience of its clinical use in cancer patients,

http://theijpt.org



the current state of the field, and its prospects. Numerous important studies illustrating the global FNT experience are listed in

Tables 1 and 2.

Fast Neutron Beams, Their Properties, and Radiobiology
Effects of radiation on living tissues depend on multiple factors, including dose levels and microscopic dose distributions, as

well as fraction delivery and tissue doubling times. The frequency of lethal events in cells under direct irradiation correlates

with LET value. Sparsely and densely ionizing radiation types can be referred to as low-LET and high-LET, respectively. The

higher LET, the more severe the DNA damage is and the more complicated the pathways are for its repair. Compared with the

conventional low-LET beams, high-LET beams kill cells with higher efficiency [54] explained by indirect oxygen effects and

direct damage to DNA [55, 56]. Owing to their direct effect on DNA, high-LET particles act on tumor cells independently of

oxygenation, and their relative biological effectiveness (RBE) has little to do with the oxygen enhancement ratio, typically low

in the hypoxic tumor microenvironments.

Moreover, high-LET particles have low selectivity regarding cell cycle, affecting cells at different stages of cell cycle

progression [57]. This is a consequence of the multiplicity of DNA lesions (clustered DNA damage) produced by single

particles. Clinical applications conventionally involve neutrons with RBE ¼ 3 [13], although the value may show complicated

behaviors depending on particle energy and fractionation [58–60].

Optimal doses and biological effects of fast neutrons also depend on tissue type; for instance, the dose absorbed in fat is

20% higher than in muscles. Interacting with biomolecules in living tissues, fast neutrons produce protons and the high-LET

recoil nuclei of C, N, and O, which poses significant risks of normal tissue side effects [61]. Concurrently, fast neutrons are of

historically proven effectiveness toward certain malignancies containing hypoxic cells incredibly resistant to conventional

irradiation; the total treatment length can be reduced given the low number of neutron fractions required [62].

Various nuclear reactions (dþT, dþBe, pþBe, and dþT) can be used to obtain fast neutrons in different energy ranges.

Production of neutrons by these reactions is accomplished with cyclotrons, linear accelerators, nuclear reactors, or neutron

generators. A pþBe reaction is a preferable option for modern, high-energy facilities [63–65].

Table 1. Studies evaluating fast neutron therapy for brain, head, and neck tumor locations.

Reference

Publication

date

N of

neutron

pts

Type

of

FNT

Compared

with

photons Pathology Outcomes Toxicity

Caterall [14] 1977 97 Pure Yes H&N c-r 1-y OS 53%; 2-y OS 28% 4 pts with G4

Maor [15] 1983 54 Mixed Yes H&N c-r LC 44%; OS 20% 4 pts with G3–4

Errington [16] 1986 43 Pure No Sinonasal c-r 5-y LC 50%; 5-y OS 30% 30% complication rate at 27 mo

Mardynsky [17] 1991 27 Mixed Yes Laryngeal c-r 2-y OS 81% 3 pts with perichondritis

Liao [18] 2014 14 Pure No H&N mucosal

melanoma

5-y LC 66%; 5-y OS 21% 4 pts with G3 mucositis, 2 events

of osteoradionecrosis

Bucholz [19] 1992 53 Pure No Salivary gland ACC 5-y LRC 77%; 5-y OS 33% 19% of G3, 2 events of death

Laramore [20] 1993 13 Pure Yes Salivary gland ACC 10-y LC 56%, 10-y OS 15% 2 pts with G4

Pötter [21] 1999 72 Pure No Salivary gland ACC 3-y LC 73%; 5-y OS 58% 4%–6% acute G3–4; 1 temporal

lobe necrosis

Douglas [22] 2003 279 Pure No Salivary gland ACC 6-y LC 59%; 6-y DFS 67% 10% of late G3–4

Brackrock [23] 2005 71 Pure No Salivary gland ACC 6-y LC 45%; 6-y OS 60% 9 late G3–4 events

Timoshchuk [24] 2019 545 Pure No Salivary gland ACC 10-y LC 79%; 10-y OS 62% 3%–7% risk of osteradionecrosis

Laramore [25] 1989 38 Mixed Yes Brain AA Median OS 1.7 y

Breteau [26] 1996 294 Mixed No Brain GBM Median OS 26.7 mo 3 documented radionecrosis

Stelzer [27] 2008 10 Pure No Brain GBM 1-y OS 66% moderate gliosis and microvascular

sclerosis at autopsy

Sarycheva [28] 2021 40 Mixed No Rec gliomas 3-y OS 66.7% ND

Abbreviations: pts, patients; FNT, fast neutron therapy; H&N, head and neck; c-r, cancer; OS, overall survival; G, grade; LC, local control; ACC, adenoid cystic carcinomas; LRC,

local regional control; DFS, disease-free survival; AA, anaplastic astrocytoma; GBM, glioblastoma; Rec, recurrence.
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Table 2. Studies evaluating fast neutron therapy for various tumor locations.

Reference

Publi-

cation

date

N of

neutron pts Type of FNT

Compared

with

photons Pathology Outcomes Toxicity

Russel [29] 1987 45 Mixed Yes Prostate c-r 8-y OS 63% 25 events with G3–4

Krieger [30] 1989 55 Mixed Yes Prostate c-r 5-y LRC 81%; 5-y OS 70% 9% of G3–4

Laramore [31] 1993 55 Mixed Yes Prostate c-r 10-y LC 70%, 10-y OS 46% 8 events of G3, 1 death

Forman [32] 2002 700 Mixed Yes Prostate c-r 5-y DFS 93% 0%–18% of G3–4, depending

on neutron dose

Caterall [33] 1987 17 Pure No LA Breast c-r Median OS 26 mo 3 pts with skin necrosis, 17

pts with moderate fibrosis

Smirnova [34] 1998 85 Mixed Yes LA Breast c-r 5-y OS 71.8; 10-y OS 22.7% No difference with gamma

rays

Murray [35] 2005 12 Pure Yes Breast c-r Median OS 21.5 m 6 pts with G3–4

Ragulin [36] 2015 95 Mixed Yes Advanced Breast

c-r

10-y OS 32.8%; 10-y DFS

29.5%

No difference with gamma

rays

Startseva [37] 2015 108 Mixed Yes Breast c-r 10-y OS 70.8%; 10-y LC 98% No �G3

Velikaya [38] 2016 91 Mixed Yes LA Breast c-r &

rec

Rec—8-y OS 87.6%; LA—7-y

OS 85.4%

1 pt with Gr 3

Cohen [39] 1984 51 Pure No Sarcomas LC 44%–50% 9 pts with G3–4, 1 death

Budach [40] 1990 40 Sarcomas;

18 CSA

Mixed No Sarcomas, CSA Sarcomas: LC 69.3%; OS 91%.

CSA: LC 55.6%; OS 62.9%

no �G3

Steingräber [41] 1996 221 Pure No Sarcomas LC 66% 40% of severe fibrosis

Schwartz [42] 2001 72 Mixed/Pure No Sarcomas 4-y OS 66% 15% of G3–4

Morita [43] 1985 45 Mixed Yes Uterine c-r 5-y 73% No difference with gamma

rays

Pointon [44] 1985 48 Mixed/Pure Yes Bladder c-r T2 stage: 3-y OS 52%. T3

stage: 3-y OS 43%

10%–37% of G3–4, 4 deaths

Maor [45] 1988 80 Mixed Yes LA cervical c-r 2-y LC 45%; median OS 1.9 y 19% of G3–4

Eising [46] 1990 20 Mixed No Rectal c-r Pain-free 9 mo—46%; 1-y OS

56%

2 pts with severe fibrosis

Engenhart [47] 1990 26 Mixed No Rec rectal c-r Pain relief in 22 pts 2 pts with G3–4

Patel [48] 2015 30 Pure No Pleural

mesothelioma

Median OS 22.1 mo ND

Choinzonov [49] 2017 45 Mixed No Thyroid c-r

(postop and rec)

Postop: 5-y OS 70.2%; 5-y LC

52%. rec: 5-y OS 32.8%

81% of skin G2–3

Bittner [50] 2008 20 Pure/mixed with

brachytherapy

(6 pts)

No Trachea ACC 5-y OS 89.4% 2 events of late G3–4

Eichhorn [51] 1982 600 Mixed No Various 1. Positive effects of mixed RT

2. Optimal dosage is 1.2–2.0 Gy

3. FNT is better for inoperable pts

4. Prophylactic postop RT for radioresistant tumors

5. High sensitivity of spinal cord

6. Differences in assuming the effects of normal tissue between

RT and FNT

Tsunemoto [52] 1988 1623 Pure ND Various Salivary gland ACC, prostate c-r, sarcomas, melanomas,

pancoast tumor—are indications for FNT

Koh [53] 1994 83 H&N;

99 NSLC;

87 Prostate c-r

Mixed Yes H&N, inoperable

NSLC,

Prostate c-r

H&N: 2-y LC 39%; 2-y OS 36%.

NSLC: 2-y LC 85%; 2-y OS

14%. Prostate: 2-y LC 89%;

5-y OS 68%

H&N: 19% of late G3–4.

NSLC—ND. Prostate c-r—

11% of late G3–4.

Abbreviations: pts, patients; FNT, fast neutron therapy; c-r, cancer; OS, overall survival; G, grade; LCR, local regional control; LC, local control; DFS, disease-free survival; LA,

locally advanced; rec, recurrence; CSA, chondrosarcoma; ND, no data; postop, postoperative; ACC, adenoid cystic carcinoma; RT, radiation therapy; H&N, head and neck; NSLC,

non–small cell lung cancer.
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Clinical Experience
Shortly after the first cyclotron was developed at the University of California, Berkeley, in 1936, Locher et al [66], Lawrence et

al [6], and Robert [67] suggested using both fast and slow neutrons to treat cancer. The first attempts entailed severe

complications and the concept stayed frozen for decades. In 1977, Catterall et al [14] described positive outcomes of FNT in a

randomized clinical trial comparing the use of fast neutrons versus photons or gamma rays in 102 patients with advanced head

and neck (H&N) cancers. The study revealed significant advantages of fast neutrons alongside comparable severity of side

effects. The authors promoted FNT as a matter of clinical utility and no longer an experimental approach [14]. However, other

clinical results were controversial. Along with the strong long-term response to FNT, a significant proportion of the patients

developed severe side effects [68] subsequently linked to several problems (ie, RBE miscalculation, fields overlapping, and

high total doses) [58, 59].

Initial estimates of the immediate and delayed RBE of fast neutrons were modeled on photon therapy. The aggravated side

effects of FNT have been associated with increased reactivity of normal tissues. In particular, the standard RBE of 3

(conventionally applied to estimate the risks of early and late normal tissue reactions) corresponds to higher de facto

effectiveness in the late-responding tissues with a low alpha/beta ratio. At lower doses, the atypically high RBE values also

contribute to higher toxicity as compared with photon beams or gamma rays of the same megavoltage. It was eventually

suggested to combine fast neutrons with photons or gamma rays, thus reducing the toxicity of FNT to acceptable levels [69,

70].

Throughout the 1980s and 1990s, fast neutron facilities grew in number and FNT became an available option for certain

tumors, including advanced prostate cancer, breast cancer, and bone and soft tissue sarcomas. In 1985, Peters et al [69]

reviewed FNT studies ongoing in the US. The authors emphasized that the statistically proven benefits of FNT for local tumor

control and survival in patients with advanced prostate cancer, H&N tumors, and bladder cancer were dependent on the use of

correct treatment schedules and proper neutron sources [69].

Later, Laramore et al [71] summarized the results of FNT for the allegedly radioresistant bone and soft tissue sarcomas. The

study involving 652 patients treated with either neutrons or photons showed a 49% to 55% local control (LC) rate in the FNT

group versus 21% to 38% in the photon therapy group, depending on the histological type. No significant differences in

adverse events were recorded [71]. For brain gliomas, however, FNT was of no benefit; moreover, the neutron boost had a

negative impact on survival, directly related to the deteriorating action of neutrons on nervous tissue [25]. Still, given its specific

radiobiological features, FNT remained a promising option for other tumors poorly responding to RT. A final report from the

Radiation Therapy Oncology Group–Medical Research Council [20] comparing fast neutrons and photons for the treatment of

inoperable salivary gland tumors noted a significant advantage of FNT in terms of LC and a marginal benefit in overall survival

(OS), ultimately proposing FNT as the treatment of choice for such tumors.

Koh et al [53] published the results of ongoing phase III FNT versus photon trials in squamous cell H&N tumors, non–small

cell lung cancers, and prostate adenocarcinomas. Contrary to previous studies [15, 67, 68], FNT did not show any

considerable advantage for H&N cancers. Despite its shorter time frame (4 weeks cf. 7 weeks for the photons), the use of FNT

was associated with a significant increase in toxicity. Simultaneously, for a subgroup of non–small cell lung cancer patients

with inoperable tumors, FNT showed better results in terms of both LC and OS (16% versus 3%, P¼ .02 and 19% versus 6%,

P ¼ .15, respectively). In addition, there was a trend of better outcomes for neutron-treated patients with unfavorable

prognostic factors (eg, T4/N3 stage, critical condition) [53].

Another seminal paper favoring the use of fast neutrons was published in 1996 [72]. Lindsley et al [72] reported the benefits

of FNT in local regional control of unresectable salivary gland tumors compared with photon RT (respectively, 56% versus

17% efficacy). In 1997, Sur et al [73] confirmed the primacy of fast neutrons for salivary gland tumors based on a similar

comparative evaluation of FNT and photon RT outcomes.

Several clinical trials of FNT indicated an improvement in OS rates for squamous-cell lung carcinoma [72]. For H&N

cancers, fast neutrons showed a statistically significant improvement in the overall response rate as compared with photons

(70% versus 52%, respectively), with similar survival rates in both groups [72].

In connection with its minor sensitivity to hypoxia, FNT is of profound interest for the treatment of slow-growing tumors,

notably prostate adenocarcinomas [29–31]. Koh et al [53] observed significant advantages of FNT over photons in a cohort of

172 patients with prostate adenocarcinoma (5-year local regional control in 89% versus 68%, respectively), albeit with a higher

prevalence of severe complications (11% versus 3% for 5-year observation). In 1998, Lindsley et al [74] published an

encouraging summary of worldwide clinical experience of FNT for prostate cancer, notably the benefits of using mixed

neutron-photon beams versus pure fast neutron or photon beams.
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The striking clinical effects of pure fast neutrons are intrinsically related to the worst issue of FNT—high levels of severe

toxicity. Many protocols implemented a combination of conventional photons and fast neutrons, thus reducing the adverse

impact of FNT [13].

As the penetrating capacity of neutron beams was initially low, the output energies have eventually increased to dozens of

megavolts. The safety issue was relatively settled; paradoxically, it coincided with the beginning of a decline. The new higher

mega-electron volt (MeV) neutron units did not provide clear radiobiological benefits in most clinical trials. For instance, Murray

et al [35] showed no differences in the use of 66-MeV neutron versus photon irradiation in breast cancer treatment. Besides,

the study was underpowered to demonstrate the benefit of FNT over photons, due to premature closure, without reaching its

endpoints.

The progressive development of advanced multileaf collimators opened an era of three-dimensional conformal photon

irradiation in the beginning of the 2000s [75]. New technical approaches made the conventional RT both deadlier for tumors

and safer for the patients. With its evident toxicity and in the absence of explicit guidelines for its use, FNT hardly stayed in

focus for anyone except enthusiastically minded experts. With the radiation protection requirements for patients and staff

becoming more restrictive, the number of neutron facilities has progressively gone down [76].

Despite the obvious decline, FNT was not completely ruled out. In 2001, Schwartz et al [42] published the outcomes of FNT

in 72 patients with soft tissue and cartilaginous sarcomas treated between 1984 and 1996. These tumors show high rates of

local aggressiveness and resistance to chemotherapy and RT. As the treatment resulted in a 4-year OS of 66% for the

curatively treated group and a 1-year OS of 62% for the palliation group, FNT was recognized as a reliable option for both

curative and palliation protocols.

Micke et al [77] presented the outcomes of FNT for local regional recurrences of pre-irradiated H&N cancers with a

promising 1-year OS of 29.3% and tolerable side effects. In theory, fast neutrons are most advantageous when applied to

hypoxic cell pools that prevail in H&N tumors. On the other hand, a Cochrane Collaboration overview [78] about the efficacy of

RT for oral cavity and oropharyngeal cancer failed to find any significant difference in survival or disease-control outcomes

between FNT and conventional photon RT.

In 2002, Forman et al [32] published an extensive data set comprising FNT outcomes for 700 prostate cancer patients

treated with neutrons only or mixed neutron-photon beams. The authors identified a 50:50 ratio of neutrons and photons

(corresponding to 10 Gy of neutrons and 40 Gy of photons) as the optimal tradeoff between tumor control rates and normal

tissue adverse events [32]. These were the last attempts at FNT of prostate cancer, which proved an unfavorable option. The

effective alternative treatments for prostate cancer available to date (photon external beam RT, brachytherapy) allow high

rates of local control without excessive toxicity; hence the lack of need for FNT in this area.

As for other tumor types, the effectiveness of fast neutrons in the adenoid cystic salivary gland cancers was additionally

corroborated by Douglas et al [22] and Brackrock et al [23]. An interesting study estimating the outcomes of FNT and

brachytherapy for adenoid cystic carcinoma of the trachea was published in 2008 by Bittner et al [50], presenting excellent

results, with a 5-year OS of 89.4% and toxicity within grade 3.

It should be emphasized that a majority of studies on FNT published in the 2000s were based on the data collected in the

1980s and 1990s, and only a few of them, enrolling small cohorts of patients, involved neutron units built after 2000. For

instance, Stelzer et al [27] applied FNT to treat 10 patients with glioblastoma; the treatment was carried out under positron-

emission tomography guidance. Similar to the previous studies on brain tumors, the low-radiation tolerance of brain tissue

critically limited the odds of success, even with the modern conformal techniques and positron-emission tomography [27].

In the 2000s, only a few FNT facilities worldwide were still operating—in the US, Germany, and Russia [13]. The clinical

experience of FNT in Russia is remarkable due to the extensive nonmilitary nuclear infrastructure historically related to the

advanced physical research in the former Soviet Union. Gulidov et al [79] successfully applied fast reactor neutrons from a

nuclear power station to different cancers, mostly H&N and breast cancers. Lukina et al [80] presented the results of mixed

neutron-photon treatment for 33 patients with soft tissue sarcomas, achieving 100% response and 42% OS. One of the last

fast neutron centers was functioning in Tomsk until the 2010s.

Being a relatively superficial RT target, locally advanced breast cancers also showed a good response to FNT. Moreover,

breast cancers remain among the tumors most responsive to FNT. For instance, in a study comprising fast reactor neutron and

photon arms, enrolling, respectively, 95 and 106 patients with T4Nþ breast cancer, the estimated 10-year survival was,

respectively, 32.8% versus 17.1% (P¼ .02) [36, 81]. Startseva et al [37] achieved a 70.8% 10-year OS in patients with different

stages of breast cancer by using 6.3-MeV FNT as a preoperative modality. For recurrent breast tumors, 8-year OS of 87.6%

after FNT was reported by Velikaya et al [38].
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However, local therapy generally aims to achieve acceptable local control with minimal adverse impact on a patient’s life

quality. Similar to the case of prostate cancer, a variety of much safer therapy modalities are now available for breast cancer,

and FNT is not on this list. Over the last 2 decades, the only clinical value of FNT has been for rare tumors or cases with

critically limited actionable opportunities.

For instance, Liao et al [18] reported 5-year local control after FNT in 66% of patients with H&N mucosal melanoma, albeit at

survival rates critically undermined because of early distant progression (5-year OS of 21%). Another fatal tumor, pleural

mesothelioma, was treated with neutrons by Patel et al [48]; the outcomes were poor as FNT did not bring survival benefits due

to the distant expansion of the tumor.

Macomber et al [82] applied FNT for refractory cutaneous Merkel cell carcinoma in a patient with a previous treatment

failure; LC was achieved with 18 Gy in 12 fractions and lasted for 2 years. Schaub et al [83] presented 2 promising

observations of Merkel cell carcinoma treated with FNT, noting a potential relationship between high-LET neutron beam

irradiation and elevated immune response. Choynzonov et al [49] reported 45 patients with resistant forms of thyroid cancer,

32.8% of them responding to FNT (alone or combined with surgery); the only manifestation of local toxicity was skin

epidermitis grade 1 to 3.

Overall, salivary gland tumors show the best rates of local response to FNT (10-year LC of 79%) with improved survival

rates (10-year OS of 62%) and osteoradionecrosis incidence comparable to photons (2% versus 7%), based on the data for

545 patients [24]. Until 2015, fast neutrons represented an officially recommended RT option for salivary gland cancers,

excluded from the guidelines mainly due to its low availability [84].

Prospects
In the new millennium, hadron therapy is a constant focus of attention [85, 86]. The latest technical improvements, cost

reduction for the facilities development, and the increasing clinical evidence make the unconventional irradiation quite

promising. Alongside protons, heavy carbon ions, and epithermal neutrons, fast neutrons appear highly relevant as well,

especially for extremely aggressive and therapy-resistant tumors.

One of the clues to better understanding the clinical controversy associated with FNT lies in the methods of beam

generation. The available sources of fast neutrons include cyclotrons, linear proton accelerators, nuclear station reactors, and

specific neutron generators. The biological effects of high-LET beams strongly depend on their source, energy, and

fractionation. The differences in beam characteristics are partially responsible for the controversy of clinical evidence.

Owing to the inverse dose per fraction effect on RBE, especially in late-responding normal tissues, the trend has eventually

shifted toward the use of smaller doses per fraction, with the optimal 10 to 18 Gy corresponding to 1 to 1.8 Gy per fraction [87].

The small-dose schemes of FNT allowed standardization of the treatment and reduced severity of side effects. Mixed

irradiation with neutrons and photons or gamma rays, featured in several clinical trials, proved as effective as pure neutrons

while being remarkably less toxic as compared with the early low-energy neutron units with inferior beam characteristics and

primitive delivery equipment, which negatively affected the clinical outcomes [62, 88].

As fast neutrons have been invariably associated with severe early and late toxicity, it would be reasonable to expect the

concomitantly increased risks of radiation-related secondary tumors. Indeed, some of the long-term analyses of secondary

malignancies in the aftermath of FNT showed such an increase. For instance, MacDougall et al [89] studied the delayed

effects of FNT in 620 patients after RT, with a significant increase of secondary tumors in the FNT population. Similarly,

Expósito et al [90] reported an increase in the rates of secondary malignancies based on follow-up clinical data for 1377

patients after FNT.

Despite the allegation of high toxicity of FNT [91, 92] (based on largely outdated sets of clinical evidence in terms of

irradiation regimens and equipment used for neutron beam generation), FNT holds great promise for the treatment of various

radioresistant tumors with critically limited therapeutic options [93]. Contemporary studies continue to accumulate essential

radiobiological data on high-LET therapy involving proton and C-ion irradiation applicable to FNT of similar parameters (eg,

Bragg peak, ionization density) [94, 95].

Fast neutron beam radiobiology has multiple abovementioned uncertainties, which are challenging to address. The last

decades brought such innovations as advanced multileaf collimators, new means for the neutron beam intensity modulation,

and new toxicity correction methods [75, 96–98]. The recent introduction of the Monte-Carlo–based neutron treatment

planning system will potentially facilitate the FNT reinvention [93, 99]. Most of the previous FNT results were achieved without

even seeing the isodose levels. Recent advances in the intensity modulation allow a 20% to 80% reduction of the fast-neutron
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dose to susceptible organs at risk in the H&N area [100]. The latest technical solutions can make neutron generators compact

and conveniently transformed into portable cost-effective clinical units [101, 102].

Conclusion
Although fast neutrons have a bad name due to their controversial clinical track record, their overall potential in cancer

treatment seems to be underestimated. Based on radiobiological data, fast neutrons might kill tumor cells with comparable

effectiveness as the C-ions. Fast neutrons, an established modality for the treatment of certain tumors, can be used for rare

radioresistant superficially located tumors, without obvious effective treatment or as a boost in combination with less toxic

irradiation modalities. With technological upgrades and randomized trials, fast neutrons are guaranteed a limited, but special,

place in modern radiation oncology.
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