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Abstract: Nanocrystalline layer-structured monoclinic Na2Ti3O7 is currently under consideration
for usage in solid state electrolyte applications or electrochemical devices, including sodium-ion
batteries, fuel cells, and sensors. Herein, a facile one-pot hydrothermal synthetic procedure is
developed to prepare self-assembled moss-like hierarchical porous structure constructed by ultrathin
Na2Ti3O7 nanotubes with an outer diameter of 6–9 nm, a wall thickness of 2–3 nm, and a length of
several hundred nanometers. The phase and chemical transformations, optoelectronic, conductive,
and electrochemical properties of as-prepared hierarchically-organized Na2Ti3O7 nanotubes have
been studied. It is established that the obtained substance possesses an electrical conductivity of
3.34 × 10−4 S/cm at room temperature allowing faster motion of charge carriers. Besides, the unique
hierarchical Na2Ti3O7 architecture exhibits promising cycling and rate performance as an anode
material for sodium-ion batteries. In particular, after 50 charge/discharge cycles at the current loads
of 50, 150, 350, and 800 mA/g, the reversible capacities of about 145, 120, 100, and 80 mA·h/g,
respectively, were achieved. Upon prolonged cycling at 350 mA/g, the capacity of approximately
95 mA·h/g at the 200th cycle was observed with a Coulombic efficiency of almost 100% showing the
retention as high as 95.0% initial storage. At last, it is found that residual water in the un-annealed
nanotubular Na2Ti3O7 affects its electrochemical properties.

Keywords: hierarchical materials; nanotubes; mesoporosity; sodium trititanate; hydrothermal
synthesis; conductivity; sodium-ion batteries

1. Introduction

Recently, functional materials with a hierarchical architecture constructed by unique
assemblies of constituent elements have gained increased attention. If such organized
multilevel architectures are formed spontaneously, the process is called “self-assembling”.
The character of structural integration is determined by difference in the nature of inter-
action forces due to which the formation of levels occurs. [1,2]. The topological benefits
of hierarchical materials can provide unusual functionalities making them valuable for
practical applications.

Titanium compounds are applied in a wide range of applications including paints,
catalysts, plastics, coatings, sensors, hygienic products, cosmetics, pharmaceuticals, and
even foods [3–8]. Yearly world titanium demand (in TiO2-units) is estimated around
6 million tons growing by about 3% per year [9–11]. Furthermore, titanium compounds
are already applied in battery production (e.g., spinel Li4Ti5O12 that is valuable anode
material for lithium storage due to its advantageous properties in long-term cycling sta-
bility) [12–15]. Looking forward to years to come, the manufacturers focus today on the
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development advanced energy-storage strategies based on cheaper and abundant chemi-
cals, such as sodium-ion batteries (SIBs). One of the key challenges, hampering the SIBs
commercialization, is an absence of electrode materials capable to provide required electro-
chemical performance but maintaining, at the same time, economic competitiveness of this
technology [16,17]. Recently, transition metal oxides [18], sulfides [19], fluorides [20], phos-
phates [21,22], selenides [23], and nitrides [24] have been investigated as electrode materials
for SIBs. Among the titanium-containing compounds, Na2Ti6O13, NaTi2(PO4)3, NaTiO2,
TiO2, Na2Ti4O9, ATiOPO4 (A = NH4, K, Na), and Na2Ti3O7 turned out to be the most
promising for usage as active materials in SIBs electrodes [25–28]. The benefits of Na2Ti3O7
include high ionic conductivity, proper sodium storage capacity (177 mA·h/g) and suitable
potential (0.2–0.3 V; can be applied as the anode material), moderate volume changes (~6%;
it is less than for carbonaceous anode in LIBs (9–12%)) upon sodiation/desodiation [29,30].

This work aims to develop a facile one-pot method for preparing Na2Ti3O7 with a
hierarchical architecture using a hydrothermal technology that meets the requirements of
scalability as well as to study the features of morphology and texture, conductive, optical,
electronic, and electrochemical properties of that as-prepared materials.

2. Materials and Methods

All reagents for experiments in this work had an analytical grade and used without
further purification. Nanotube-constructed mesoporous Na2Ti3O7 microparticles similar to
moss were prepared by a hydrothermal method through the treatment of TiO2 P25 (99.7%,
Sigma-Aldrich, St. Louis, MO, USA) in a highly alkaline medium. In a typical procedure,
0.4 g titanium dioxide was dispersed in a 20 mL aqueous solution of sodium hydroxide
(10 M) under continuous stirring. The obtained suspension was transferred into a 25 mL
Teflon-lined stainless-steel autoclave. The autoclave was placed in an oven and maintained
at 130 ◦C for 36 h. After cooling to room temperature, the resulting white suspension was
precipitated by centrifugation and then many times washed with deionized water until the
pH became neutral. Finally, the product was dried at 120 ◦C in air for 12 h (un-annealed
sample denoted as NTO-120). To determine the effect of temperature on physicochemical
properties, the resulting product was next annealed at 250 ◦C (NTO-250), 350 ◦C (NTO-350),
and 500 ◦C (NTO-500) in air for 3 h.

X-ray diffraction (XRD) was carried out using a Stadi P diffractometer (STOE, Darm-
stadt, Germany) with CuKα radiation (λ = 1.5418 Å) in the 2θ range of 5–60◦ (step of
0.024◦). Identification of phases was performed in EVA version 2.0 software (Bruker, Biller-
ica, MA, USA). The morphological characteristics of materials were studied by scanning
(SEM) and scanning transmission (STEM) electron microscopy on Sigma 300 VP (Carl Zeiss,
Oberkochen, Germany) and S5500 (Hitachi, Tokyo, Japan) microscopes. The analysis and
processing of SEM images were performed in ImageJ program developed at the National
Institutes of Health (Bethesda, MD, USA) by Wayne Rasband. The elemental composition
and distributions of elements were studied by energy dispersive X-ray spectroscopy (EDX)
on a Carl Zeiss Merlin microscope (Carl Zeiss, Oberkochen, Germany) equipped with EDX
analyzer. Nitrogen adsorption–desorption tests were performed on the Quantachrome
Autosorb iQ instrument (Anton Paar, Graz, Austria). The specific surface area, pore size
distribution, and pore volume were estimated using a Brunauer-Emmett-Teller (BET) and
Barrett-Joyner-Halenda (BJH) models. The chemical composition was studied by X-ray
photoelectron spectroscopy (XPS) on a SPECS spectrometer (SPECS, Berlin, Germany)
equipped with a hemispherical Phoibos-150 analyzer using MgKα radiation (λ = 9.7349 Å).
The binding energy scale was calibrated using the position of C 1 s peak at 285 eV. An
ultraviolet-visible (UV-vis) UV2700Plus spectrophotometer (Shimadzu, Kyoto, Japan) was
applied to study the electronic band structure. The experiments were carried out in the
wavelength range from 200 to 800 nm. Barium sulfate was used as a reflection (white)
standard. The electrophysical characteristics were investigated using a Solartron complex
(Solartron Mobrey, Farnborough, Hampshire, UK) composed of SI 1260 impedance/gain-
phase analyzer and 1296 dielectric interface. The materials were pressed into pellets with
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a diameter of 10 mm and a thickness of 0.4–0.5 mm. To provide electrical contact, pellets
were coated with a conductive Dotite D-550 Silver paste. Measurements were carried out in
the frequency range from 1 Hz to 20 MHz with an amplitude of 0.5 V. The bulk resistance
was calculated from the high-frequency region of impedance spectra using the equivalent
electrical circuit (EEC) approach. Fitting was performed using a parallel RC-circuit.

The electrochemical characteristics of products were determined using two-electrode
ECC-STD cells (EL-Cell, Hamburg, Germany). The slurry of working electrode was pre-
pared by mixing 90 wt.% active material and 10 wt.% TuballTM Bat NMP additive (OCSiAl,
Leudelange, Luxemburg) in an appropriate amount of N-methylpyrrolidone. For rate
capability experiments, the proportion of conductive component was adjusted to 20 wt.%
by adding Super P acetylene black (Alfa Aesar, Ward Hill, MA, USA). The resulting slurry
was spread in a uniform 50 µm thick layer onto an aluminium foil current collector using an
AFA-III coater (MTI, Richmond, CA, USA). The foil was pre-treated in a dilute hydrochloric
acid solution. The obtained electrode sheet was dried at 60 ◦C to a constant weight. Then,
electrode disks with a diameter of 15 mm were cut out from the sheet using a GN-CP20
device (Gelon, Linyi, China). The electrochemical cells were assembled in an argon-filled
glove box. Metallic sodium was used as the counter and reference electrodes. 1 M solution
of NaClO4 in propylene carbonate with the addition of fluoroethylene carbonate (5 vol.%)
was applied as an electrolyte. A separator was a GF/C glass fiber from the Whattman (Little
Chalfont, Buckinghamshire, UK). The half-cells were tested on a Solartron Analytical 1400
(Solartron Mobrey, Farnborough, Hampshire, UK) and Elins P-20X8 (Elins, Zelenograd,
Russia). The measurements were conducted at room temperature in the potential range
of 0.01–2.5 V (vs. Na/Na+). Galvanostatic charge/discharge cycling was carried out at
current densities of 50, 150, and 350 mA/g. During discussions, despite applying half-cells,
the charge designates a sodiation process, while the discharge implies desodiation. Cyclic
voltammetry (CV) curves were recorded at a potential sweep rate of 50 µV/s. Electro-
chemical impedance spectroscopy (EIS) spectra were recorded in the frequency range of
106–10−2 Hz with an ac amplitude of 10 mV at the potential of 0.01 V (i.e., at a fully sodi-
ated state). The EIS-spectra were processed with Zview software from Scribner Associates
(Southern Pines, NC, USA).

3. Results
3.1. Structure, Morphology, and Conductive Properties of Moss-like Hierarchical Structure
Self-Assembled by Na2Ti3O7 Nanotubes

To study the effect of annealing temperature on the phase composition of prepared
Na2Ti3O7 products, XRD studies were carried out. The XRD patterns for samples obtained
at temperatures of 120, 250, 350, and 500 ◦C are illustrated in Figure 1. As it can be seen,
the observed peaks in diffraction patterns are broadened presuming the nanocrystalline
materials. The data show that the dominant crystal phase in NTO-120, NTO-250, and
NTO-350 samples was sodium trititanate (PDF No. 59-0666) crystallizes in a monoclinic
space group P21/m with the parameters: a = 9.3987 Å, b = 3.7566 Å, c = 11.0272 Å, β = 101.6◦.
Besides, anatase titanium dioxide (PDF No. 21-1272) was identified in the analyzed samples
as phase impurity. Up to annealing at 350 ◦C, the XRD patterns (including position,
geometry, and broadening of diffraction peaks) are the same, indicating an absence of
distinguished changes. On the other hand, if the calcination at the temperature of 500 ◦C
was carried out, it would result in the irreversible phase transformation of Na2Ti3O7 to
anatase, signed by strengthening of corresponding peaks. The obtained results are in
agreement with the data of other researchers [31,32].
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Figure 1. XRD patterns of Na2Ti3O7-based products prepared at different temperatures (120–500 ◦C)
NTO-120, NTO-250, NTO-350, and NTO-500 products.

For the investigation into the microstructure of synthesized materials, SEM and STEM
experiments were carried out. The results reveal that samples looked identically and have
a self-assembled hierarchical architecture comprising two levels of organization. As an
example, in Figure 2 and Figure S1 the morphology of NTO-120 and NTO-350 products is
illustrated. It is found (SEM data; Figure 2a,b and Figure S1) that first level of hierarchy is
formed by microparticles of 1–10 µm in diameter possessing a rough surface. The particles
look similar to moss-like lichens, called “reindeer mosses” (Figure S2).
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Figure 2. SEM-images show the microscale topography for NTO-120 sample at the magnifications
of 300× (a) and 10,000× (b). STEM-imaging at the magnification of 700,000× reveals the structural
hierarchy of NTO-120 (c) and NTO-350 (d) products.

An in-depth study (STEM mode; Figure 2c), shows that these microscale moss-like
objects consist of smaller size one-dimensional hollow cylindrical nanostructures (i.e., nan-
otubes). The nanotubes are extremely uniform in size that is might be an important factor
for usage as electrode-active materials for batteries. The outer diameter of these tubes varies
in the range of 6–9 nm, the wall thickness does not exceed 2–3 nm (ultrathin). The length
of nanotubes is equal to several hundred nanometers. The sample annealed at 350 ◦C
(Figure 2d) did not demonstrate noticeable changes in microstructure, and no agglomerates
of nanotubes were observed.
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The EDX studies give an insight on elements in the samples. It is shown that synthe-
sized materials contain O, Na, Ti, and C in trace amounts, as displayed in Figure 3a–e using
NTO-120 as an example. The maps reveal a uniform distribution of oxygen, sodium, and
titanium at the products surface, as well as carbon (Figure S3), the origin of which will be
clarified later using XPS.
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Figure 3. SEM-image of the analyzed area (a), corresponding elemental maps (b–d), and EDX-
spectrum (e) for NTO-120 sample. XPS-spectra for the NTO-350 surface: survey scan (f), O 1s (g), Na
1s (h), Ti 2p (i). The inset in (f) shows the content of elements estimated from XPS peak areas.

To determine the chemical state of elements in the prepared materials, XPS experi-
ments were performed. Figure 3 illustrated the XPS data obtained for the NTO-350 sample.
The survey spectrum (Figure 3f) shows the presence of signals from Na, Ti, and O elements.
The existence of carbon in XPS analyses is explained by the nanoscale morphology sensitive
to environment contaminations [33,34]. In the photoelectron spectrum of O 1s (Figure 3g)
two prominent peaks are detected at 530.1 eV (89%) and 531.7 eV (11%), which, respectively,
associating with the oxygen bonded to metal and the oxygen of hydroxyl groups or carbon-
ates (CO2−

3 ) existed at the surface. The binding energy of Na 1s (Figure 3h) is 1071.5 eV.
The Ti 2p core-level XPS spectrum (Figure 3i) shows spin-orbit doublet of 2p3/2 (458.6 eV)
and 2p1/2 (464.2 eV) with a separation of 5.7 eV corresponding to the +4 oxidation state of
titanium. The registered positions of peaks are in agreement with that from literature for
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Na2Ti3O7 [35]. The elemental composition of NTO-350 determined from XPS peak areas
(Figure 3f, inset) corresponds to the Na1.63Ti3.28O7.07 formula (ignoring the TiO2 impurity),
which is close to sodium trititanate.

To obtain information about texture of synthesized Na2Ti3O7 materials, a low-temperature
N2 adsorption-desorption method was used. Figure 4 represents the experimental isotherms,
pore volume data, and pore size distribution curves for NTO-120 and NTO-350 samples.
It can be seen that products exhibited a type IV isotherms (in terms of the IUPAC clas-
sification) with the H3 hysteresis loops starting at p/p0 of 0.43, which corresponds to
the mesoporous materials. The pore size distribution profiles (insets in Figure 4) have
narrow peaks at 5.68 nm (NTO-120) and 6.32 nm (NTO-350) further evidence that the
mesoscopic scale porosity is the dominant in products. The total pore volume for samples
can be estimated as 0.54–0.6 cm3/g. The BET specific surface area changes from 313.9 to
282.8 m2/g and the BJH pore volume varies between 0.54 and 0.60 cm3/g during treatment
at temperatures in the range of 120–350 ◦C. Thus, it can be concluded that the obtained
materials are characterized by a large specific surface area and high pore volume with a
pore network formed predominantly by mesoporous channels. Interestingly, the NTO-350
sample possesses some higher pore volume as opposed to the un-annealed product. This is
likely caused by the opening of pores due to dehydration (Figure S4).
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Table S1 summarizing the textural characteristics and preparing techniques for differ-
ent nanostructured sodium trititanate demonstrates that the synthetic procedure in this
work might be useful to design and fabricate functional Na2Ti3O7-based materials for
various fields.

Figure 5a represents the UV-vis diffuse reflectance spectra of analyzed Na2Ti3O7
materials. According to data, the samples absorb UV-rays and have high reflectance in
the visible region (λ > 400 nm), demonstrating a typical behavior for Na2Ti3O7, which is a
wide-bandgap semiconductor. The optical band gap (Eg) of the products was estimated by
Tauc relation (Equation (1)) for allowed indirect transitions (γ = 2) using a Kubelka–Munk
model ( α ∼ F(R∞)):

(α·}ω)1/γ = A
(
}ω− Eg

)
(1)

where α is the absorption coefficient, }ω is the photon’s energy, A is the constant called the
band tailing parameter, F(R∞) = (1− R∞)2/2R∞ is the Kubelka–Munk function, and R∞
is the reflectivity.
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Figure 5. UV-vis diffuse reflection spectra (a) with the corresponding Tauc plots (inset) for band gap
determination and impedance spectra (b) with the EEC used for fitting of NTO-120 and NTO-350
materials (to guide the reader’s eye high-frequency regions of spectra are shown enlarged at the right).

In this way, the (F(R∞)·}ω)1/2 against }ω graph is plotted and then a linear section
of the curve is extrapolated to the x-axis (an intersection point gives the Eg). The Tauc
plots of tested samples are shown in the inset of Figure 5a. According to estimations, the
band gap of the NTO-120 sample is equal to 3.52 eV agreeing with the results of theoret-
ical calculations (3.28 eV) [36,37] and experimental measurements (3.40–3.51 eV) [37–40]
reported in the literature. Note that some authors had measured a larger band gap for
Na2Ti3O7 (3.7–3.85 eV) [41–43]. After annealing at 350 ◦C, the band gap decreases to 3.37 eV.
Probably, this may be due to change in phase ratio resulting in the construction of the
Na2Ti3O7/anatase heterojunction structure. Further experiments are required to study
this question that goes beyond the scopes of the study. On the other hand, there are many
experimental data and theoretical models indicating an increase in the band gap of semi-
conductor nanomaterials due to decreasing their particle size [44]. This is explained by
the fact that in the nanoscale state in semiconductors, the quantum confinement effect of
electrons and holes occurs, which leads to an energy difference between the filled states
and the empty states. Therefore, as the particle size changes, the band gap either increases
or decreases.

Figure 5b illustrates the EIS spectra of hierarchical nanotube-constructed Na2Ti3O7
materials prepared at temperatures of 120 ◦C (un-annealed) and 350 ◦C as well as an
equivalent circuit (inset) used for fitting. As it is shown the impedance profiles comprise a
depressed semicircle in high frequency range and a straight line at low frequency. From the
plots is observed that due to annealing the impedance tends to decrease up to 156.5 Ω (NTO-
350 sample). Taking into account sample geometry, the following values of resistivity were
calculated by EES fitting: 3.5 and 3.0 kΩ·cm for the NTO-120 and NTO-350, respectively.
The estimated conductivity of NTO-120 product is 2.88 × 10−4 S/cm. Annealing at 350 ◦C
increases the conductivity up to 3.34 × 10−4 S/cm. The results are consistent with the
UV-Vis data. The literature analysis indicates that the observed values are rather high.
Indeed, as it was found in [45], the microparticulate Na2Ti3O7 synthesized through the
solid-state method has a conductivity of 1.19·10−7 S/cm (after doping with ytterbium it
is increased to 1.89·10−7 S/cm). Table S2 presents the data calculated by modeling the
experimental impedance spectra for studied materials.
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3.2. Electrochemical Performance in Sodium Batteries of Self-Assembled Moss-like Hierarchical
Architecture Constructed by Na2Ti3O7 Nanotubes

Figure 6 shows CV curves of the NTO-120 and NTO-350 electrodes for the 1st, 4th,
and 7th cycles. In general, no noticeable differences can be found between the graphs,
which is explained by the identical electrochemical reaction mechanism. During the first
cycle, a series of pronounced peaks near 1.93–2, 1.37–1.4, 0.86–0.94, and 0.54–0.56 V are
detected in the cathodic sweep resulting from processes that occur at the electrode surface:
the accumulation (adsorption) of sodium ionic species due to Faradic redox reactions
(pseudocapacitive-like behavior) [46,47] and the decomposition of electrolyte with the
formation of solid electrolyte interphase layer (SEI) [48]. The cathodic peak at 0.01–0.02 V
corresponds to the insertion of Na+ ions into the Na2Ti3O7 crystal lattice accompanied
by a formation of Na2+xTi3O7 and, meantime, reduction of a part of host Ti4+ ions to
Ti3+ due to the charge compensation [46]. For the subsequent cycles, the contribution of
irreversible processes reduces significantly, as shown in the cathodic scans of 4th and 7th
CV curves. In the initial anode process, broad peaks near 0.7 and 1.2 V are observed in
CVs of NTO-120 and NTO-350 samples. Upon cycling, the anodic region evolves: the peak
located at 0.7 V becomes more intense (it is stabilized after the 4th cycle), whereas the peak
at 1.2 V, on the contrary, decreases. According to the previous works [49,50], the region
of lower potentials refers to the extraction of sodium ions from the Na2Ti3O7 lattice with
the oxidation of trivalent Ti to tetravalent. The decrease in intensity of peak around 1.2 V
during cycling likely results from incompletely reversible adsorption of Na+ ions in the
pores of the materials and/or inside the nanotubes [46,47].
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The results of galvanostatic charge/discharge tests for NTO-120 and NTO-350 elec-
trodes at a current density of 50 mA/g (~0.3 C) are shown in Figure 7. As can be seen,
the cycling data are consistent with that of CV studies. Indeed, the initial charge curves
of both samples (Figure 7a,b) exhibit a number of inflections at the potentials close to
positions of peaks in the first cathodic CV scans. The initial charge capacities of NTO-120
and NTO-350 are comparable and reach about 480 mA·h/g. During the first discharge
process, the NTO-350 electrode delivers a specific capacity of 149 mA·h/g, higher than
NTO-120 (125 mA·h/g). Analogously to CV measurements, noticeable irreversible losses
are observed for samples mainly due to the electrolyte reduction and SEI film forma-
tion [51]. Next, the initial charge/discharge profiles differ from that of subsequent cycles.
On the contrary, the curves of the 4th and the 7th cycles are almost coincident, implying
the same electrochemical reaction mechanisms (Equation (2)). The reversible (discharge)
specific capacities of analyzed materials after the 7th cycle are stabilized at approximately
127 mA·h/g (NTO-120) and 151 mA·h/g (NTO-350), which corresponds to deintercalation
of about 1.4 and 1.7 sodium ions per formula unit of sodium titanate (x in Equation (2)).
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The corresponding Coulombic efficiencies are equals to 84.8% and 86.9%. As it will be
shown below (Figure 8a), such moderate efficiency in initial cycles is associated with the
evolution of SEI layer.

Na2Ti3O7 + xNa+ + xe↔ Na2+xTi3O7 (2)

where x is the amount of Na+ incorporated into Na2Ti3O7 matrix (can reach from 2 to
3.5 [35,52,53]).
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(c,d) for the NTO-120 and NTO-350 electrodes at a current density of 50 mA/g.

Figure 7c,d illustrates the evolution in specific capacities of tested materials during
50 charge/discharge cycles. The data show that upon cycling a slowdown in the rate of
capacity degradation is observed for both electrodes. At the same time, it is clear that
NTO-120 sample possesses a worse electrochemical performance. The drop in capacity of
such electrode from the 7th to 50th cycle was about 10%, while for NTO-350 that did not
exceed 3%. Observed differences in the behavior of NTO-120 and NTO-350 can probably
be explained by unequal degree of dehydration. Indeed, according to TGA data (Figure S4),
the total weight loss for NTO-120 and NTO-350 in the range from room temperature to
1000 ◦C is about 15.6 and 8.5%, respectively. Besides the water exists in various states in
the analyzed products, namely absorbed molecules (the portion is the same for NTO-120
and NTO-350), free water, and H2O molecules located in the interstitial cavities (only in
un-annealed material). The literature overview reveals that free and coordinated water
effects differently on the electrochemical performance in SIBs [54–58]. After the 50-fold
cycling, the NTO-120 and NTO-350 maintained, respectively, around 114 and 146 mA·h/g.
The corresponding Coulombic efficiencies increase to above 95.0 and 97.9%.
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Figure 8. Impedance spectra registered at a fully sodiated state (at a potential of 0.01 V) during 1st
and 50th cycles for analyzed materials (filled symbols denote the frequencies of 103, 102, and 10−2 Hz)
with an electrical equivalent circuit (inset) applied for fitting (a), rate capability data (charge and
discharge capacities are marked by filled and open symbols, Coulombic efficiencies are designated
by semi-open symbols) after five initial formation cycles at 50 mA/g (b), and prolonged cycling
performance at 350 mA/g (c) for the NTO-350 electrode.

Figure 8a depicts the EIS-spectra of NTO-120 and NTO-350 samples registered at a
fully sodiated state (0.01 V) during 1st and 50th cycles.

The impedance spectra show depressed semicircles in the high-to-middle frequency
range, followed by a low-frequency sloping line. It can be seen from graphs that upon
cycling the radii of semicircles increase for both samples. At the same time, a difference in
semicircles sizes is observed obviously from one to another studied materials. Moreover, it
rose during cycling, as illustrated in EIS-plots. In order to analyze the observed features,
next, the fitting of impedance curves was performed using the equivalent electric circuit
(Figure 8a, inset) that involves the following components: Rs is the ohmic resistance of the
cell, RSEI and CSEI are the resistance and geometric capacitance of a SEI film, Rct and Cdl
are the charge transfer resistance and double layer capacitance at an electrode/electrolyte
interface, ZW is the diffusion resistance. Note that bring of all of these elements into EES is
dictated by the physical context within analyzed cells and supported by the goodness of
fitting (χ2 ≤ 10−4). Table S3 represents the evolution of parameters for NTO-120 and NTO-
350 based cells during cycling. The results show that in an initial period (first cycle) the
NTO-350 possesses some lower values of RSEI and Rct (33.7 and 98.2 Ω/cm2, respectively)
as compared to that of NTO-120 (51.4 and 108.0 Ω/cm2). After the 50th cycle, the difference
in the resistance of a SEI layer as well as in the charge transfer resistance between samples
increases (NTO-350: RSEI = 65.5 Ω/cm2, Rct = 151.8 Ω/cm2; NTO-120: RSEI = 110.7 Ω/cm2,
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Rct = 167.2 Ω/cm2). The obtained data correlate with that of CV-experiments (Figure 6)
and charge/discharge tests (Figure 7). The same results without explanation were reported
previously in [59] for the nanotubular Na2Ti3O7 prepared at 130 and 150 ◦C. As seems, the
observed features in electrochemical performance of such materials can be explained by
different amounts of water. It is interesting to mention that before cycling (Figure S5), a
relatively high impedance (exceeding those on the 1st and 50th cycles) of NTO-120 and
NTO-350 samples is measured. Similar data were presented earlier in [42,59]. The observed
phenomenon is explained by the fact that at the first cycle end most of the material’s surface
is covered with a SEI film reduces its surface energy and, hence, decreases the interfacial
impedance (as supposed in [44]).

Rate capability experiments (Figure 8b) show that the performance of NTO-350 sample
is stable under cycling with increased current densities. Indeed, it exhibits a reversible
capacity of ~118 mA·h/g (a capacity drops of about 19% as opposed to that at 50 mA/g)
with a Coulombic efficiency of 97.9% at a cycling rate of 150 mA/g (~0.85 C). When
the current load rises to 350 mA/g (~2 C), a discharge capacity drop of approximately
14% (to ~102 mA·h/g at the 50th cycle) as well as a Coulombic efficiency growth to
98.3% were observed for NTO-350 electrode. Hence, the rate of capacity degradation
from cycle to cycle slows down when an applied current density is increased. Similar
behavior of Na2Ti3O7 during cycling at higher rates is described in [50,51] and attributed to
variations in SEI thickness or composition. When the NTO-350 was measured by 50 cycles
of charge/discharge at a current density of 800 mA/g (~4.5 C), it exhibited approximately
79 mA·h/g with an almost 100% Coulombic efficiency.

Figure 8c displays the prolonged cycling performance of the NTO-350 electrode (con-
tinuation of the tests shown in Figure 8b) at a current load of 350 mA/g. Under continuous
Na+ ions insertion/extraction during 200 cycles the analyzed material keeps a considerable
capacity of about 97 mA·h/g with the retention as high as 95.0% initial storage indicating
its superior cyclic and adequate rate performances for SIBs.

4. Conclusions

In this work, we have developed an efficient strategy for the preparation of moss-
like Na2Ti3O7 frameworks assembled from ultrathin one-dimensional nanotubes with an
outer diameter of 6–9 nm, a wall thickness of 2–3 nm, and a length of several hundred
nanometers. The material has a unique structure similar to moss at the micro level and a
high specific surface area (314 m2/g). The product is characterized by a porous texture
(0.54 cm3/g) with a narrow pore size distribution near 5.7 nm. It was also found that the
material is thermally stable up to 350 ◦C: its textural characteristics almost do not change
(nanotube agglomeration was not observed), the specific area and pore volume after heat
treatment remain at the level of 283 m2/g and 0.60 cm3/g, respectively, pores with a
diameter of 6.3 nm are predominated. It is found that the phase transformation of Na2Ti3O7
into anatase occurs near 500 ◦C. The moss-like nanoarchitecture of sodium trititanate
improves electrical conductivity reaching 2.88·10−4 S/cm. Next, as it was found, heat
treatment at 350 ◦C affects the electrical properties of Na2Ti3O7: the conductivity increases
three-fold to 3.34·10−4 S/cm. The SIBs-type devices based on a hierarchically-organized
nanotubular Na2Ti3O7 possess promising cyclic and rate characteristics. A capacity of more
than 95 mA·h/g after the 200th cycle is preserved even at a current density of 350 mA/g
with a Coulombic efficiency of almost 100%. It was found that the degree of dehydration
determines the electrochemical performance of the nanotubular Na2Ti3O7. As we believed
the reported strategy of hierarchically-organized Na2Ti3O7 nanotubes may have a great
potential for other fields (e.g., biomedicine, photocatalysis, and ion exchanger applications).
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12111905/s1, Figure S1: SEM-images at the magnifications
of 378× (a) and 17,180× (b) for the NTO-350 sample; Figure S2: Close-up view for a white reindeer
moss lichen from the Rondvassbu National Park (Norway, Europe). The photo was taken by Martin
Schneiter and is available for license from the iStock website; Figure S3: Elemental mapping of carbon
for the NTO-120 material; Figure S4: Thermogravimetric analysis curves of the NTO-120 and NTO-350
samples; Figure S5: Nyquist plots of NTO-120 and NTO-350 electrodes before cycling (i.e., so-called
«fresh» cells); Table S1: Method of synthesis and textural characteristics of some promising functional
materials based on Na2Ti3O7 [60–65]; Table S2: Calculated EIS parameters of NTO-120 and NTO-350
samples; Table S3: The EIS-spectra fitting results of NTO-120 and NTO-350 electrodes.
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