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Abstract. Gastric cancer (GC) ranks fifth in terms of inci-
dence and third in terms of tumor mortality worldwide. The 
present study was designed to construct a Support Vector 
Machine (SVM) classifier and risk score system for GC. 
The GSE62254 (training set) and GSE26253 (validation 
set 2) datasets were downloaded from the Gene Expression 
Omnibus database. Furthermore, the gene expression profile 
of GC (validation set 1) was obtained from The Cancer 
Genome Atlas database. Differentially expressed genes 
(DEGs) between recurrent and non‑recurrent samples were 
determined using the limma package. The feature genes 
were selected using the Caret package, and an SVM classi-
fier was built using the e1071 package. Using the penalized 
package, the optimal predictive genes for constructing 
a risk score system were screened. Finally, stratification 
analysis of clinical factors and pathway enrichment analysis 
were performed using Gene Set Enrichment Analysis. A 
total of 239 DEGs were identified in GSE62254, among 
which 114 DEGs were significantly associated with both 
recurrence‑free survival and overall survival. Subsequently, 
21 feature genes were screened from the 114 DEGs, and an 
SVM classifier was built. A risk score system for survival 
prediction was constructed, following the selection of 10 
optimal genes, including A‑kinase anchoring protein 12, 
angiopoietin‑like protein 1, cysteine‑rich sequence 1, 
myeloid/lymphoid or mixed‑lineage leukemia, translocated 
to chromosome 11, neuron navigator 3, neurobeachin, 
nephroblastoma  overexpressed, pleiotrophin, tumor 

suppressor candidate 3 and zinc finger and SCAN domain 
containing 18. The stratification analysis revealed that 
pathological stage was an independent prognostic clinical 
factor in the high‑risk group. Additionally, eight significant 
pathways were associated with the 10‑gene signature. The 
SVM classifier and risk score system may be applied for 
classifying and predicting the prognosis of patients with 
GC, respectively.

Introduction

Gastric cancer (GC) occurs in the inner lining of stomach, and 
60% of GC cases are caused by Helicobacter pylori infec-
tion (1). Patients with GC are usually characterized by epigastric 
pain, heartburn, inappetence, nausea, vomiting, weight loss 
and dysphagia (2). In patients with advanced GC, tumor cells 
may migrate from the stomach to other tissues and organs, 
such as liver, lymph nodes, lung and bone (3). As the disease is 
often diagnosed late, its prognosis is usually unfavorable with 
a 5‑year survival rate <10% worldwide in 2016 (4). Globally, 
stomach cancer ranks fifth in terms of incidence and third in 
terms of tumor mortality, affecting 950,000 new patients and 
resulting in 723,000 cases of mortality in 2012 (5,6). In order 
to improve the therapies for GC, the molecular mechanisms of 
GC should be further elucidated.

Astrocyte‑elevated gene 1 is involved in the progression 
of GC and predicts the prognosis of patients with GC, and 
thus its targeted inhibition may be a promising strategy for 
treating the tumor (7). Decreased mRNA and protein expres-
sion levels of liver kinase B1 are detected in patients with GC 
with low survival rate, and are independent prognostic factors 
of GC (8,9). Nicotinamide adenine dinucleotide phosphate 
oxidases (NOX) family genes act as possible prognostic indi-
cators in GC, indicating that NOX inhibitor may be useful for 
the treatment of patients with GC (10). Ataxia telangiectasia 
mutated (ATM) expression is decreased among patients with 
GC in Xinjiang, and thus ATM may be a potential marker of 
prognosis in patients with GC (11). Overexpression of fibulin‑1 
(FBLN1) inhibits GC cell growth and promotes apoptosis by 
elevating the expression of cleaved caspase‑3; thus, FBLN1 
is a tumor suppressor and prognostic factor in patients with 
GC (12). Despite these findings, the genes implicated in the 
pathogenesis of GC have not been thoroughly revealed.

Early diagnosis, reasonable prognostic evaluation, 
and timely and appropriate intervention are important for 
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improving the outcomes of patients with GC (13). The study 
of prognostic markers can guide the close monitoring and 
further treatment of patients at high risk of recurrence and 
improve their survival rate (14,15). Increasing studies have 
identified prognostic gene signatures and developed a prog-
nostic score model for patients with GC (16‑26). However, the 
recurrence‑associated prognostic genes in GC have not been 
comprehensively examined. Since recurrence is experienced 
in 25‑40% of all patients with GC treated with surgical resec-
tion (27,28), the identification of recurrence‑associated genes is 
significant for survival prediction in these patients. Therefore, 
using microarray datasets of GC samples downloaded from 
The National Center for Biotechnology Information (NCBI) 
Gene Expression Omnibus (GEO) database, differentially 
expressed genes (DEGs) between recurrence and non‑recur-
rence samples were identified. Subsequently, from the selected 
DEGs, the present study screened the feature genes associated 
with the recurrence of GC. This was followed by the construc-
tion of a classifier that could accurately identify the recurrence 
of GC. Combined with the clinical prognostic information, the 
risk score system was built based on the expression level of 
feature genes.

Materials and methods

Data source and preliminary screening of clinical factors. 
Using ‘gastric cancer’ and ‘Homo sapiens’ as key words, 
microarray data were searched for in the NCBI GEO database 
(http://www.ncbi.nlm.nih.gov/geo/). The selected datasets met 
the following criteria: i) Recurrence information was avail-
able; ii) recurrence‑free survival (RFS) time information was 
available; and iii) sample size was ≥200. Finally, GSE62254 
(platform, GP570, Affymetrix Human Genome U133 Plus 2.0 
Array; Thermo Fisher Scientific, Inc.) (26,29) and GSE26253 
(platform, GPL8432 Illumina HumanRef‑8 WG‑DASL v3.0; 
Illumina, Inc.) (30) were selected. GSE62254 contained 300 
GC tissue samples, 282 of which had recurrence informa-
tion, including 125 recurrent samples and 157 non‑recurrent 
samples. The 282 samples were used as the training set of the 
present study. GSE26253 (n=432) included 177 recurrent and 
255 non‑recurrent samples, and was used as a validation set 
(validation set 2).

Furthermore, in order to obtain another validation set, 
gene expression profiles of GC samples were downloaded 
from The Cancer Genome Atlas (TCGA; https://gdc‑portal.
nci.nih.gov/; TGCA STAD project) database based on the 
Illumina HiSeq 2000 RNA Sequencing platform. As a result, 
421 GC tissue samples were acquired, 298 of which had 
corresponding recurrence information, comprising of 242 
samples without recurrence and 56 samples with recurrence 
(validation set 1).

Using the training dataset (GSE62254), univariate and 
multivariate Cox regression analyses were conducted to 
evaluate the association of clinical factors with prognosis, 
using the survival package (version 2.41‑1; http://biocon-
ductor.org/packages/ survivalr/) (31) in R (version 3.4.1; 
https://www.r‑project.org/). P<0.05 was set as the threshold for 
significant association. The pathological stage and recurrence 
were identified to be independent prognostic clinical factors 
(Table I; Fig. 1). Therefore, samples of the training set were 

divided into recurrence and non‑recurrence groups for further 
analysis in the present study.

Data normalization. The expression matrices of the three 
datasets were stacked, and each matrix was scaled based on 
expression levels. The unit specification was scaled and a 
sample vector was given as follows:

In the formula, ||v||22 stands for the 2‑norm of vector (norm).
Combined with the sqrt [sum(data2)] function (32) in R, the 

square root of the eigenvalue of matrix B=A*AT was extracted 
to acquire the samples scaled to 1. Based on the median and 
median absolute deviation (MAD) of each gene, the gene 
expression level was centralized and normalized using median 
scaling. The details were shown as follows: Giving an eigen-
vector x=(x1, …, xn); and defining median scale normalization 
as:

Identification of DEGs between recurrence and non‑recur‑
rence samples. As aforementioned, the GSE62254 dataset 
was classified into recurrent and non‑recurrent groups. The 
DEGs between the two groups were analyzed using the 
limma package (version 3.34.7; https://bioconductor.org/pack-
ages/release/bioc/html/limma.html) (33) in R. The strict cut‑off 
was a false discovery rate (FDR) <0.05 and |log2 fold change 
(FC)|>0.263. Subsequently, bidirectional hierarchical clus-
tering based on centered Pearson correlation algorithm was 
performed on the DEGs using the pheatmap package (version 
1.0.8; https://cran.r‑project.org/web/packages/pheatmap/index.
html) (34) in R.

Construction of the Support Vector Machine (SVM) classifier. 
Using Cox regression analysis in the survival package (31), the 
DEGs that were significantly associated with RFS time and 
overall survival (OS) time were selected from the GSE62254 
dataset. P<0.05 was set as the threshold. The DEGs signifi-
cantly associated with both RFS time and OS time were used 
for subsequent analysis.

The recursive feature elimination algorithm in the 
Caret package (version 6.0‑76; https://cran.r‑project.
org/web/packages/caret) (35) in R was used to identify the 
optimal combination of feature genes. During the 100‑fold 
cross validation, the gene combination corresponding to the 
highest accuracy and the smallest Root Mean Square Error 
(RMSE) was considered as the optimal combination of feature 
genes.

Combined with the eigenvalues in each sample, the super-
vised classification algorithm SVM evaluates the probability 
of a sample belonging to one type (36). Using the SVM algo-
rithm (Cross, 100‑fold cross validation; Core, Sigmoid Kernel) 
in the e1071 package (version 1.6‑8; https://cran.r‑project.
org/web/packages/e1071) (37) in R, an SVM classifier was 
built on account of the feature gene combination.
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In GSE62254, GSE26253 and the TCGA dataset, the clas-
sification efficiency of the SVM classifier was assessed based 
on Concordance index (C‑index), Brier score, log‑rank P‑value 
of Cox‑proportional hazard (Cox‑PH) regression and area 
under the receiver operating characteristic (AUROC) curve. 
Using the survcomp package (version 1.30.0; http://www.
bioconductor.org/packages/release/bioc/ html/survcomp.
html) (38) in R, the C‑index (the score of all individual pairs 

that predicted the correct order of survival time) (39) and the 
Brier score (a scoring function for measuring the accuracy of 
probability prediction) (40) were calculated.

Using the Kaplan‑Meier (KM) curve analysis of the survival 
package (31), KM curves were drawn for the two groups 
predicted using the SVM classifier, and the log‑rank P‑value 
was calculated. Combined with the pROC package (version 
1.12.1; https://cran.r‑project.org/web/packages/pROC/index.

Figure 1. KM survival curves based on pathological stage and recurrence. (A) KM curves according to pathological stage. (B) KM curves based on recurrence. 
KM, Kaplan‑Meier; HR, hazard ratio.

Table I. Preliminary screening of independent prognostic clinical factors.

 Univariate cox Multivariate cox
 --------------------------------------------------------------- ---------------------------------------------------------------
Clinical characteristics GSE62254 (n=300) HR 95% CI P‑value HR 95% CI P‑value

Age (years, mean ± SD) 61.94±11.36 1.009 0.993‑1.025 2.71x10-1 - - -
Sex (male/female) 199/101 0.869 0.612‑1.234 4.33x10-1 - - -
MLH1 IHC (positive/negative/‑) 234/64/2 2.206 1.326‑3.670 1.78x10-3 1.533 0.859‑2.733 1.48x10-1

EBV ISH (positive/negative/‑) 18/257/25 1.037 0.507‑2.123 9.20x10-1 - - -
Lymphovascular invasion (yes/no/‑) 205/73/22 2.642 1.602‑4.357 7.67x10-5 1.659 0.972‑2.832 6.34x10-2

Pathologic M (M0/M1/‑) 273/27 3.971 2.517‑6.266 1.58x10-10 1.609 0.912‑2.839 1.01x10-1

Pathologic N (N0/N1/N2/N3) 38/131/80/51 2.052 1.698‑2.480 2.03x10-14 1.206 0.851‑1.708 2.92x10-1

Pathologic T (T1/T2/T3/T4/‑) 2/186/91/21 1.847 1.469‑2.323 8.37x10‑8 1.120 0.809‑1.550 4.94x10-1

Pathologic stage (I/II/III/IV/‑) 30/96/95/77/2 2.378 1.933‑2.925 2.22x10‑16 1.660 1.056‑2.611 2.81x10-2

Lauren classification 135/146/17/2 0.828 0.704‑0.974 2.19x10-2 0.988 0.829‑1.177 8.92x10-1

(diffuse/intestinal/mixed)
Recurrence (yes/no) 125/157/18 16.790 10.14‑27.81 2.00x10‑16 13.61 7.704‑24.041 2.00x10‑16

Mortality (dead/alive/‑) 135/148//17 ‑ ‑ ‑ ‑ ‑ ‑
Overall survival time 50.59±31.42 ‑ ‑ ‑ ‑ ‑ ‑
(months, mean ± SD)

Cox regression analysis was not performed for mortality and overall survival time, as they are dependent variables and not independent 
variables. HR, hazard ratio; MLH1 IHC, MutL homolog 1 immunohistochemistry; EBV ISH, Epstein‑Barr virus in situ hybridization.
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html) (41) in R, the indexes including sensitivity, specificity, 
positive prediction value and negative prediction value were 
calculated for ROC curves.

Construction of risk score system. Using the Cox‑PH model 
of the penalized package (version 0.9‑50; http://bioconductor.
org/packages/penalized/) (42) in R, the optimal combina-
tion of prognosis‑associated genes was further screened from 
the selected combination of feature genes. The optimized 
parameter ‘lambda’ in the screening model was calculated 
through 1,000 cross‑validation likelihood (cvl).

Combined with prognostic coefficients of the prog-
nosis‑associated DEGs in the optimal combination, a risk 
score system was constructed based on gene expression level. 
Furthermore, the risk score was calculated for each sample 
using the following formula:

Risk score=∑coefdeGs x ExpdeGs

CoefdeG and ExpdeG represent regression coefficient and the 
corresponding gene expression level, respectively.

With the median of risk scores as the demarcation 
point, the samples in GSE62254 were classified into high‑ 
and low‑risk groups. Using the KM curve analysis of the 
survival package (31), correlation analysis for the risk score 
system and prognosis was carried out. Additionally, the risk 
score system was further validated in the GSE26253 and 
TCGA datasets.

Stratification analysis of clinical factors. Combined with 
the univariate and multivariate Cox regression analysis 
of the survival package (31), the independent prognostic 
clinical factors in GSE62254 were selected. Combined with 

Figure 2. Screening results of DEGs. (A) Scatter diagram of the DEGs (red dots represent DEGs; green horizontal dashed line represents FDR <0.05, and the 
two green vertical dashed lines represent log2 (FC)>0.263. (B) Kernel density curve of DEGs. (C) Bidirectional hierarchical clustering heatmap of the DEGs 
(pink and green sample bars represent recurrent samples and non‑recurrent samples, respectively; red and blue represent upregulation and downregulation, 
respectively). DEGs, differentially expressed genes; FC, fold change; FDR, false discovery rate.
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the high‑ and low‑risk samples determined by the risk score 
system, stratification analysis was further carried out.

Pathway enrichment analysis. According to the risk scores 
of the samples in GSE62254, the samples were divided 
into high‑risk and low‑risk groups. Under FDR<0.05 and 
|log2 FC|>0.263, the DEGs between the two groups were 
identified using the limma package (33). Using Gene Set 
Enrichment Analysis (http://software.broadinstitute.
org/gsea/index.jsp) (43), pathway enrichment analysis was 
conducted for the DEGs, with the screening criterion of 
nominal P<0.05.

Results

Identification of DEGs. Following data normalization, 239 
DEGs between recurrent and non‑recurrent samples in the 
GSE62254 dataset were identified (Fig. 2A). The Kernel 
density curve of the DEGs revealed that 79.08% (189/239) 
of the DEGs were upregulated and 20.92% (50/239) of the 
DEGs were downregulated in recurrent samples (Fig. 2B). A 
bidirectional hierarchical clustering heatmap, based on the 
expression levels of the identified DEGs, indicated that the 
samples clustered into two groups (Fig. 2C).

Construction of SVM classifier. A total of 124 recurrence‑asso-
ciated DEGs and 127 overall survival‑associated DEGs were 
screened in GSE62254. Following comparison of the two sets 
of DEGs, 114 DEGs were found to be significantly associated 
with both RFS time and OS time.

The 114 DEGs were further screened for feature genes. 
When min RMSE=0.148 and max Accuracy=0.842, the gene 
combination involving 21 genes was considered as the optimal 
one. Based on the 21 feature genes, an SVM classifier was built 
in GSE62254.

For GSE62254, GSE26253 and the TCGA datasets, all 
C‑index values were >0.80 and all Brier scores were <0.30 
for RFS time and OS time. The classification results of 
the samples, based on the SVM classifier, are presented in 
scatter diagrams (Fig. 3). KM survival curves demonstrated 
that the log‑rank P‑values for RFS time and OS time in 

the training and validation sets were all <0.05 (Fig. 4), 
suggesting significantly different RFS time and OS time 
between predicted recurrence and non‑recurrence samples 
in the GSE62254 and TCGA datasets, and significantly 
different RFS time in GSE26253 (the samples in GSE26253 
had no OS information). The predicted results of the SVM 
classifier were consistent with the actual outcomes of 
patients with GC in these datasets. The AUROC curves 
revealed that all AUROC values for the training and 
validation sets were >0.8 (Table II; Fig. 4). These results 
suggested that the SVM classifier based on the 21 feature 
genes could accurately determine the recurrence type of 
GC samples.

Construction of risk score system. Using the Cox‑PH 
model, the optimal combination of prognostic genes was 
further screened from the 21 feature genes. When the opti-
mized parameter ‘lambda’ was 2.2604, the cvl value was 
largest (‑757.1749; Fig. 5A). When ‘lambda’=2.2604, 10 
optimal genes were obtained [A‑kinase anchoring protein 
12 (AKAP12), angiopoietin‑like protein (ANGPTL) 1, 
cysteine‑rich sequence 1 (CYS1), myeloid/lymphoid or 
mixed‑lineage leukemia, translocated to chromosome 
11 (MLLT11), neuron navigator 3 (NAV3), neurobeachin 
(NBEA), nephroblastoma overexpressed (NOV), pleiotrophin 
(PTN), tumor suppressor candidate 3 (TUSC3), zinc finger 
and SCAN domain containing 18 (ZSCAN18); Fig. 5B; 
Table III].

Based on prognostic coefficients of the 10 optimal genes, 
a risk score system was built and risk scores were calculated 
using the following formula:

Risk score=(0.3340) x ExpAKAP12 + (‑0.5826) x ExpanGPTl1 + 
(0.1153) x ExpcYS1 + (0.4899) x ExpMllT11 + (0.4681) x ExpNAV3 

+ (0.3292) x ExpNBEA + (0.2839) x ExpNOV + (0.1638) x ExpPTn 
+ (0.0332) x ExpTuSc3 + (0.6275) x ExpZSCAN18

The samples in GSE62254 were divided into high‑ and 
low‑risk groups. KM survival curves revealed that the high‑ 
and low‑risk groups determined by the risk score system 
had significantly different RFS time in all three datasets 
(GSE62254, P=1.85x10-10; AUC=0.945; TCGA set, P=4.27x10-3, 
AUC=0.893; GSE26253, P=3.99x10-4, AUC=0.866; Fig. 6). 

Figure 3. Scatter diagrams showing classification results of Support Vector Machine classifier. Scatter diagram of (A) GSE62254, (B) TCGA and (C) GSE26253 
datasets. Red triangles and black dots represent recurrent and non‑recurrent samples, respectively. TCGA, The Cancer Genome Atlas.
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These results revealed robust prognostic power of the 10‑gene 
risk score.

Stratification analysis. Cox regression analysis demonstrated 
that pathological stage and risk status were independent prog-
nostic clinical factors in GSE62254 (Table IV). Consequently, 
all samples were stratified into high‑ and low‑risk groups. 
Furthermore, stratification analysis revealed that pathological 

stage was an independent prognostic clinical factor in the 
high‑risk group (Table V). In addition, patients at different 
pathological stages in the high‑risk group had significantly 
different RFS time (P=4.40x10-9; hazard ratio, 2.455; 95% 
confidence interval, 1.807‑3.335; Fig. 7).

Pathway enrichment analysis. Based on the risk score system, 
the samples in GSE62254 were divided into high‑ and low‑risk 

Figure 4. KM survival curves and AUROC curves based on the Support Vector Machine classifier. (A‑a and A‑b) KM curves and (A‑c) AUROC curve of 
the GSE62254 dataset. (B‑a and B‑b) KM curves and (B‑c) AUROC curve of the TCGA dataset. (C‑a) KM curve and (C‑b) AUROC curve of the GSE26253 
dataset. For KM curves, red and black curves represent recurrent samples and non‑recurrent samples, respectively. KM, Kaplan‑Meier; AUROC, area under 
the receiver operating characteristic; AUC, area under the curve; TCGA, The Cancer Genome Atlas.



Molecular Medicine rePorTS  21:  347-359,  2020 353

groups. A total of 671 DEGs were identified between the two 
groups, including 656 upregulated genes and 15 downregu-
lated genes. Pathway enrichment analysis revealed that eight 
significant pathways were enriched for the DEGs (Table VI). 
According to the nominal P‑value, the top three signifi-
cant pathways were ‘vascular smooth muscle contraction’, 
‘regulation of actin cytoskeleton’ and ‘tyrosine metabolism’.

Discussion

In the present study, 239 DEGs (189 upregulated and 
50 downregulated) were identified between the recurrent and 
non‑recurrent samples in the GSE62254 dataset. From the 
114 DEGs that were significantly associated with both RFS 
and OS, 21 feature genes were further screened. Subsequently, 

an SVM classifier was built in GSE62254, which could 
accurately determine the recurrence type of GC samples. 
Additionally, the optimal set of 10 prognostic genes (AKAP12, 
ANGPTL1, CYS1, MLLT11, NAV3, NBEA, NOV, PTN, TUSC3 
and ZSCAN18) was obtained, followed by the construction of 
a risk score system. The stratification analysis demonstrated 
that pathological stage was an independent prognostic clinical 
factor in the high‑risk group.

AKAP12A expression decreases colony formation and 
causes apoptotic cell death; thus, AKAP12A may be a critical 
mediator of survival in patients with GC (44). AKAP12 is 
usually inactivated in patients with GC and several other types 
of cancer, serves a role in regulating cytokinesis progression 
and functions as a tumor suppressor (45). The expression 
of ANGPTL2 is associated with GC progression, and the 

Figure 5. Selection of the optimal gene combination. (A) Curve for selecting the optimized parameter ‘lambda’. The horizontal and vertical axes represent 
values of ‘lambda’ and cvl, respectively. The crossing of red dashed lines represents the value of ‘lambda’ parameter (2.2604), where cvl takes the maximum 
value (‑757.1749). (B) Coefficient distribution diagram of the 10 optimal genes. AKAP12, A‑kinase anchoring protein 12; ANGPTL1, angiopoietin‑like protein 1; 
CYS1, cysteine‑rich sequence 1; MLLT11, myeloid/lymphoid or mixed‑lineage leukemia; translocated to chromosome 11; NAV3, neuron navigator 3; NBEA, 
neurobeachin; NOV, nephroblastoma overexpressed; PTN, pleiotrophin; TUSC3, tumor suppressor candidate 3; ZSCAN18, zinc finger and SCAN domain 
containing 18; cvl, cross‑validation likelihood.

Table II. Assessment indexes for the SVM classifier in the GSE62254, GSE26253 and TCGA datasets.

 RFS/OS ROC
 ---------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------
Datasets C‑index Brier score Log rank P‑value AUROC Sensitivity Specificity PPV NPV

Training set 0.966/0.871 0.0108/0.0255 2.00x10‑16/2.00x10‑16 0.924 0.896 0.929 0.911 0.918
(GSE62254; n=282)
Validation set 1 0.929/0.807 0.0272/0.0283 7.33x10-15/3.87x10-13 0.898 0.844 0.929 0.779 0.871
(TCGA; n=295)
Validation set 2 0.950 0.0115 2.00x10‑16 0.881 0.853 0.914 0.873 0.899
(GSE26253; n=432)

SVM, Support Vector Machine; TCGA, The Cancer Genome Atlas; RFS, recurrence‑free survival; OS, overall survival; C‑index, Concordance 
index; ROC, receiver operating characteristic; AUROC, area under the receiver operating characteristic curve; PPV, positive prediction value; 
NPV, negative prediction value.
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overexpression of ANGPTL2 at both the invasive margin 
and tumor center is an independent marker of prognosis in 
patients with GC (46,47). Elevated expression of cytoplasmic 
ANGPTL2 has been associated with invasion, metastasis and 
unfavorable survival in patients with GC, and thus ANGPTL2 
may be used as a promising indicator for predicting postopera-
tive recurrence of GC (48). Therefore, AKAP12 and ANGPTL1 
may be associated with the outcomes of patients with GC.

The oncogenic factor MLLT11 is associated with tumor 
progression and adverse survival, exhibiting pro‑tumorigenic 
activity in patients with ovarian cancer (49). Signal transducer 
and activator of transcription 3 (STAT3) is involved in tumor 
formation, development, migration and motility, and MLLT11 
overexpression promotes pYSTAT3 expression in invasive 
carcinoma cells through activating the Src kinase (50). Copy 
number changes of NAV3 are often detected in adenomas 

and colorectal cancer (CRC), and NAV3 acts in connecting 
colon inflammation with CRC development (51). NOV and 
cysteine‑rich protein 61 (CYR61) are upregulated in GC, 
and elevated CYR61 levels are responsible for unfavorable 
outcome (52). Additionally, increased NOV contributes to cell 
proliferation and invasion in GC (52). These findings indicate 
that MLLT11, NAV3 and NOV may also act in the development 
and progression of GC.

increased PTN is significantly associated with poor 
OS time and RFS time of patients with GC, and may 
serve as an independent prognostic indicator (53). TUSC3 
serves an oncogenic role in CRC, and may affect prolif-
eration, aggression, invasion and metastasis of CRC via 
mediating PI3K/Akt, p38 mitogen‑activated protein kinase 
and Wnt/β‑catenin signaling pathways (54). Decreased 
levels of TUSC3 contribute to cell proliferation, invasion 

Table III. Top 10 optimal genes selected for building the risk score system.

Gene Coef HR (95% CI) P‑value

AKAP12 0.3340 1.559 (1.278‑3.112) 2.07x10-2

ANGPTL1 ‑0.5826 0.256 (0.121‑0.541) 3.53x10-4

CYS1 0.1153 1.466 (1.149‑3.311) 3.58x10-2

MLLT11 0.4899 1.623 (1.537‑3.498) 2.16x10-2

NAV3 0.4681 2.243 (1.007‑4.996) 4.79x10-2

NBEA 0.3292 1.706 (1.361‑3.379) 1.26x10-2

NOV 0.2839 1.317 (1.187‑2.525) 4.07x10-2

PTN 0.1638 1.563 (1.215‑3.418) 2.63x10-2

TUSC3 0.0332 1.188 (1.053‑1.711) 3.76x10-2

ZSCAN18 0.6275 2.308 (1.107‑4.812) 2.56x10-2

HR, hazard ratio; AKAP12, A‑kinase anchoring protein 12; ANGPTL1, angiopoietin‑like protein 1; CYS1, cysteine‑rich sequence 1; MLLT11, 
myeloid/lymphoid or mixed‑lineage leukemia; translocated to chromosome 11; NAV3, neuron navigator 3; NBEA, neurobeachin; NOV, nephro-
blastoma overexpressed; PTN, pleiotrophin; TUSC3, tumor suppressor candidate 3; ZSCAN18, zinc finger and SCAN domain containing 18.

Table IV. Results of Cox regression analysis for the GSE62254 dataset.

 Univariate Cox Multivariate Cox
 ---------------------------------------------------------------------- --------------------------------------------------------------------
Clinical characteristics HR 95% CI P‑value HR 95% CI P‑value

Age (years, mean ± SD) 1.003 0.987‑1.02 6.76x10-1 - - -
Sex (male/female) 0.967 0.669‑1.401 8.61x10-1 - - -
MLH1 IHC (positive/negative/‑) 2.096 1.241‑3.544 4.72x10-3 1.023 0.564‑1.855 9.39x10-1

EBV ISH (positive/negative/‑) 1.044 0.509‑2.141 9.07x10-1 - - -
Lymphovascular invasion (yes/no/‑) 2.409 1.456‑3.987 4.15x10-4 1.552 0.899‑2.680 1.15x10-1

Pathologic M (M0/M1/‑) 3.839 2.364‑6.236 5.01x10-9 1.293 0.719‑2.324 3.91x10-1

Pathologic N (N0/N1/N2/N3) 2.024 1.661‑2.465 5.82x10-13 1.049 0.733‑1.503 7.93x10-1

Pathologic T (T1/T2/T3/T4/‑) 1.816 1.435‑2.298 4.06x10-7 0.867 0.599‑1.252 4.46x10-1

Pathologic stage (I/II/III/IV/‑) 2.414 1.939‑3.005 2.22x10‑16 2.082 1.270‑3.415 3.65x10-3

Lauren classification (diffuse/intestinal/mixed) 0.874 0.739‑1.033 1.14x10-1 - - -
Risk status (high/low) 3.322 2.246‑4.913 1.85x10-10 2.535 1.656‑3.882 1.86x10-5

HR, hazard ratio; MLH1 IHC, MutL homolog 1 immunohistochemistry; EBV ISH, Epstein‑Barr virus in situ hybridization.
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Figure 6. KM and AUROC curves based on the risk score system. KM curve (left) and AUROC curve (right) of (A) GSE62254, (B) the TCGA dataset and 
(C) GSE26253. KM, Kaplan‑Meier; AUROC, area under the receiver operating characteristic; AUC, area under the curve; TCGA, The Cancer Genome Atlas.
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and metastasis in pancreatic cancer (PC), which predicts 
unfavorable outcomes in patients with PC (55,56). Gene 
expression and promoter methylation of ZSCAN18, cysteine 
dioxygenase 1 and zinc‑finger protein 331 are negatively 
associated, and these genes have epigenetic similarity and 
may be potential biomarkers of gastrointestinal cancer (57). 
Therefore, PTN, TUSC3 and ZSCAN18 may be implicated 
in the pathogenesis of GC.

In order to unveil possible biological functions of the 10 
prognostic genes in GC, the present study screened the DEGs 
between the two risk groups, classified by the 10‑gene risk 
score. Pathway enrichment analysis revealed that the resulting 
DEGs were significantly enriched with several pathways, 
including ‘vascular smooth muscle contraction’, ‘regulation of 
actin cytoskeleton’ and ‘tyrosine metabolism’. The ‘vascular 
smooth muscle contraction’ and ‘regulation of actin cytoskel-
eton’ pathways serve critical roles in cancer cell migration 
and invasion (58,59). Tyrosine phosphorylation enhances the 

Warburg effect and promotes tumor growth (60). Therefore, 
it can be inferred that the 10 prognostic genes may affect GC 
prognosis by modulating cancer migration and growth.

The present study was a secondary analysis based on 
282 samples with recurrence information in the GSE62254 
dataset. A study by Cristescu et al (29) used GSE62254 to 
investigate the molecular alterations in four subtypes of GC 
by using targeted sequencing and genome‑wide copy number 
microarrays. Wang et al (26) determined a six‑gene signature 
(RNA binding protein, MRNA processing factor 2, Hes related 
family BHLH transcription factor with YRPW motif like, 
nestin, thiopurine S‑Methyltransferase, SWI/SNF related, 
matrix associated, actin dependent regulator of chromatin, 
subfamily D, member 3 and family with sequence simi-
larity 127, member A), based on GSE62254, as a prognostic 
biomarker in patients with GC. The six survival‑associated 
genes were selected using a robust likelihood‑based survival 
model from the prognosis‑associated genes identified by 

Table V. Results of stratification analysis of clinical factors.

A, Low risk

 Univariate cox Multivariate cox
 --------------------------------------------------------------------- --------------------------------------------------------------------
Clinical characteristics HR 95% CI P‑value HR 95% CI P‑value

Age (years, mean ± SD) 1.029 0.992‑1.067 1.21x10-1 - - -
Sex (male/female) 1.374 0.644‑2.933 4.09x10-1 - - -
MLH1 IHC (positive/negative/‑) 2.59 1.075‑6.241 2.77x10-2 2.297 0.779‑6.775 1.32x10-1

EBV ISH (positive/negative/‑) 2.399 0.926‑6.218 6.29x10-2 - - -
Lymphovascular invasion (yes/no/‑) 3.796 1.333‑10.81 7.19x10-3 2.782 0.965‑8.022 5.82x10-2

Pathologic M (M0/M1/‑) 5.649 2.167‑14.73 6.48x10-5 2.256 0.787‑6.471 1.30x10-1

Pathologic N (N0/N1/N2/N3) 2.39 1.675‑3.41 4.15x10-7 1.977 0.845‑4.623 1.16x10-1

Pathologic T (T1/T2/T3/T4/‑) 1.34 0.816‑2.2 2.45x10-1 - - -
Pathologic stage (I/II/III/IV/‑) 2.203 1.537‑3.158 6.08x10‑6 0.961 0.397‑2.326 9.30x10-1

Lauren classification (diffuse/intestinal/mixed) 0.869 0.628‑1.205 4.01x10-1 - - -

B, High risk

 Uni‑variate cox Multi‑variate cox
 --------------------------------------------------------------------- --------------------------------------------------------------------
Clinical characteristics HR 95% CI P‑value HR 95% CI P‑value

Age (years, mean ± SD) 1.009 0.991‑1.028 3.31x10-1 - - -
Sex (male/female) 0.868 0.566‑1.33 5.15x10-1 - - -
MLH1 IHC (positive/negative/‑) 0.727 0.376‑1.406 3.42x10-1 - - -
EBV ISH (positive/negative/‑) 0.539 0.170‑1.711 2.87x10-1 - - -
Lymphovascular invasion (yes/no/‑) 1.787 1.003‑3.183 4.58x10-2 1.297 0.676‑2.487 4.34x10-1

Pathologic M (M0/M1/‑) 2.847 1.612‑5.027 1.63x10-4 1.115 0.555‑2.239 7.59x10-1

Pathologic N (N0/N1/N2/N3) 1.706 1.332‑2.186 1.85x10-5 0.987 0.666‑1.463 9.48x10-1

Pathologic T (T1/T2/T3/T4/‑) 1.722 1.262‑2.348 5.21x10-4 0.977 0.630‑1.513 9.15x10-1

Pathologic stage (I/II/III/IV/‑) 2.455 1.807‑3.335 4.40x10-9 2.245 1.241‑4.062 7.48x10-3

Lauren classification (diffuse/intestinal/mixed) 1.018 0.841‑1.232 8.59x10-1 - - -

HR, hazard ratio; MLH1 IHC, MutL homolog 1 immunohistochemistry; EBV ISH, Epstein‑Barr virus in situ hybridization.
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univariate survival analysis (26). By contrast, the present 
study focused on recurrence‑associated DEGs to identify 
prognostic genes and acquired a prognostic 10‑gene signa-
ture. The application of different analysis methods, analysis 
processes and screening thresholds is another underlying 
factor of the different results obtained by the two studies.

Although complex bioinformatics analyses were conducted 
for the gene expression profile of GC, the limitations of the 
present study should not be neglected. The primary limitation 
of the present study was the lack of experiments. In subsequent 
studies, experiments such as quantitative PCR and western 
blotting should be performed to validate the findings of the 
present study.

In conclusion, 239 DEGs were identified between the recur-
rent and non‑recurrent samples of GSE62254. Furthermore, 
the SVM classifier may be applied for distinguishing recur-
rent from non‑recurrent patients with GC. Additionally, the 
risk score system involving 10 optimal genes may be used for 
predicting the prognosis of patients with GC.
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