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Abstract: Coffee Silver Skin (CSS) is the unique by-product discarded after the roasting of coffee
beans. This research aimed to evaluate the effect of two levels of CSS (1.5% and 3%) added as a
natural ingredient in new formulations of chicken meat burgers. This is one of the first studies
proposing a “formulation approach” to control the emergence of off flavours after meat cooking.
Physical, chemical, and sensory analyses were carried out, within the CSS content and the evolution
of volatile organic compounds in different samples. Newly formulated chicken burgers could limit
food waste, while also becoming a source of fibres, minerals, and bioactive molecules. CSS limited
weight losses (after cooking process) to 10.50% (1.5% addition) and 11.05% (3% addition), significantly
lower (p < 0.01) than the control (23.85%). In cooked burgers, the occurrence of hexanal was reduced
from 55.1% (CTRL T0) to 11.7% (CSS T0 1.5%) to 0 (CSS T0 3%). As for the limitation of off-flavours,
CSS also showed good activity, contrasting with the emergence of octanal, alcohols and other markers
of lipid oxidation. From the sensory test carried out, the volatile profile of CSS does not seem to
impair the flavour of burgers, though at higher percentages hydrocarbons and pyrazines are traceable.
The thiobarbituric acid reactive substances (TBARS assay confirmed the protective effect of CSS
against oxidation.

Keywords: coffee by-products; chicken burger; meat formulation; cooking yield; volatile compounds;
warmed off-flavours

1. Introduction

Minimally processed raw by-products are available in large quantities and their re-
utilization might be enhanced to recover bioactive compounds, on top of their promising
technological properties [1]. Many valuable molecules such as phenolic acids, carotenoids,
and flavonoids can mitigate oxidation occurrence, so there is an increased demand for new
methods and technologies to recover and use these [2]. Many publications attest the positive
role of by-products’ addition in meat formulations to limit oxidation occurrence [3,4].

Oswell et al. [5] explain how some unprocessed food components can help reducing
the list of ingredients of a formulation, supporting trends towards the clean and green
label. In fact, many by-products have technological properties, acting as additives and
ingredients [6].

Coffee Silver Skin (CSS) is a thin layer tightly adherent to coffee seeds, present in all
coffee species and impossible to separate when seeds are unroasted [7]. Among all the
by-products of the coffee industry, CSS is unique in being discarded immediately after the
roasting step [8].

Common features of CSS are high content in fibres (both soluble and insoluble), in
minerals such as Calcium and Potassium, and in capability as an adsorbing material [2].

To our knowledge, there are no studies of the inclusion of untreated coffee silver skin
(CSS) in meat-based foods such as chicken products. It is well known that poultry meat is
easily oxidised; its content of monounsaturated fatty acids (MUFAs) and polyunsaturated
fatty acids (PUFAs) (including phospholipids that are distributed in muscles and cellular
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membranes) make it the elective substrate for lipid oxidation [3]. Feeding of animals
is responsible for many qualitative characteristics of meat, progressing to the eventual
development of off-flavours (after slaughtering) [9,10]. In chicken products, clove, oregano,
thyme, and sage were successfully used as natural substitutes of synthetic antioxidants [11].
Kim et al. [12] used residues of coffee brewing (spent coffee) as antioxidants against meat
oxidation in raw and cooked samples. Recently Delgado-Ospina et al. [13] added cocoa pod
husk flour, discovering an interesting application for quality improvement of frankfurters.
Cooked and refrigerated meat products develop undesired rancidity and a great variety of
off flavours known as warmed over flavours (WOF). These defects can also come about
by heating ready to eat foods or high-processed meat-based items and can be present in
many products where food remains exposed to light, oxygen, and heat for a long time
(canteens, fast food outlets, collective restaurants). In the study by Lungu et al. [14], most
respondents affirmed exposure to WOF defective foods, especially ready to eat meats;
moreover, besides the reduced sensory quality, respondents confirmed a preference for
defective foods due to their lower cost. The development of WOFs does not impair food
safety, but a high oxidation rate affects the nutritional profile; therefore a huge quantity of
safe food is discarded daily due to detrimental sensory defects.

In this scenario, the present research investigated the chemical and physical properties
of CSS against oxidative phenomena after the cooking of chicken burgers. This study
points to the nutritional advantages of including CSS as a new ingredient for chicken
burger recipes, while testing some technological functionalities. Lastly, we were able to
evaluate the role of CSS on the shelf life of refrigerated cooked burger, focusing on the
spreading of WOF and oxidation markers along with an analysis of the volatile compounds
and a sensory test with trained panellists.

2. Materials and Methods
2.1. Coffee Silver Skin

Coffee silver skin (CSS) was received from the toasting plant Marcafè Torrefazione
Adriatica s.p.a. (Giulianova, Italy). After 10 cycles of roasting (10 × 240 kg of roasted
coffee), 3.3 kg of CSS were recovered. CSS used for this experiment was a blend of 5 arabica
varieties (Coffea arabica) (India Arabica, India Cherry, Vietnam, India Mysore, and India
Caracolito) and 5 robusta varieties (Coffea canephora) (India Parchment, Santos, Uganda
CRV 18, Uganda CRV 17, Togo). CSS was ground at 10,200 rpm for 1 min (Bimby®, mod.
TM 31, Wuppertal, Germany) until arriving at a particle size of 125–250 µm. Then, physical,
and chemical analyses were carried out. CSS was kept frozen at −20 ◦C until analysis.
Qualitative analyses were carried out and results were reported in our previous study [2].

2.2. Preparation of Burgers

Chicken breast fillets were purchased on the market (antibiotic-free, genetically modi-
fied organism-free diet, and high welfare/partial free range system meat).

Chicken burgers were obtained from 1 kg of fresh breast fillets with the addition of
1.4% salt and 5.0% water. These ingredients were cut and mixed for 2 min at 1800 rpm with
Bimby® mixer (Wuppertal, Germany), mod. TM 31, to obtain a perfectly homogenised blend.

From the whole mixture (meat, water, and salt) 3 batches were obtained: control,
without any addition of coffee silver skin (CTRL), coffee silver skin addition of +1.5% (CSS
1.5%) and coffee silver skin addition of +3.0% (CSS 3.0%). CSS was added by mixing for
30 s at 500 rpm.

8 burgers (45 g each approximately) were prepared for each experimental batch
(Figure 1).
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Figure 1. Uncooked burgers of the three experimental batches: (a) control (CTRL) without CSS
additions; (b) with addition of +1.5% of coffee silver skin (CSS 1.5%); (c) with +3.0% of coffee silver
skin (CSS 3.0%).

Then, burgers were cooked on an electrical griddle Bosch (München, Germany), mod.
TFB4431V, potency 2000 W for 4 min until reaching an internal temperature of 90–92 ◦C.
Cooked burgers are shown in Figure 2. After cooking, some burgers were eaten during
the panel test, and others were left singularly covered with a plastic oxygen permeable
film at +4 ◦C for 72 and 120 h. The utilization of this covering film was chosen to allow
the permeability of O2 and thus the spreading of WOFs and other products of oxidation.
Moreover, this condition is the closest to what can happen to consumers at home. The trial
was replicated on another two independent occasions.
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Figure 2. Cooked burgers of the three experimental batches: (a) control (CTRL); (b) with addition of
+1.5% of coffee silver skin (CSS 1.5%); (c) with +3.0% of coffee silver skin (CSS 3.0%).

2.3. Physico-Chemical, Colour, and Compositional Analyses

The values of water activity (aw) were obtained with the Aqualab 4 TE kit (Court
Pullman, WA, USA). Values of pH were taken with a pH meter (model 3510, Jenway, Stone,
UK). All values were measured in triplicate.

Colour was determined in different locations of burger samples by a colorimeter CR-5
(Spectrally based, Konica Minolta, Tokyo, Japan) with D65 light source and observer 10◦.
Colour was expressed as L* (lightness, intensity of white colour), a* (+a, red; −a, green) and
b* (+b, yellow; −b, blue) values. Samples were measured in triplicate and at least fifteen
measurements were obtained for each batch. To better define the final color observed, the
saturation index (chroma, C*) was calculated according to Formula (1).

C* = (a*2 + b*2)1/2 (1)

Proximate analysis on moisture, proteins, and ashes was obtained following the
Association of Official Analytical Chemists procedure [15]. Total lipids were measured
using a modification of the chloroform to methanol procedure described by Folch et al. [16].

The determination of such micronutrients as calcium, potassium, and total dietary
fibers (TDF) was performed by calculating their presence in a 45 g burger at different
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formulations; the estimation of Ca, K, and TDF accounts of the values found in our
previous work on the characterization of CSS [2]. Quantities found refer to the presence of
a defined element and not on bioavailability. We used easy proportions to find percentages.

Here, as example, we propose the calculation used for the calcium determination (2),
(3) in 1.5% CSS formulation:

546.5 mg:100 g = 3.3 g:x (2)

x =
(546.5 mg ∗ 100 g)

3.3 g
= 16.54 mg (3)

where 546.5 mg is the Ca content in 100 g of CSS, 3.3 g is the amount of CSS in a 45 g burger,
and 16.54 mg is the intake of Ca in a 45 g burger formulated with 1.5% of CSS.

2.4. Cooking Yield

The cooking yield parameter is a useful and practical tool to easily calculate the
quantity of meat available for consumption after the cooking process. Uncooked samples
were prepared and weighted singularly, then underwent the established cooking process
and weighed again. This formula was used to arrive at the result (4)

100 −
(
(raw burger weight − cooked burger weight)

(raw burger weight)
× 100

)
(4)

2.5. Thiobarbituric Acid Reacting Substances (TBARS) Assay

A thiobarbituric reactant species test was carried out following the methods of
Soyer et al. [17] with some modifications. Raw meat (25 g) was ground in 125 mL of
pure water for 2 min to homogenise the mixture. From this, 5 mL were filtered and trans-
ferred in falcon tubes (15 mL) with 3 mL of a solution containing trichloroacetic acid (15%,
w/v) and thiobarbituric acid (80 mM) in HCl 0.25 N. Samples underwent a centrifuga-
tion step (2000 rpm for 5 min) to precipitate proteins. After centrifugation, 3 mL were
transferred in tapped glass tubes and kept at 40 ◦C for 90 min.

Samples obtained were read at 532 nm with a spectrophotometer UV-VIS (Jenway,
Stone, UK) after a further filtration with filters 0.45 µm. All samples were read in double,
and data were expressed as mean ± standard deviation.

The calibration curve was obtained by using a 1,1,3,3-tetraetoxypropane (Sigma-Aldrich,
St. Louis, MO, USA, ≥96%) in methanol, at a concentration range of 0.625–20 µM.

2.6. Volatile Compounds (VOCs)

The experimental plan was designed to have triplicate samples of each formulation
of T0 cooked samples, T72 and T120 samples. Cooked samples T0 were immediately
chopped and put in glassy vials of 20 mL capacity (Perkin Elmer, Waltham, MA, USA)
with approximately 3 g of meat each, tightly closed and stocked at −40 ◦C, assuring the
highest headspace, until gas chromatograph mass spectrometer (GC-MS) analysis. GC-MS
analysis was performed with a gas chromatograph (Clarus 580, Perkin Elmer, Waltham,
MA, USA) coupled with a mass spectrometer (SQ8S, Perkin Elmer Waltham, MA, USA).
Other samples were left in refrigerated conditions for the time required to obtain T72 and
T120, then carefully chopped and stocked in 20 mL vials at −40 ◦C, until GC-MS analysis.

The GC-MS analysis followed the method proposed by Qi et al. [18] with some
modifications. Vials were left for 1 h at room temperature, then put in a water bath
at 50 ◦C for 20 min. Volatiles from meat were extracted with a headspace solid phase
microextraction fibre (SPME 65 µm Polydimethylsiloxane/Divinylbenzene (PDMS/DVB);
Supelco, Bellofonte, PA, USA) and collected for 30 min at 40 ◦C, then inserted into the
GC injector and desorbed for 3 min at 250 ◦C. Volatile compounds were separated on a
Capillary GC column ZB- Semi Volatiles (30 m length, 0.25 mm internal diameter, 0.25 µm
film thickness: Phenomenex, Torrance, CA, USA). The oven temperature was maintained
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for 3 min at 40 ◦C, increased at 3 ◦C/min to 70 ◦C, then at 5 ◦C/min to 180 ◦C, then at
10 ◦C/min to 260 ◦C, and maintained for 5 min at 260 ◦C. Helium was the carrier gas with
a constant flow of 1 mL/min. The mass-selective detector was operated in the electron
impact mode (70 eV) and full scan mode (35–500 m/z range). The identification was
performed using the National Institute of Standards and Technology mass spectral library
(NIST Mass Spectral library, Search Program version 2.0, National Institute of Standards
and Technology, U.S. Department of Commerce, Gaithersburg, MD, USA).

2.7. Descriptive Sensory Analysis of WOF Assessment, Rancidity and Extraneous Flavours

Chicken burger samples were evaluated for four classes of descriptors grouped as:
odour, flavour, taste, and aftertaste [19]. The vocabulary used for descriptors comes from
the review of recent literature about rancidity and warmed off-flavours (WOF) assessment
in meat products [20–24].

A panel group of six women and two men from twenty to fifty years old was trained
for evaluation of quality assessment of meat burgers. After their recruitment, panellists
were screened for their ability to distinguish odours and tastes, then were trained for
vocabulary development through a series of triangular tests (ISO), 8586:2012 [25]. Training
duration was 80 h, including familiarization with relevant descriptive terms and ways of
perceiving the selection and quantification of the sensory characteristics of cooked meat, as
well as the use of intensity scales (ISO) 4121:2003 [26].

Panellists were asked to taste cooked burgers (T0) and cooked burgers refrigerated
at +4 ◦C for 72 h. Samples of 120 h at +4 ◦C were not tasted to avoid any microbial
contamination. A hot bath at 72 ◦C was used to heat up to the core temperature of 70 ◦C.
Panellists were provided with individual templates, where descriptors were grouped per
section. They used a scale from 1 to 5 where 1 meant the absence of the attribute while 5 the
maximum rate. Pie shaped pieces of warm burgers were quickly served to panellists trying
to maintain the temperature between 70 and 60 ◦C as recommended by [27]. Samples were
codified with random numbers to avoid external influences on liking rating of panellists.
Meat pieces were served on white plates. All sensory tests and training sessions were
carried out in the sensory laboratory of the University of Teramo that fulfils the required
standards for these analyses according to (ISO) 8589:2007 [28].

2.8. Statistical Analysis

All determinations were done in triplicate. Means and relative standard deviations
were calculated. Analysis of variance (ANOVA) was performed to test the significance of
the effects of the factor variables (formulation, time of storage); differences among means
were separated by the least significant differences (LSD) test.

Statistical analysis of data was performed using XLSTAT software version 2019.1 for
Microsoft Excel (Addinsoft, New York, NY, USA). All results were considered statistically
significant at p < 0.05.

3. Results and Discussion

Results of qualitative characteristics (proximate composition, colour, pH, aw) of un-
cooked and immediately cooked burgers are shown and discussed in the first section,
highlighting significant differences among treatments. Data shown and discussed in the
second section (TBARS, VOCs, sensory analysis) evidence the significant differences be-
tween sampling times with respect to the oxidative phenomena occurred in the refrigerated
cooked chicken burger samples.

3.1. Effect of CSS on the Qualitative Characteristics of Burger Samples
3.1.1. Compositive Characteristics

Results from proximate compositional analyses of meat are shown in Table 1 (un-
cooked burgers); data agree with the literature [29,30]. Generally, macro-elements checked
do not change so much. Moisture, proteins, and lipids remained at around their normal
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values; ashes had a small significant increase reaching the highest point of 2.69% for 3%
CSS sample. TDF for samples (calculated as reported in Section 2.3) are 1.70% and 3.40%,
for 1.5% and 3% CSS, respectively.

Table 1. Proximate composition (mean ± standard deviation, SD) of raw burger samples (before
cooking): control (CTRL), with addition of +1.5% of coffee silver skin (CSS 1.5%) and +3.0% of coffee
silver skin (CSS 3.0%).

Sample Moisture (%) Proteins (%) Lipids (%) Ashes (%)

CTRL 74.56 ± 0.05 19.72 ± 0.05 2.48 ± 0.01 1.97 a ± 0.01
CSS 1.5% 74.14 ± 0.03 20.01 ± 0.23 2.74 ± 0.02 2.11 b ± 0.01
CSS 3% 73.39 ± 0.05 19.62 ± 0.05 2.69 ± 0.01 2.69 c ± 0.01

sign. n.s. n.s. n.s. **
Legend: data followed by different superscript letters, in the same column, are significantly different (least
significant difference (LSD) test, p < 0.05); asterisks indicate significance at ** p < 0.01, n.s. not significant.

pH of breast fillets used for the burger production was 5.93 ± 0.04, not differing with
reported values which indicate values around 5.89–6.00 [31]. Formulated burgers (un-
cooked and cooked) registered pH values, shown in Table 2, in line with other sources [32].
Cooked burgers had similar pH and aw values.

Table 2. Results (mean ± SD) of pH, water activity (aw) values and cooking yield (%) in burger
samples (CTRL, control; CSS 1.5% and CSS 3.0%, with +1.5% and +3.0% of coffee silver skin as
ingredient, respectively).

pH Uncooked pH Cooked aw Cooked Cooking Yield %

CTRL 5.82 ± 0.03 6.10 ± 0.03 0.985 ± 0.0013 76.15 a ± 0.58
CSS 1.5% 5.75 ± 0.01 6.06 ± 0.01 0.986 ± 0.0016 89.5 b ± 0.36
CSS 3% 5.75 ± 0.01 6.02 ± 0.01 0.986 ± 0.0007 88.95 b ± 0.52

sign. n.s. n.s. n.s. **
Legend: data followed by different superscript letters, in the same column, are significantly different (LSD test,
p < 0.05); asterisks indicate significance at ** p < 0.01; n.s. not significant.

In eating a newly formulated burger (45 g) with a CSS inclusion of 1.5%, 16.54 mg of
calcium and 65.7 mg of potassium can be assumed. Harvard Health Publishing in 2019
reviewed the daily intake of calcium for women between 50 and 71 years old fixing this at
1200 mg [33]. The same value was established by the National Institute of Health (NIH)
which also defines limits [34] for men at 1000 mg. Potassium was fixed at 3400 mg and
2600 mg for males and females from 19 to 50 years old, respectively.

For marketing within the European Union (EU), it is very important to define whether
by-products, such as CSS, need to obtain an approval as ingredient for novel foods [34],
with special reference to legal status within the EU and potential options for producers to
obtain approval according to Novel Food [35–37].

3.1.2. Cooking Yield

The cooking yield allows calculation of how much water and fats a food item loses
after a cooking process. The US Department of Agriculture (USDA) in 2014 [38] released a
table of cooking yield and retention factors for many meat products. These factors can be
used to calculate nutritional values where analytical data for cooked foods are unavailable.
Obviously, meat represents an important class of cooked foods and in this way the cooking
yield covers an important aspect. Beside this, the cooking yield parameter tells us how
much in terms of weight a formulation has lost, and this is also an index of profitability.

Table 2 shows that the addition of coffee by-product allowed an increase in cooking
yield (%) in respect to the control. While the control lost 23.85% of its initial weight,
CSS addition limited this loss to just 10.50% (+1.5% CSS addition) and 11.06% (+3% CSS
addition). This trait of CSS comes from good water holding capacity (WHC) and oil holding
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capacity (OHC).For CSS, values of WHC 5.11 ± 0.20 and 5.5 ± 0.2 were found; for OHC,
these were 4.72 ± 0.10 and 4.8 ± 0.2 [39–43]. The increased cooking yield also marked a
significant difference (p < 0.01) between CTRL and CSS added burgers, while burgers with
CSS, at both percentages, were similar as regards cooking yield.

Losses are limited even with little addition, registering a high capacity and a possible
increase in economical revenue.

3.1.3. Colour

Breast fillets used to formulate burgers had a value L* of 45.91, on average according
to Ziober et al. [43], L* > 53 denoted pale soft exudative (PSE), L* < 44 is analogous to
dark firm dry (DFD), and 44 ≤ L* ≤ 53 is normal meat. Colour values of burgers are in
line with what Longato et al. [4] have found in their study on chicken burgers with the
addition of hazelnut skin; their results on uncooked (control) samples are L* a* b* values of
53.83 ± 4.48, 0.30 ± 0.69, 9.12 ± 1.8, and 64.98 ± 2.55, 1.64 ± 0.55, 15.48 ± 1.15 for cooked
burgers. Data on the colour determination (uncooked and cooked samples) are reported in
Table 3.

Table 3. Colour values (mean ± SD) of L* (lightness), a* (redness), b* (yellowness), and C* (chroma) for uncooked burgers
and cooked burgers, in control (CTRL) and in samples with +1.5% (CSS 1.5%) and +3.0% (CSS 3.0%) of coffee silver skin
as ingredient.

Uncooked Samples L* a* b* C*

CTRL 45.91 ± 0.18 a 0.28 ± 0.11 b 10.95 ± 0.53 10.96 ± 0.53 b

CSS 1.5% 32.83 ± 1.33 b 3.81 ± 1.21 a 13.74 ± 1.58 15.42 ± 1.82 a

CSS 3% 29.40 ± 0.71 c 4.96 ± 0.83 a 14.60 ± 0.31 14.28 ± 0.52 a

sign. ** ** n.s. *

Cooked Samples

CTRL 56.12 ± 0.76 a 1.18 ± 0.77 16.75 ± 0.49 a 16.80 ± 1.08 a

CSS 1.5% 47.35 ± 0.44 b 2.25 ± 0.60 10.94 ± 0.36 b 11.17 ± 0.42 b

CSS 3% 43.54 ± 0.27 b 2.83 ± 0.60 12.05 ± 0.40 b 12.38 ± 1.22 b

sign. * n.s. ** **

Legend: data followed by different superscript letters, in the same column, are significantly different (LSD test, p < 0.05); asterisks indicate
significance at * p <0.05; ** p < 0.01; n.s. not significant.

CSS is easily reducible to a fine crumb and this determined a uniform distribution.
Burgers with CSS are in fact darker, more yellow, and redder with respect to the control.
Unfortunately, no studies are available to compare these data. Chroma (C*) values for
uncooked and cooked chicken burgers were searched by de Oliveira et al. [44], who added
chia seeds to a blend of breast and thigh chicken skinless meat and pork backfat. They
reported levels of 14.0 ± 4.8 (raw samples), and 16.8 ± 2.4 (grilled samples). As in our case,
burgers were darker than control. Conversely, their data do not show higher saturation.
C* values of burgers here analysed are shown in Table 3. Generally, the addition of
CSS increased the C* value meaning a higher saturation and, thus, a more vivid colour
after cooking.

3.2. Effect of CSS on the Shelf Life of Cooked Chicken Burger Samples
3.2.1. Thiobarbituric Acid Reacting Substances (TBARS) Test

The TBARS values of cooked samples are presented in Figure 3. Generally, over time
TBARS values increase in all the cases, but the CTRL set showed significantly higher values
immediately after cooking (p < 0.05), as well as a statistically significant increase during
the refrigerated storage (p < 0.05). In all burgers with CSS, TBARS mean values were lower
than the acceptance limit of TBARS for rancidity (1.0 mg MDA(Malondialdehyde)/kg) [45]
until 72 h; after 120 h CSS3% showed a TBARS mean value near to the critical content,
while this limit was exceeded in all samples without CSS.
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Figure 3. Results of Thiobarbituric acid reacting substances (TBARS) test, expressed as malon-
dialdehyde (mg MDA kg−1) in control (CTRL) and burgers formulated with CSS (1.5% and 3%,
respectively), immediately after cooking (T0) and after refrigerated storage (at 4 ◦C, for 72 and 120 h,
T72 and T120 respectively). Results are expressed as means ± standard deviations. Different lowercase
letters indicate significant differences (p < 0.05) among storage time of each batch; different uppercase
letters indicate significant differences (p < 0.05) among different batches, at same storage time.

The TBARS test is helpful for a first screening of the oxidation rate of a food, but it
does not discriminate which kind of oxidation is occurring. We cannot be sure if what is
observed with this assay comes from lipid oxidation itself, or if proteins too have taken part
in the process and are the principal cause starting the reactions. As is known, chicken meat
is poor in lipids that are mainly unsaturated fatty acids which are the elective substrate for
the oxidation. Moreover, [46] have searched for the lipidic profile of CSS and their results
show a small content of lipids, which are mainly saturated fatty acids (SFAs). So, one
could refer all the defective odours and tastes to the lipidic oxidation complex of reactions.
Unfortunately, the oxidation process is very unstable and sometimes unpredictable. Besides
lipids, proteins and iron ions boost the process within other factors (rise in temperature,
oxygen and light exposure, salt addition, etc.) making TBARS not such an affordable
method to establish the lipidic oxidative status of a food [47,48].

Anyway, from our results we can imagine that the contribution of CSS to the global
oxidation burgers and its lipids increment are almost zero, while its protective effect seems
to be promising. This may depend on the high content in phenolic and bioactive species.

3.2.2. Volatile Compounds (VOCs) and Warmed Off-Flavours (WOF) in Chicken Burgers

Among analyses used in this work, GC-MS analysis was used to trace markers of
oxidation as a more reliable method than TBARS or any other faster, but less accurate,
method. Results show a complex profile of compounds emerging from oxidative phe-
nomena, Maillard reaction occurrence, and by-products addition. Table 4 contains all the
volatile compounds found in CSS-containing samples. Data depicted refer to T0 and T72
samples. Chromatograms are shown as Supplementary Material (Figures S1–S3).
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Table 4. Qualitative profile of main volatile compounds (area %) in cooked samples (control, addition of coffee silver skin 1.5 and 3%), immediately after cooking process (T0) and after
72 h of storage at +4 ◦C (T72).

VOCCs from Burgers’ Samples
Burgers T0 Burgers T72

CTRL T0 CSS 1.5% T0 CSS 3% T0 CTRL T72 CSS 1.5% T72 CSS 3% T72 Sign.

Aldehydes

2-Decenal, (Z)- nd nd 1.25 nd nd nd *
2-Nonenal, (E)- nd nd nd nd 2.82 nd *
10-Undecenal nd nd 4.06 nd nd nd *
Benzaldehyde nd 6.27 c 4.46 b nd 3.62 a 7.42 d *

Benzaldehyde, 2,5-bis[(trimethylsilyl)oxy]- 0.86 a nd nd nd 0.72 a 1.73 b *
Butanal, 2-methyl- nd nd 5.48 a nd nd 46.86 b **
Butanal-3 methyl nd nd 5.67 a nd 4.11 a 7.00 b *

Heptanal 1.77 a 4.46 b 2.29 a nd *
Hexanal 55.1 b 11.7 a nd 72 c nd nd ***
Octanal 41.2 b nd nd 7.94 a nd nd *
Pentanal 2.09 a nd nd nd nd nd *

Propanal, 2-methyl- nd nd 3.34 B nd nd 1.98 a *

Alcohols

1,5-Pentanediol, 3-methyl- nd nd 8.96 b nd nd 3.90 a *
1-Methylcyclopropanemethanol nd nd nd nd nd 3.71 a *

2-Hexen-1-ol, (Z)- nd nd nd nd 10.52 nd *
3-Decyn-2-ol nd nd nd nd 5.76 nd *

2-Nonen-1-ol, (E)- 0.58 a 10.76 b 8.38 a 8.80 a nd nd *
2-Octen-1-ol, (E)- nd nd 2.03 nd nd nd *

Ketones

2,3-Octanedione nd nd nd 5.14 nd nd *
7,9-Di-tert-butyl-1-oxaspiro (4,5)

deca-6,9-diene-2,8-dione nd nd 3.78 b 0.20 a nd nd *
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Table 4. Cont.

VOCCs from Burgers’ Samples
Burgers T0 Burgers T72

CTRL T0 CSS 1.5% T0 CSS 3% T0 CTRL T72 CSS 1.5% T72 CSS 3% T72 Sign.

Nitrogen-containing compounds

2-(Aziridinylethyl)amine nd 16.09 c 7.43 b nd 15.24 c 4.59 a *
2,6,6-Trimethyl-bicyclo [3.1.1]hept-3-ylamine nd nd nd nd 4.42 nd *

Benzeneethanamine,
2,5-difluoro-β,3,4-trihydroxy-N-methyl- nd nd 4.37 nd nd nd *

Oxime-, methoxy-phenyl-_ nd nd nd nd nd 1.48 *
Propanamide, 2-hydroxy- nd nd 8.86 a nd 20.18 b nd *

Topotecan nd nd nd nd 8.81 nd *

Hydrocarbons

2-Trifluoroacetoxydodecane nd 3.98 nd nd nd nd *
3-Trifluoroacetoxydodecane nd 4.35 nd nd nd nd *

Butane, 2-nitro- nd 3.74 nd nd nd nd *
Cyclohexene, 1-methyl-4-(1-methylethenyl)-, (S)- nd nd nd nd nd 3.43 *

Ergosta-5,22-dien-3-ol, acetate, (3β,22E)- nd nd nd nd 10.26 nd *
Ethylbenzene nd nd 1.56 a nd nd 4.17 b *

Hydroperoxide, heptyl nd 3.87 nd nd nd nd *
Propane nd nd nd nd nd 4.05 *
p-Xylene nd 2.57 a nd nd 2.48 a 3.00 b *

Esters

1,2-Benzenedicarboxylic acid, butyl octyl ester nd nd nd 0.04 nd nd *

Other compounds

2-Formylhistamine nd nd nd nd 5.55 nd *
Butylated Hydroxytoluene nd nd nd 0.20 nd nd *

Nitrous oxide nd nd 3.91 nd nd nd *
Pregnan-18-oic acid,3,11,21-trihydroxy-20-oxo-,

γ-lactone, (3β,5α,11β)- nd nd 1.24 nd nd nd *

Legend: nd, not detectable; data followed by different superscript letters, in the same row, are significantly different (LSD test, p < 0.05); asterisks indicate significance at * p < 0.05; ** p < 0.01; *** p < 0.001.
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According to Chen et al. [49], most of the typical odorants from cooked chicken meat
are caused by phospholipids oxidation/degradation that led to the formation of long-
chain aldehydes such as hexanal, (Z)-2-decenal and (E)-2-decenal. In any case, even if
responsible for WOF development, these aldehydes are key aroma compounds of freshly
cooked chicken meat. CSS samples showed these classes even if ketones and esters were
not found. T0 1.5% added samples had hydrocarbons as the first class traced, followed by
aldehydes, nitrogen containing compounds and alcohols. T0 3% added samples showed
aldehydes at first place followed by Nitrogen containing compounds, alcohols, hydro-
carbons, and other compounds. T72 containing 1.5% of CSS showed nitrogen containing
compounds, hydrocarbons, other compounds, aldehydes, alcohols, and ketones, while
3% addition showed aldehydes, hydrocarbons, alcohols, other compounds, and Nitrogen
containing compounds.

In general, patties tested in this study, especially CTRL, seem to have a small com-
pounds presence if compared with other articles [50–52]. To our knowledge, this is one
of the first studies where cooking conditions did not pass 92 ◦C and were not prolonged
for more than four minutes. These conditions were selected to best simulate domestic
conditions using an electric device set at medium cooking heat. Most studies on chicken
meat burgers have tested grilled or oven-cooked patties. Other references on chicken
meat evaluated entire boiled or roasted chicken. This is a fundamental step in explaining,
for example, the absence of sulphur containing volatiles. In line with findings of other
researchers [53], these compounds come from the interaction among Maillard reaction
compounds and lipid oxidation products. Thus, quick cooking processes, medium/low
heating, or their combination seem not to favour this interaction. These settings did not
allow the development of traceable Maillard reaction products (desired and undesired).
T72 (CTRL) samples showed an increase in concentration of hexanal, the emergence of
heptanal, some alcohols such as 2-Nonen-1-ol, (E)-, ketones as 2,3-Octanedione and 7,9-
Di-tert-butyl-1-oxaspiro (4,5) deca-6,9-diene-2,8-dione, and just one Sulphur containing
compound: N-Methyl-taurine. These are all markers of lipid oxidation and muscle damage.
The addition of by-products provoked a mitigation of some WOF species, but also gave to
patties specific odorants not conducible to meat oxidation and potentially undesirable.

CSS addition reduced the occurrence of aldehydes such as hexanal that reduced
from 55.1% (CTRL T0) to 11.7% (CSS T0 1.5%) to 0 (CSS T0 3%). At T72 CTRL contained
72% and reduced to 0 in both concentrations. Heptanal was found only in CTRL T72;
octanal too, was just found in CTRL samples and not found in samples 1.5 and 3% at both
times. Some alcohols such as 2-Nonen-1-ol, (E)- were limited in T72 samples, but were
present in T0 CSS 3% with other alcohols, probably from the degradation of lignocellulosic
precursors. This same pathway is followed by hydrocarbons which are totally absent in
CTRL samples while being present in added patties [54]. According to data here shown,
Nitrogen containing compounds present in CSS formulations probably came from the
degradation of CSS proteins and from the Maillard complex of reactions which takes place
during the roasting process. As for CSS, the significant role of phenols’ interaction with
Maillard reaction products to produce specific compounds can be assumed. Unfortunately,
CSS developed p-xylene and o-xylene, involved in the rise of WOF and referred to as
“cardboard-like” [55,56]. No references are available to compare results obtained, especially
for CSS properties.

Chromatograms, in all cases, showed a great reduction of WOF or general active
odorants. As a demonstration of this, CTRL T0 and T72 images had a resolution with an
order of magnitude of 1010, while CSS had values of 108. From pictures, the peak of hexanal
that eluted at around 6.48 min is always visible and it is clear how much it decreases in
respect of additions of by-products. In all samples at around minutes 13.44 and 16.49, long
chain aldehydes were eluted (i.e., octanal, decenal). At around minutes 19.35–37 2-Nonen-
1-ol, (E)- was eluted in almost all samples. After minute 19.40, the main compounds traced
were siloxanes and low matched compounds.
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Of course, a better characterization of the aromatic profile of these molecules is
fundamental to understand if and how volatiles from these substrates can have a negative
impact on the final flavour of meat products.

3.2.3. Sensory Analysis

Panellists involved in this analysis were asked to try samples T0 and T72 of all for-
mulations on separate days without knowing what they were eating, with the objective
of evaluating the presence and the intensity of WOF markers and possible perceptions of
extraneous flavours in cooked burgers after refrigerated storage. Descriptors were care-
fully explained, especially those difficult to associate with food, such as “cardboard-like”
or “paint”.

In Table 5 are reported all the average values for burger samples tasted immediately
after cooking (T0) and after 72 h of refrigerated storage (T72).

Table 5. Average scores for cooked CSS containing samples of panelists for each descriptor in all formulations; immediately
after cooking process (T0) and after 72 h of refrigerated (+4 ◦C) storage (T72).

Average Scores
CTRL CSS 1.5% CSS 3%

0 h 72 h 0 h 72 h 0 h 72 h

Descriptors

cooked meat odour 1.8 ± 0.9 b 4 ± 1.4 a 2.9 ± 1.1 a 2.7 ± 1.0 ab 2.8 ± 1.1 a 2.6 ± 0.7 ab

cardboard 1.9 ± 0.8 1.7 ± 0.9 1.5 ± 0.7 2.0 ± 0.5 1.6 ± 0.9 2.0 ± 0.1
Sulphur/rubber 1.6 ± 1.0 2.0 ± 1.0 1.3 ± 0.4 1.5 ± 1.0 1.3 ± 0.4 1.5 ± 0.7

roasted 2.1 ± 1.1 1.7 ± 0.7 2.6 ± 0.7 1.8 ± 0.8 2.8 ± 1.3 2.5 ± 0.9
painty 1.0 ± 0.0 1.3 ± 0.7 1.0 ± 0.0 1.1 ± 0.3 1.5 ± 1.0 1.2 ± 0.4
rancid 1.6 ± 1.0 1.5 ± 0.7 a 1.0 ± 0.0 1.1 ± 0.3 1.2 ± 0.3 1.3 ± 0.7

vegetable oil-like 1.6 ± 0.7 1.6 ± 0.7 1.6 ± 0.9 1.3 ± 0.5 1.6 ± 0.7 1.6 ± 0.7
sour 1.8 ± 0.7 1.2 ± 0.4 a 1.9 ± 0.8 a 1.6 ± 0.7 1.6 ± 0.9 1.6 ± 1.0
bitter 1.3 ± 0.5 b 1.4 ± 0.2 b 1.9 ± 1.0 ab 1.6 ± 0.7 ab 2.6 ± 0.3 a 2.3 ± 0.9 a

metallic 1.3 ± 0.5 1.1 ± 0.3 1.4 ± 0.7 2.0 ± 1.2 a 1.3 ± 0.4 1.8 ± 1.1
astringent 1.6 ± 0.7 1.8 ± 0.7 1.8 ± 0.9 1.7 ± 0.9 2.4 ± 1.0 2.6 ± 0.8

Legend: data followed by different superscript letters, in the same row, are significantly different (LSD test, p < 0.05).

T0 samples of all formulations did not show significative differences, and panellists
were not able to trace significant variability from control. Statistical analysis did not show
significance between samples even if, looking at the average values, some considerations
can be made. The score reported for the bitter descriptor rose to 2.25 for the 3% CSS
formulation, while CTRL was 1.25 and CSS 1.5% was 1.87. CSS addition did not influence
the average score for all descriptors, and, in most cases, they were the same as CTRL or very
near to it. CSS seemed to influence the perception of cooked meat odour rising from 1.75 in
CTRL, to 2.87 in 1.5% addition, to 2.75 in 3% addition. This is one of the few situations in
which 1.5% received higher scores than 3%. Astringency also registered an increase from
CTRL to the 1.5% CSS addition of 3%: from 1.62 to 1.75 to 2.37, respectively.

Generally, all the descriptors for all formulations received increased scores, but some
significant differences were traced via the statistical analysis or can be noted from the direct
comparison among the average scores. Only two descriptors for CSS formulations were
significant (p < 0.05): cooked meat odour and bitter. Cooked meat odour was mitigated,
mainly by CSS addition. For this descriptor, the score decreased from 4 (CTRL) to 2.75
(1.5%) and 2.62 (3%). This limitation can be seen neither as negative nor positive. If the
cooked meat odour can be directly linked with positive sensations, we do not know the
considerations of each panellist regarding cooked meat. Nevertheless, from the explanation
of each descriptor and the training, these lower scores do not directly show a positive thing.
For better discrimination, a comparison with the roasted descriptor can be made; although
not significant, it received lower scores than cooked meat.
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The presence of this descriptor was not casual, because it helped in separating what
flavours, odours, and aromas can come from a fresh grilled or oven/pan-cooked burger,
instead of an already cooked and reheated burger. Panelists were not aware of the cooking
process. The ‘roasted’ adjective generally includes those positive flavours coming from the
Maillard complex of the reaction, while cooked meat is mainly linked with sensations of
staling. In these terms, the mitigation obtained from by-products can be positive, while
increasing the stability of the product. Bitterness perceived in CSS formulated patties can
be a result of the reheating of meat. The data show an increase from CTRL at 1.37, to
1.62 (CSS 1.5%), and to 2.35 (CSS 3%). Heat can make the condensation or splitting of
phenolic species easier. During the roasting process, chlorogenic acids degrade to active
taste lactones which give desirable sourness and bitterness [57]. When exposed to further
heating, these species undergo greater degradation which leads to the splitting of quinic
acid which, in successive steps will give metallic, lingering bitter phenyl-indanes which
are undesirable for coffee taste. Caffeine and, in general, methylxanthines-alkaloids give
a bitter and astringent note. Probably, the double exposure to heating, even if at lower
temperatures, can determine higher bitterness.

Refrigerated storage can also favour the condensation of flavonoids to tannins or
bigger phenolic species, but no sources are available at this time. A general positive
comment is that none of the descriptors directly linked with the development of WOF
(paint, cardboard-like, vegetable oil-like and sulphur/rubber) was increased. Even if not
significative, average scores of the CSS added sample were lowered in respect of CTRL.
Control had 2, while CSS fell to 1.75 for 1.5% addition, and to 1.5 for 3% addition. Acidity
and even metallic sensations were not increased. To better investigate the significance of
cooked meat flavour and bitterness, different factors were considered. Time, Formulation,
and Time x Formulation were selected as factors. For cooked meat flavour, the time factor,
i.e., the effect of time, was significant for p < 0.01 while time x formulation factor had a
p < 0.05 (Table 6). Formulation alone did not influence the results. Conversely, bitterness
was influenced only by the formulation with a p < 0.05. Neither time nor time x formulation
factors made an effect. Overall, T0 samples did not show any significant difference for the
cooked meat odour descriptor. After 72 h of refrigerated storage, the time effect greatly
influences (p < 0.01) this characteristic.

Table 6. Anova matrix results for significant descriptors (cooked meat odour and bitterness).

Cooked Meat Odour Bitterness

Factor F sign. F sign.
Formulation 1.8019 n.s. 3.7026 *

Time 14.6049 ** 0.7326 n.s.
Formulation × Time 3.4424 * 0.4273 n.s.

Legend: asterisks indicate significance at * p <0.05; ** p < 0.01; n.s. not significant.

4. Conclusions

The present study provides data on technological performance, nutritional aspects
and effects on stability of newly formulated meat products.

Coffee silver skin could be considered as a food ingredient that can solve a complex
problem in limiting the decay of meat foods (especially of poultry origin) and lowering the
food waste caused by coffee production. CSS can become a cheap but valuable integrator
of fibres and bioactive molecules; moreover, it is a great source of minerals such as calcium,
potassium, and others.

Data obtained are the starting point of a deeper study to comprehend what are the
best conditions to use this by-product and how to develop “tailor-made” formulations
enjoyable to consumers. Burgers were among the easiest preparations, allowing a direct
comparison with reality.

CSS has shown potential for being implemented in meat formulations to limit losses
connected with the cooking process.
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Considering the principal aim of this study (to understand the role of CSS on WOF
occurrence), encouraging results are provided. The sensory analysis conducted gave
confirmation that the spreading of WOF, or in general of oxidation markers, was arrested,
even if bitterness and astringency can emerge with time. The inclusion of CSS among new
ingredients for food production is hoped for, even if further analysis is needed with further
consultation procedures regarding current novel food statuses.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10081833/s1, Figure S1: Chromatogram of volatile compounds (VOCs) in chicken
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after cooking (a) and after 72 h of refrigerated storage (b).
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