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Rapamycin and its derivatives are specific inhibitors of mammalian
target of rapamycin (mTOR) kinase and, as a result, are well-
established immunosuppressants and antitumorigenic agents. Ad-
ditionally, this class of drug promotes gene delivery by facilitating
lentiviral vector entry into cells, revealing its potential to improve
gene therapy efforts. However, the precise mechanism was un-
known. Here, we report that mTOR inhibitor treatment results in
down-regulation of the IFN-induced transmembrane (IFITM) pro-
teins. IFITM proteins, especially IFITM3, are potent inhibitors of
virus–cell fusion and are broadly active against a range of patho-
genic viruses. We found that the effect of rapamycin treatment on
lentiviral transduction is diminished upon IFITM silencing or knock-
out in primary and transformed cells, and the extent of transduc-
tion enhancement depends on basal expression of IFITM proteins,
with a major contribution from IFITM3. The effect of rapamycin
treatment on IFITM3 manifests at the level of protein, but not
mRNA, and is selective, as many other endosome-associated trans-
membrane proteins are unaffected. Rapamycin-mediated degrada-
tion of IFITM3 requires endosomal trafficking, ubiquitination,
endosomal sorting complex required for transport (ESCRT) machin-
ery, and lysosomal acidification. Since IFITM proteins exhibit broad
antiviral activity, we show that mTOR inhibition also promotes
infection by another IFITM-sensitive virus, Influenza A virus, but
not infection by Sendai virus, which is IFITM-resistant. Our results
identify the molecular basis by which mTOR inhibitors enhance
virus entry into cells and reveal a previously unrecognized immu-
nosuppressive feature of these clinically important drugs. In addi-
tion, this study uncovers a functional convergence between the
mTOR pathway and IFITM proteins at endolysosomal membranes.
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Endosomes are vesicular, membrane-bound organelles that
direct the internalization and sorting of fluids, macromole-

cules, and plasma membrane proteins via the process of endo-
cytosis (1). Invagination of the plasma membrane and carefully
regulated fission events give rise to “early” endocytic vesicles that
ferry cargo into a recycling circuit, in which contents are returned
to the cell surface, or a pathway terminating in highly acidified
lysosomes. Protein transport to lysosomes occurs following ly-
sosome fusion with “late” endosomes or with specialized struc-
tures known as autophagosomes. In the former, late endosomes
deliver enzymes needed for lysosome function, as well as endo-
cytosed material destined for proteolytic degradation (2, 3).
Fusion between late endosomes and lysosomes gives rise to hy-
brid organelles known as endolysosomes, a name which is also
used to generally describe the late endosome/lysosome com-
partment since methods to distinguish them are inadequate. Late
endosomes are also known as multivesicular bodies (MVBs) due
to the presence of intraluminal vesicles (ILVs). The endosomal
sorting complex required for transport (ESCRT) machinery is
required for sorting ubiquitinated protein cargo into ILVs, which
are subsequently degraded by lysosomal hydrolases as late
endosomes/MVBs fuse with lysosomes (4–6).
Overall, intricate trafficking of membrane proteins regulates

specific cellular activities, such as nutrient uptake and signal

transduction, and collectively allows cells to rapidly respond to
their surroundings. While providing a means for large molecules
to access an otherwise impermeable cell, the endocytic network
is also exploited as a portal of entry for pathogens. Many path-
ogenic enveloped viruses infecting humans, including Influenza
A virus (IAV), Dengue virus, and Ebola virus, adhere to a life
cycle that relies on endosomal movement and maturation. The
progressive acidification that occurs during the transition from
early endosomes to late endosomes triggers fusion between
viral and endosomal membranes, allowing cytoplasmic access
and the initiation of viral replication (7). Endosomes are thus
situated at a crucial cellular threshold, and, as a result, they are
equipped with elements of the cell-intrinsic antiviral immune
response (8).
The IFN-induced transmembrane (IFITM) proteins IFITM2

and IFITM3 are antiviral factors that inhibit infection by a di-
verse assortment of viruses at the level of virus–cell fusion and
which can be found in endolysosomal membranes (9, 10). The
related IFITM1 is localized rather at the plasma membrane and
exhibits differential antiviral specificity. However, most studies
on IFITM protein function have been performed using ectopic
expression assays, and less is known about the endogenous roles
they play in different cell types. While IFITM1, IFITM2, and
IFITM3 expression can be up-regulated by interferons and other
cytokines, there are certain tissue types in which IFITM proteins
are highly expressed under basal conditions (11). For example,
IFITM members are readily detectable in skin cells, including
dermal and foreskin fibroblasts (12), mucosal epithelium (13,
14), and in other epithelial cells like astrocytes (15) and HeLa
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cells (12, 16). Additionally, they are found in hematopoietic stem
cells and their progenitors, including myeloid and lymphoid cell
types such as macrophages, dendritic cells, and T cells, and ex-
pression levels can be affected by differentiation and activation
status (17–24). In some cases, the functional utility of IFITM
proteins may not be limited to antiviral protection since they are
also believed to perform cellular functions beyond restriction of
virus entry (25).
Much of what is understood about the antiviral activities of

IFITM proteins is the result of retroviral pseudotyping experi-
ments. Pseudotyping is the process by which retroviruses, such as
HIV or murine leukemia virus, are outfitted with heterologous
envelope glycoproteins such as IAV hemagglutinin (HA) and
vesicular stomatitis virus (VSV) glycoprotein (VSV-G). Since
viral glycoproteins bind to distinct cell surface receptors and
perform the fusion reaction at distinct cellular membranes,
pseudotyping allows for customized delivery of virus particles to
select cell types and select intracellular compartments, such as
endosomes. This practice has extended to the clinical setting
where VSV-G is currently being used to guide the delivery of
retrovirus into human cells for gene therapy efforts, due to the
ability of VSV-G to bind the ubiquitous LDL receptor for cell
attachment (26). IFITM2 and IFITM3 overexpression inhibits
virus entry mediated by both IAV HA and VSV-G while the
former is considerably more sensitive to the inhibition than the
latter (27–30). Furthermore, ifitm3 KO mice exhibit enhanced
morbidity and mortality when challenged with sublethal doses of
IAV, and polymorphisms in human IFITM3 are associated with
severe disease outcomes following IAV infection (31, 32). How-
ever, it was unclear whether IFITM proteins restrict VSV-G–
mediated virus entry in situations of clinical consequence to humans.
The mammalian target of rapamycin (mTOR) is a serine/

threonine kinase that functions as a central regulator of cell
growth and metabolism. Deregulation of the mTOR pathway
contributes to many human diseases, including cancer, obesity,
diabetes, and age-related pathologies (33). As its name implies,
the discovery and functional characterization of mTOR is fun-
damentally linked to a natural compound that inhibits it.
Rapamycin binds to FK506-binding protein 12 (FKBP12), and
the duo acts as an allosteric inhibitor of mTOR. As a component
of two complexes known as mTORC1 and mTORC2, mTOR
integrates signaling from nutrients, growth factors, energy, and
oxygen to promote protein and lipid synthesis, cell proliferation
and survival, and macroautophagy suppression (34). Rapamycin
and its derivatives inhibit these anabolic cellular processes and
have been evaluated and approved for medicinal use as anti-
cancer agents and to treat graft-versus-host disease in trans-
plantation patients. It is generally believed that mTORC1 is
sensitive to rapamycin while mTORC2 is not, but the latter can
also be inhibited when the drug is used for extended periods or at
high concentrations (35, 36). The localization of mTORC1 and
mTORC2 to endomembranes regulates their metabolic activities
(37), but it was unknown whether mTOR-associated signaling
influences other events in this subcellular compartment, such as
virus entry.
It was recently described that rapamycin treatment can en-

hance gene delivery by lentiviral vectors in human and murine
hematopoietic stem and progenitor cells (HSPCs) (38–40). This
effect was observed using a replication-incompetent lentivirus
(lentivector) pseudotyped with VSV-G, a currently favored tool
for genome modification ex vivo due to its ability to maximize
infectivity and broaden cellular tropism without compromising
long-term engraftment (41–43). The initial report found that
rapamycin promotes lentivector fusion with cellular membranes,
but the detailed mechanism remained unknown. Nonetheless,
the use of rapamycin or its derivatives is already being included
in gene therapy protocols for the correction or prevention of
multiple human diseases, including HIV/AIDS (44). This dis-
covery revealed a previously uncharacterized connection be-
tween mTOR, endocytic trafficking, and virus–cell fusion.

In this article, we report that mTOR inhibitors, including rapa-
mycin, down-regulate endogenous IFITM3 through a lysosomal
degradation pathway in hematopoietic and nonhematopoietic cells.
Furthermore, rapamycin enhances not only lentivector transduction
but also IAV infection in primary and transformed cell lines in an
IFITM3-dependent manner. Our study will improve gene mod-
ification efficiency and facilitate efforts to correct a variety of
human diseases. Furthermore, novel strategies that directly tar-
get cellular IFITM proteins will yield gene therapies that maxi-
mize gene modification, cell engraftment, and cell survival while
bypassing unintended consequences of mTOR inhibitor use.
Furthermore, these results reveal that mTOR inhibitors relieve a
broadly acting, intrinsic antiviral barrier to promote viral in-
fection ex vivo and raise the possibility that their use in some
clinical settings may undermine antiviral immunity in vivo. Thus,
rapamycin, its derivatives, and other mTOR inhibitors may
represent a double-edged sword in the arena of public health.

Results
Endogenous IFITM3 Is Down-Regulated by Rapamycin via a Lysosomal
Degradation Pathway. As inhibitors of virus–cell fusion in endo-
somes, we assessed the role played by IFITM proteins in the
rapamycin-mediated enhancement of lentivector infection. We
previously reported that HeLa cells and primary fibroblasts ex-
press high levels of IFITM3, which renders them refractory to
infection by Zika virus (12). When HeLa were exposed to mi-
cromolar quantities of rapamycin for 4 h, we observed a dose-
dependent decrease in IFITM3 protein as determined by flow
cytometry and Western blot analysis (Fig. 1 A–C). The effect was
selective because another transmembrane protein, transferrin
receptor, was unaffected by rapamycin treatment (Fig. 1C). A
time course experiment revealed that IFITM3 down-regulation
was both progressive, with maximal decreases observed at 4 to
6 h posttreatment, and transient, as IFITM3 protein levels par-
tially recovered over time (Fig. 1 D and E). We also examined
how mTOR inhibition affects endogenous IFITM3 induced by
type I IFN in 293T cells. Following 24 h of IFN stimulation,
rapamycin addition led to decreased levels of induced IFITM3
protein in a dose-dependent manner. Here, elevated amounts of
rapamycin resulted in a stable, nontransient loss of induced
IFITM3 (SI Appendix, Fig. S1A).
We used quantitative RT-PCR to show that IFITM3 mRNA

levels were unaffected by rapamycin (Fig. 1F), indicating that the
down-regulation of IFITM3 manifests at the protein level. A
second mTOR inhibitor, Torin 1, which was also shown to en-
hance lentivector transduction in CD34+ HSPCs (38), down-
regulated endogenous IFITM3 in the micromolar range as well
(SI Appendix, Fig. S1B). In agreement with a model of post-
translational regulation, we found that the vacuolar ATPase in-
hibitor bafilomycin A1 partially prevented rapamycin-mediated
down-regulation (Fig. 1 G and H), indicating that endolysosomal
acidification contributes to IFITM3 protein degradation during
mTOR inhibition. Meanwhile, an endosomal trafficking inhibitor
that functions independently of acidification also partially res-
cued IFITM3 protein levels while the proteasome inhibitor
MG132 had no effect (Fig. 1 G and H). To explore the mecha-
nism of IFITM3 down-regulation in molecular detail, we studied
the fate of exogenous IFITM3 stably transfected into 293T cells.
While rapamycin treatment resulted in decreases to WT IFITM3
protein, a mutant variant in which the proline-based PPxY site
recognized by NEDD4 E3 ubiquitin ligase is disrupted (Δ17-18)
(45) was partially resistant to down-regulation (SI Appendix, Fig.
S1C). Similarly, a previously described ubiquitin-deficient variant
of IFITM3 in which all lysines were changed to arginines (ΔLys)
(46, 47) displayed a loss in sensitivity to rapamycin-mediated
degradation. Furthermore, a mutant lacking both the NEDD4
recognition site and a critical tyrosine needed for AP2-mediated
endocytosis (Δ17-20) (47–49) was completely resistant to the
effects of rapamycin (Fig. 1I and SI Appendix, Fig. S1C). In the
same experimental system, exogenous IFITM2 protein was as
sensitive to rapamycin as IFITM3 while IFITM1 was resistant (SI
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Appendix, Fig. S1C). The differential effect of rapamycin on
closely related IFITM proteins can be explained by the fact that
the NEDD4 recognition and endocytosis motifs, present in the
amino termini of IFITM3 and IFITM2, are absent in IFITM1.
Together, these data suggest that mTOR inhibitors redirect
IFITM3 protein toward a proteolytic pathway that requires en-
docytosis, ubiquitination, and endolysosomal acidification. To
confirm that mTOR inhibitor treatment decreases IFITM3
protein half-life, we treated HeLa cells with rapamycin in the
presence of cycloheximide (Chx) for up to 4 h. Rapamycin
accelerated IFITM3 protein turnover under these conditions
while bafilomycin A1 inhibited the loss (Fig. 1J).

IFITM3 Degradation Following Rapamycin Requires ESCRT-Dependent
Endocytic Trafficking. To elucidate the mechanism by which
IFITM3 protein is targeted to endolysosomes for degradation,
we studied the effects of rapamycin treatment in fixed cells using
confocal immunofluorescence microscopy. In primary human
foreskin fibroblasts (HFFs) and HeLa cells, rapamycin treatment
reduced IFITM3 levels in a bafilomycin A1-sensitive manner
(Fig. 2A). In mock-treated cells, endogenous IFITM3 localized
to early endosomes and, to a lesser extent, endolysosomes, as
determined by costaining with EEA1 and LAMP1 (SI Appendix,
Fig. S2A). However, rapamycin treatment resulted in an abrupt

clearance of IFITM3 from these sites without affecting levels of
EEA1 or LAMP1 themselves (Fig. 2A and SI Appendix, Fig. S2 B
and C). Addition of both rapamycin and bafilomycin A1 led to
retention of IFITM3 in reticulated, sac-like structures sur-
rounding the nucleus (Fig. 2A). Endolysosomal enrichment of
IFITM3 in this condition was confirmed using RFP-tagged
LAMP1 in the TZM-bl cell line, which also expresses high lev-
els of endogenous IFITM3 (Fig. 2B and SI Appendix, Fig. S2D).
To enable the tracking of IFITM3 in living cells, we included
YFP-tagged IFITM3 in the analysis. Rapamycin treatment led to
a redistribution of IFITM3-YFP to compartments positive for
both LAMP1-RFP and Lysotracker reagent, further suggesting
that the posttranslational degradation program terminates in
acidic endolysosomes (Fig. 2C).
To resolve the mechanism by which IFITM3 is delivered to the

proteolytic lumen of endolysosomes during mTOR inhibition, we
considered the involvement of two cellular pathways: macro-
autophagy and MVB formation. Since rapamycin is commonly
used to induce macroautophagy in cultured cells, we tested
whether rapamycin-mediated IFITM3 degradation requires
autophagosome formation. While concomitant treatment of cells
with rapamycin and bafilomycin A1 resulted in IFITM3 accu-
mulation in LAMP1-containing endolysosomes, these structures
were generally not decorated with the autophagosomal marker
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Fig. 1. Endogenous IFITM3 is down-regulated by
rapamycin via a lysosomal degradation pathway.
(A) HeLa cells were treated with indicated concen-
trations of DMSO or rapamycin for 4 h followed
by fixation/permeabilization, immunostaining with
anti-IFITM3, and analysis by flow cytometry. Univar-
iate histograms of IFITM3 staining intensity were
overlaid. (B) The mean fluorescence intensities (MFIs)
from histograms in A were normalized as percentage
relative to DMSO and averaged. (C) SDS/PAGE and
Western blot analysis of whole cell lysates produced
from HeLa treated with DMSO or 20 μM rapamycin
followed by immunoblotting with anti-IFITM3. Tu-
bulin and transferrin receptor were used as loading
controls. (D) HeLa cells were treated with 20 μM
rapamycin for durations indicated and immunos-
tained with anti-IFITM3. (E) The MFIs from histo-
grams in D were normalized and averaged. (F) HeLa
cells were treated with rapamycin (20 μM) for 4 h,
and total cDNA was synthesized from extracted
RNA. Quantitative PCR was performed using IFITM3-
specific primers. RNA from HeLa stably expressing
IFITM3-specific shRNA was used as a negative con-
trol. (G) HeLa cells were treated with DMSO, rapa-
mycin (20 μM) alone, or a combination of rapamycin
and bafilomycin A1 (1 μM), MG132 (10 μM), or 4-
bromobenzaldehyde N-(2,6-dimethylphenyl)semi-
carbazone (10 μM) for 4 h followed by immunos-
taining with anti-IFITM3. (H) The MFIs from histograms
in G were normalized and averaged. (I) The 293T cells
were transfected with pQCXIP-FLAG-IFITM3 or -IFITM3
Δ17-20, and stable expression was achieved following pu-
romycin selection. Cells were treated with DMSO or rapa-
mycin (20 μM) for 4 h followed by immunostaining with
anti-IFITM3. MFIs were normalized and averaged. (J) SDS/
PAGE and Western blot analysis of whole cell lysates pro-
duced from HeLa cells treated with 100 μg/mL cyclohexi-
mide and DMSO or rapamycin (20 μM) for the durations
indicated; combined rapamycin and bafilomycin A1 (1 μM)
were included for the 4-h time point. Immunoblotting was
performed with anti-IFITM3. Actin was used as a loading
control. Numbers and tick marks indicate size (kilodaltons)
and position of protein standards in ladder. All error bars
indicate SE from three to five experiments. B, bafilomycin
A1; Chx, cycloheximide; D, DMSO; E, EGA; M, MG132; R,
rapamycin.
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LC3 (SI Appendix, Fig. S2D). To more directly assess the contri-
bution of autophagy, we evaluated the effects of serum and amino
acid deprivation. In TZM-bl and HFF cells, rapamycin treatment
resulted in conversion of LC3-I to phosphatidylethanolamine-
conjugated LC3 (LC3-II), which is recruited to autophagosomal
membranes (50) (SI Appendix, Fig. S3 A and B). The conversion
to and subsequent loss of LC3-II is reflective of autophagic flux,
and degradation can be inhibited by bafilomycin A1. While
rapamycin promotes LC3 turnover, starvation of cells for the same
duration as rapamycin treatment led to a greater loss of LC3 while
affecting levels of IFITM3 to a lesser extent (SI Appendix, Fig.
S3D), suggesting that the two modes of mTOR inhibition differ
in regard to the extent and rapidity by which IFITM3 is de-
graded. Furthermore, they indicate that degradation of LC3 and
IFITM3 is uncoupled during mTOR inhibition, ruling out the
possibility that they are both regulated by autophagosomes. To

confirm the independence of IFITM3 degradation and auto-
phagosomal processes, we tested whether rapamycin-mediated
degradation of IFITM3 could occur in autophagy-deficient
cells (51). In ATG9a KO cells, in which the accumulation of
LC3-II and its turnover are prevented, IFITM3 degradation was
apparent (SI Appendix, Fig. S3B). Together, these results suggest
that mTOR inhibitors result in delivery of IFITM3 to endoly-
sosomes in an autophagosome-independent manner. In contrast,
knockdown of ESCRT-I component TSG101 partially prevented
IFITM3 degradation by rapamycin, as determined by flow
cytometry (Fig. 2D) and Western blot (Fig. 2E). Enhancement of
the IFITM3 immunoblot revealed a covalent modification of
approximately nine kilodaltons in rapamycin-treated, TSG101-
depleted cells, which may represent a single ubiquitin moiety
(Fig. 2F). The functional requirement for ESCRT machinery in
the rapamycin-induced degradation of IFITM3 suggests that
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Fig. 2. IFITM3 degradation following rapamycin
treatment requires ESCRT-dependent trafficking
through the endocytic pathway. (A) HFFs and HeLa
cells were treated with DMSO or rapamycin (Rapa)
(20 μM) or rapamycin plus bafilomycin A1 (BafA1)
(1 μM) for 4 h followed by fixation/permeabilization,
immunostaining with anti-IFITM3 and anti-LAMP1,
and analysis by immunofluorescence confocal mi-
croscopy. (B) TZM-bl cells were transfected with
LAMP1-RFP for 24 h and treated with DMSO or
rapamycin (20 μM) or rapamycin plus bafilomycin A1
(1 μM) for 4 h followed by fixation/permeabilization,
immunostaining with anti-IFITM3, and analysis by
immunofluorescence confocal microscopy. (C) HeLa
cells stably expressing IFITM3-YFP were transfected
with LAMP1-RFP for 24 h. Cells were stained with
Lysotracker Deep Red (50 nM) for 15 min, and living
cells were imaged immediately by immunofluores-
cence confocal microscopy. Image analysis was per-
formed using ImageJ (Fiji). Merged images are
provided for IFITM3-YFP/Lysotracker (green/blue)
and for IFITM3-YFP/LAMP1-RFP (green/red), and or-
thogonal XZ and YZ views are provided for the latter
(C). All images are average Z-stacks from three to
four consecutive medial sections. (D) HeLa cells were
transfected with indicated siRNA for 72 h, treated
with DMSO or rapamycin (20 μM) for 4 h, and
then fixed/permeabilized, immunostained with anti-
IFITM3, and analyzed by flow cytometry. MFIs from
histograms were normalized and averaged. Error
bars indicate SE from four experiments. (E) SDS/PAGE
and Western blot analysis of whole cell lysates from
HeLa transfected with indicated siRNA for 72 h and
treated with DMSO or rapamycin (20 μM). Immuno-
blotting was performed with anti-IFITM3 and anti-
TSG101. Actin was used as a loading control. The
image provided is representative of two experi-
ments. (F) Immunoblot with anti-IFITM3 in E was
enhanced to reveal bands of higher molecular mass
(marked with asterisk). (Scale bars: 10 μm.)
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mTOR inhibition promotes the ubiquitination and sorting of
IFITM3 into MVBs before disposal in lysosomes. This was
supported by a strong association between IFITM3 and MVB
marker CD63 in cells treated with rapamycin and bafilomycin A1
(SI Appendix, Fig. S3C).
To probe the direct involvement of mTOR and its associated

complexes in events leading to IFITM3 degradation, we per-
formed RNA interference to silence mTORC1 component
Raptor and mTORC2 component Rictor. Relative to treatment
with a nontargeting control siRNA, thorough silencing of Raptor
had no effect on IFITM3 protein levels. In contrast, a slight
reduction of Rictor resulted in decreases in IFITM3 (SI Ap-
pendix, Fig. S3 D and E). The specific, albeit modest, effect of
Rictor knockdown suggests that mTORC2 inhibition may be the
means by which rapamycin leads to IFITM3 degradation. A role
for mTORC2 is consistent with previous observations indicating
that rapamycin inhibits mTORC2-dependent activities, such as
the phosphorylation of Akt and the suppression of cell pro-
liferation, when used at micromolar concentrations (36).

Rapamycin Treatment of CD34+ HSPC Results in IFITM2/3 Down-
Regulation. Given that rapamycin was initially described as an
enhancer of lentiviral transduction in CD34+ HSPCs, we ex-
plored the effects of mTOR inhibition on endogenous IFITM2
and IFITM3 in this primary cell type. IFITM3 was readily de-
tected in CD34+ cells derived from pooled cord blood from nine
donors, and rapamycin treatment led to a marked decrease in
IFITM3 levels as determined by flow cytometry (Fig. 3A). We
also assessed the consequence of drug treatment on CD34+ cells
from adult peripheral blood using confocal microscopy analysis
(Fig. 3B). Intriguingly, both IFITM2/3 and LAMP1 signals were
elevated following addition of lentivector, suggesting that virus
addition mobilizes endosomes in this primary cell type. As a
result, assessment of endosomal proteins necessitated the addi-
tion of lentivector. As shown in cord blood CD34+ cells, rapa-
mycin treatment of adult CD34+ cells led to a dose-dependent
down-regulation of IFITM2/3 and redistribution to perinuclear
sites (Fig. 3C).

IFITM Silencing Abrogates the Rapamycin-Mediated Enhancement of
Lentivector Transduction. While the preceding experiments col-
lectively demonstrate that mTOR inhibition negatively regulates
IFITM2 and IFITM3 in various cell types, it remained to be
tested whether this phenomenon accounts for the rapamycin-
mediated enhancement of lentiviral transduction reported pre-
viously in CD34+ HSPCs (52). To reproduce the conditions used
in CD34+ HSPCs, HeLa cells were incubated with 20 micromo-
lar rapamycin 4 h before and during lentivector exposure, and
productive transduction was scored by de novo HIV-1 Gag ex-
pression. We found that rapamycin treatment of HeLa cells in-
creased permissiveness to an HIV-1–based lentivector bearing
VSV-G by three- to fourfold (Fig. 4A), and partial knockdown
of IFITM3 using shRNA resulted in transduction rates similar to
those following drug treatment (Fig. 4 B and C). Importantly,
rapamycin treatment in IFITM3 knockdown cells led to an even
higher transduction rate, but the enhancing effect of the drug
was relatively diminished (less than twofold) (Fig. 4C). This re-
sult suggested that the function of rapamycin as a transduction
enhancer depends on levels of endogenous IFITM3. To fully
suppress protein production of IFITM3, as well as IFITM2 and
IFITM1, we targeted the three gene products with a mixture of
siRNA as previously described (12, 18). In HeLa cells in which
IFITM1-3 are silenced, the influence of rapamycin on trans-
duction was absent (Fig. 4D). Since IFITM proteins are known
to inhibit infection during virus–cell fusion, we used a FRET-
based assay to measure early steps of virus entry into cells (53).
The results indicated that rapamycin enhances lentivector
transduction in HeLa by promoting virus–cell fusion, consistent
with findings in CD34+ HSPCs (38) (Fig. 4E). Moreover, while
depletion of IFITM1-3 led to increases in virus–cell fusion, no
further enhancement was observed with rapamycin (Fig. 4E).

Therefore, rapamycin enhances virus–cell fusion and does so, to
a large extent, by down-regulating IFITM protein expression.
Western blot analysis was used to establish the efficiency and
specificity by which RNAi reagents down-regulated IFITM
proteins in these experiments (Fig. 4 F and G and SI Appendix,
Fig. S4A) and also provided evidence that endogenous IFITM2,
in addition to IFITM3, is negatively regulated by rapamycin (Fig.
4F). We again detected the likely ubiquitinated form of IFITM3
in cells treated with both rapamycin and bafilomycin A1, and this
form was absent in IFITM3-silenced cells (SI Appendix, Fig.
S4B). Combining rapamycin with RNAi in primary HFFs con-
firmed that the rapamycin-mediated lentiviral transduction en-
hancement requires IFITM proteins (Fig. 4H). Furthermore, by
achieving a robust and specific gene knockout of IFITM3 using
CRISPR-Cas9, we found that IFITM3 is the major determinant
of rapamycin sensitivity in HeLa (Fig. 4I) and TZM-bl cells (Fig.
4J and SI Appendix, Fig. S4 C–E).

Rapamycin Promotes IAV Infection in an IFITM3-Dependent Manner.
While IFITM3 functions broadly to inhibit many pathogenic
RNA viruses in cell culture experiments, the physiological im-
pact of IFITM3 is best characterized during IAV infection in
mice and humans (32, 54). Consistent with its ability to co-
ordinate the selective clearance of IFITM3 and IFITM2 from
cells, we found that rapamycin also promotes infection by IAV in
HeLa and HFFs in an IFITM-dependent manner (Fig. 5 A–C).
Relative to VSV-G–mediated virus entry, IAV infection is more
sensitive to inhibition by IFITM3, and rapamycin treatment led
to a greater degree of infection enhancement (9- to 10-fold). Our
silencing and knockout experiments indicated that IFITM3 ex-
pression is required for the observed enhancement of viral in-
fections by rapamycin. To establish whether it is sufficient to
confer rapamycin sensitivity to cells, we performed experiments
in mouse embryonic fibroblasts (MEFs) from ifitm-deficient mice
(55, 56). IAV infection in cells lacking murine IFITM proteins
was not significantly boosted by rapamycin treatment (Fig. 5D).
In contrast, complementation of cells with murine IFITM3
resulted in a more than 100-fold inhibition of infection, and this
restriction was partially relieved following rapamycin treatment
(Fig. 5D). Analysis of protein levels in complemented cells
revealed that murine IFITM3 is partially down-regulated by
rapamycin and that levels are partially restored by the presence
of bafilomycin A1 (Fig. 5E). These results suggest that IFITM3
expression alone confers sensitivity to the rapamycin-mediated
infection enhancement effect. Further solidifying the functional
relationship between endogenous IFITM proteins and the ef-
fects of mTOR inhibition on virus infections is the finding that
Sendai virus, a paramyxovirus, is resistant to the effects of both
rapamycin treatment and IFITM silencing (Fig. 5F). That is,
neither rapamycin treatment nor IFITM knockdown led to an
enhancement of Sendai virus infection. Therefore, rapamycin
enhances infection by IFITM-sensitive viruses, but not IFITM-
resistant viruses, demonstrating that the primary mechanism by
which mTOR inhibition promotes infection is down-modulation
of IFITM3 protein.

Discussion
The results outlined here describe the causes and consequences
of a selective protein degradation program following mTOR
inhibition. Within a manner of minutes, rapamycin treatment
results in the negative regulation of IFITM3 (and IFITM2) at
the posttranslational level in diverse cell types. This finding is
reminiscent of a recent report describing that mTOR inhibitors
activate extensive degradation of cellular proteins via both pro-
teasomal and autophagy pathways (57). While it is possible that
IFITM3 belongs to a suite of proteins subject to regulation by
mTOR inhibition, we show that certain other endosomal pro-
teins (transferrin receptor, LAMP1, and EEA1) are spared
during this process. Most importantly, our experiments demon-
strate that IFITM3 protein down-regulation accounts for the
majority of the infection enhancement effect.
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Our observations indicate that IFITM2 and IFITM3 are de-
graded following rapamycin treatment in cells under basal con-
ditions or following ectopic or induced expression while IFITM1
is unaffected. IFITM3 was the dominant source of restriction in
cells assessed here, but the relative abundance of IFITM pro-
teins may vary by tissue and by the microenvironmental cues
present therein. In addition to enhancing infections mediated by
VSV-G and IAV HA, it is likely that mTOR inhibition promotes
infection by a number of other viruses pathogenic to humans. Of
particular interest is the impact on HIV-1, which is sensitive to
IFITM-mediated restriction at early stages (entry) and late
stages (virion infectivity) of its life cycle in a strain-dependent
manner (17, 18, 20, 58, 59). Furthermore, drugs and conditions
that lead to mTOR inhibition are expected to impact other
cellular processes in which IFITM2 and IFITM3 are involved,
such as cell–cell adhesion and cytokine regulation (25). Indeed,
further studies into these effects may reveal the physiological
basis for the interconnectedness of mTOR and IFITM proteins.
The localization of IFITM proteins to endomembranes has led

others to conclude that they feature in processes of macro-
autophagy. IFITM3 overexpression can result in elevation of the
autophagosomal marker LC3-II (60), and, more recently,
IFITM3 has been shown to shuttle the cellular proteins IRF3
and Ambra1 to autophagosomes for degradation (61, 62). These
latter findings reveal how IFITM3 inhibits IFN signaling and cell
migration, respectively, and provide examples of how IFITM
proteins influence immunity in many ways. Nonetheless, our
results suggest that IFITM3 is not a substrate regulated by
macroautophagy itself, at least not in the contexts explored in
this study. Instead, we show that the negative regulation of
IFITM3 by rapamycin involves endosomal trafficking events
likely guided by ubiquitination and ESCRT-mediated sorting
into MVBs.
Earlier reports discovered that IFITM3 abundance is fine-

tuned by the E3 ubiquitin ligase NEDD4. By recognizing a

tyrosine-based motif (PPxY) in the amino terminus, NEDD4 was
shown to ubiquitinate and accelerate the turnover of IFITM3 in
human and murine cells (45). NEDD4 is known to ubiquitinate
cargo proteins sorted by ESCRT (63–65). We did not explicitly
rule in a role for NEDD4 in the rapamycin-mediated degrada-
tion of IFITM3, but partial escape from the effects of mTOR
inhibition were displayed by mutant IFITM3 lacking the PPxY
motif or lacking lysine residues previously shown to be targeted
for ubiquitination. However, since NEDD4-like ubiquitin ligases
including ITCH also recognize the PPxY motif in the protein
substrates they regulate (66, 67), IFITM3 turnover may be con-
trolled by multiple E3 ligases. Our results using TSG101 depletion
link IFITM proteins with the ESCRT machinery. It remains to be
seen whether ESCRT governs the relative amounts and localiza-
tion of IFITM3 during basal homeostasis or during cellular stresses
other than mTOR inhibition.
Irrespective of the E3 ligase responsible, the redirection of

IFITM3 to acidic endolysosomes and the functional requirement
for ESCRT imply that the MVB represents an intermediate
through which IFITM3 passes before lysosomal delivery and
degradation. Consistent with a role for MVBs, when degradation
is interrupted with bafilomycin A1, IFITM3 accumulates in mul-
tivesicular sac-like structures. To arrive at this transient com-
partment, ESCRT may coordinate the sorting of IFITM3 from
late endosomal and/or lysosomal membranes into membrane in-
vaginations known as ILVs (5, 68). Fusion between MVB and
terminal lysosomes at perinuclear sites, which is bafilomycin A1-
sensitive (69), may facilitate the transfer of IFITM3-containing
ILVs into the lysosomal lumen for degradation by hydrolases.
Of note, ILVs are also released from cells when MVBs fuse with
the plasma membrane in a process known as exocytosis (4, 70).
Since IFITM3 protein is regularly detected in virus particles and
extracellular vesicles when expressed at high levels in cells (17,
71), it is possible that mTOR inhibition augments the pool of
IFITM3 ejected into the extracellular space.
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In addition to the lysosomal lumen or cell exterior, cargo
within ILV can also gain access to the cytoplasm by undergoing
“back-fusion” with the limiting membrane of the MVB (7). In
fact, while initially believed to undergo virus–cell fusion in early
endosomes, evidence exists that VSV-G uses a back-fusion step
in the MVB to complete cytoplasmic entry (72). Thus, together
with the well-characterized low pH trigger required for IAV HA-
mediated fusion, both viral glycoproteins utilized in this study
display a dependence on late endosomal/MVB membranes.
Most previous studies employing overexpression of IFITM3 have
documented an endolysosomal expression pattern in cells, sug-
gesting that subcellular localization underlies its ability to restrict
viruses entering at these sites (73, 74). However, we observed
that endogenous IFITM3 localizes mainly to early endosomes in
HeLa cells. It is possible that virus restriction occurs as IFITM3
and internalized virus particles overlap in trafficking endosomes
maturing toward a late phenotype. Furthermore, virus infection
driven by VSV-G is less sensitive to restriction by IFITM3 rel-
ative to IAV HA (27, 75), which may reflect differential de-
pendence on late endosomal/MVB membranes for entry or
qualitatively different interactions with said membranes. The
insensitivity of Sendai virus to both IFITM proteins and rapa-
mycin treatment is likely attributed to its ability to fuse at the
plasma membrane (63). It will be worthwhile to assess how virus
infection or IFN signaling impacts IFITM3 abundance in dif-
ferent endosomal compartments.

The data presented herein provide a mechanistic under-
standing of how rapamycin facilitates lentiviral transduction in
cells ex vivo, but they also raise important questions regarding
their uses in vivo. Pharmacologic mTOR inhibition is currently
being used to inhibit metabolic disorders, neurodegeneration,
aging, graft rejection, and tumorigenesis, and certain applica-
tions have already received Food and Drug Administration
(FDA) approval (76). However, by limiting IFITM2 and IFITM3
levels in endosomes, exposure to rapamycin may undermine an
important component of cell-intrinsic antiviral immunity. In-
deed, humans immunocompromised by mTOR inhibitors during
cancer treatment or following organ transplant exhibit increased
incidence of respiratory tract infections, including those caused
by viruses such as IAV (77–80). Furthermore, administration of
rapamycin in vivo shortly after infection with IAV led to exac-
erbated disease and mortality in mice (81). In humans, a natu-
rally occurring single nucleotide polymorphism resulting in
decreased IFITM3 mRNA expression is associated with severe
outcomes following IAV infection (54). That reduced IFITM3
expression can have physiological impact highlights the need for
further investigation into the molecular players that link IFITM3
to the mTOR pathway. Our work suggests that the complex re-
sponsible for regulating IFITM3 is mTORC2 since the silencing
of Rictor alone led to detectable decreases in IFITM3 protein.
However, the transient nature of IFITM3 down-regulation fol-
lowing mTOR inhibition and the existence of feedback loops
imply that genetic approaches to identify the genes responsible
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IFITM3-dependent manner. (A) HeLa were seeded in
24-well plates (50,000 per well) overnight and
transfected with siRNA (nontargeting control or a
mixture targeting IFITM1, IFITM2, and IFITM3) for
48 h. Cells were treated with DMSO or rapamycin
(20 μM) for 4 h and then with fresh media containing
DMSO or rapamycin (20 μM) and the indicated
quantity of IAV PR8. Approximately 18 h after virus
exposure, cells were fixed/permeabilized, stained
with anti-NP, and analyzed by flow cytometry. Numbers
inside gates indicate percent of NP+ cells. (B) Relative
infection scores from A using a multiplicity of infection
(MOI) of 0.2 were normalized to DMSO-treated siRNA
control cells and averaged. (C) Primary HFFs were
seeded in 24-well plates overnight and subsequently
transfected, treated, and infected as in A with an MOI
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Cells were treated with DMSO or rapamycin (20 μM) for
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rapamycin (20 μM) and IAV PR8 at an MOI of 0.2. Rel-
ative infection scores were normalized and averaged,
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cells set to 100. (E) Western blot analysis of whole cell
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transfected as in A and exposed to Sendai virus (Cantell)
at an MOI of 0.1. Approximately 18 h after virus expo-
sure, cells were fixed/permeabilized, stained with poly-
clonal anti-SeV, and analyzed by flow cytometry.
Relative infection scores were normalized to DMSO-
treated siRNA control and averaged. All error bars in-
dicate SE from three experiments. Statistical analysis
was carried out with a Student’s t test. ns, not signifi-
cant, P > 0.05; *P < 0.05; **P < 0.005. NP, nucleoprotein.
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will be challenging. It would be beneficial to determine whether
and how caloric restriction, like exposure to rapamycin, influ-
ences the expression of IFITM3 and modulates vulnerability to
virus infection.
Enhanced gene transduction rates in CD34+ HSPCs are highly

valued in the field of gene therapy as even incremental improve-
ments raise the probability of achieving therapeutic benefit in
patients (52). However, the use of mTOR inhibitors carries the
risk that other mTOR-dependent processes may be interrupted,
such as cell proliferation and survival. Methods that enable spe-
cific targeting of IFITM3 abundance or function ex vivo are likely
to provide a greater degree of transduction enhancement without
impairing reconstitution potential in vivo.

Materials and Methods
Cells from Human Donors. Cord blood (CB) was generously donated from the
Cleveland Cord Blood Center, Cleveland, for isolation of CD34+ cells and adult
mobilized peripheral blood CD34+ cells were obtained from Fred Hutchinson
Cancer Research Center Processing and Procurement Core under the approved
institutional protocol of the Scripps Research Institute (no. IRB-13-6173).

Viruses and Infections. Replication-incompetent lentivector (HIV-VSV-G) was
produced by transfecting 293T with 15 μg of pNL4-3ΔEnv (82) (a gift from O.
Schwartz, Institut Pasteur, Paris) and 5 μg of pMD2.G (VSV-G, 12259;
Addgene) using the calcium phosphate method. Briefly, six million 293T cells
were seeded in a T75 flask. Plasmid DNA was mixed with sterile H2O, CaCl2,
and Tris-EDTA (TE) buffer, and the totality was combined with Hepes-buffered
saline (HBS). The transfection volume was added dropwise, and cells were in-
cubated at 37 °C for 48 h. Supernatants were clarified by centrifugation, passed
through a 0.45-μm filter, and stored at −80 °C. Lentivector titers were measured
using an HIV-1 p24 ELISA kit (XpressBio). To produce lentivector for FRET-based
virus–cell fusion measurements, 293Ts were transfected with 15 μg of pNL4-
3ΔEnv, 5 μg of pMD2.G (VSV-G), and 5 μg of pCMV4-BlaM-Vpr (21950;
Addgene). HeLa cells were seeded in 24-well plates (50,000 per well) over-
night and overlaid with 50 ng of p24 equivalent of BlaM-Vpr–containing HIV-
VSV-G for 2 h. Cells were washed and labeled with the CCF2-AM β-lactamase
Loading Kit (Invitrogen) for an additional 2 h and analyzed for virus–cell fu-
sion as described (18, 83). Influenza A virus [A/PR/8/34 (PR8), H1N1] and Sendai
virus (Cantell strain) supplied as clarified allantoic fluid were purchased from
Charles River Laboratories. Infectious virus titers were calculated using a flow
cytometry-based method in HeLa cells (84), and infections were performed
as follows: Cells were seeded in 24-well plates (50,000 per well) overnight
and overlaid with indicated amounts of virus in a final volume of 225 μL
for ∼18 h. Cells were washed with 1× PBS, detached with Trypsin-EDTA,
fixed/permeabilized with Cytofix/Cytoperm, immunostained with antibodies
to IAV NP or SeV proteins, respectively, and analyzed by flow cytometry.

Flow Cytometry. Cells were fixed/permeabilized with Cytofix/CytoPerm re-
agent (BD) for 20 min and washed in Perm/Wash buffer (BD). Cells were
pelleted and resuspended in primary antibodies diluted in Perm/Wash buffer,
incubated at room temperature for 30min, andwashed in Perm/Wash buffer.
Cells were pelleted and resuspended in Alexa Fluor-conjugated secondary
antibodies diluted in Perm/Wash buffer, incubated at room temperature for
30 min, and washed in Perm/Wash buffer, and cells were acquired and an-
alyzed on a LSRFortessa (BD). The following primary antibodies were used to
score virus infections: anti-HIV Gag KC57-FITC (BD), anti-p24 Gag (3537; NIH
AIDS Reagent Resource), anti-IAV-NP (AA5H; Abcam), and anti-SeV (PD029;
MBL). Endogenous IFITM3 was measured by anti-IFITM3 (EPR5242; Abcam)
while exogenous IFITM3WT andmutants, IFITM2, and IFITM1 expressed from
pQCXIP were measured by anti-FLAG M2 (Sigma). Endogenous LAMP1 and
EEA1 were measured by anti-LAMP1 (H5G11, sc-18821; Santa Cruz Bio-
technology) and anti-EEA1 (clone 14, 610456; BD). The following reagent was

obtained through BEI Resources, NIAID, NIH: Human Recombinant IFN Beta,
rHuIFN-βser17 (NR-3085).

Plasmid Transfection, RNA Interference, and CRISPR-Cas9–Generated Knockouts.
LAMP1-RFP (carboxyl-terminal tag, a gift from V. Pathak, National Cancer In-
stitute, Frederick, MD) was transfected into TZM-bl and HeLa cells using Mirus
TransIT-LT1. IFITM3-YFP (amino-terminal tag; Genecopoeia) was transfected
into HeLa cells using Mirus TransIT-LT1. Stably expressing cells were created
following selection with Geneticin/G418 for 3 wk. pQCXIP-IFITM1, -IFITM2, -IFITM3
(a gift from C. Liang, McGill University, Montreal), and -IFITM3 mutants containing
amino-terminal FLAG (previously described) (47, 83) were transfected into
293T cells with Mirus TransIT-LT1. Stably expressing cells were created following
selection with puromycin for more than 2 wk. HeLa cells stably expressing shRNA
were created by transduction with a pGIPZ-GFP–based lentivector expressing
shRNA (scrambled control and IFITM3) (V3LHS_325106; Thermo Fisher). HeLa and
TZM-bl IFITM3 KO cells were created by transfection with a set of plasmids
encoding Cas9 and three IFITM3-specific guide RNAs (sc-403281; Santa Cruz Bio-
technology) and a set of three plasmids providing templates for homology-
directed repair (sc-403281-HDR; Santa Cruz Biotechnology). A population
of modified cells was selected following puromycin treatment for 3 wk. HeLa
ATG9a KO were a gift from J. Bonifacino, National Institute of Child Health
and Human Development, Bethesda, MD. Transient siRNA transfection of cells
was performed with Lipofectamine RNAiMAX. Knockdown efficiency was
assessed by flow cytometry or Western blot analysis at times indicated post-
transfection. The following siRNAs were Silencer Select (Ambion): IFITM1
(s16192), IFITM2 (s20771), IFITM3 (s195035), and negative control no. 1 (4390844).
Silencing of human IFITM1, IFITM2, and IFITM3 was performed by transfecting a
mixture of siRNA (20 nM each), compared with negative control siRNA no. 1
(60 nM). The following siRNAs were ON-TARGETplus SMARTpool (GE Dhar-
macon): TSG101 (7251), Raptor (57521), Rictor (253260), and nontargeting
siRNA pool (D-001810-10-05). Silencing of human TSG101, Raptor, and Rictor
(20 nM) was compared with nontargeting siRNA pool (20 nM). Transfection
reagents and plasmid DNA, shRNA, and siRNA were diluted in Opti-MEM
for delivery.

SDS/PAGE and Western Blot Analysis. Whole cell lysis was performed with
radioimmunoprecipitation assay (RIPA) buffer (Thermo Fisher) supplemented
with Halt Protease Inhibitor mixture EDTA-free (Thermo Fisher). Lysates were
clarified by centrifugation, and supernatants were collected and stored at
−80 °C. Protein concentration was determined with the Protein Assay Kit II
(Bio-Rad), and 5 to 15 μg of protein were loaded into 12% acrylamide Cri-
terion XT Bis-Tris Precast Gels (Bio-Rad). Electrophoresis was run with NuPage
Mes SDS Running Buffer (Invitrogen), and proteins were transferred to
Amersham Protrain Premium Nitrocellulose Membrane, pore size 0.20 μm (GE
Healthcare). Membranes were blocked with Odyssey blocking buffer in PBS
(Li-Cor) and incubated with dilutions of the following primary antibodies:
anti-IFITM1 (60074-1-Ig; Proteintech), anti-IFITM2 (66137-1-Ig; Proteintech),
anti-IFITM3 (ab109429; Abcam), anti-IFITM2/3 (66081-1-Ig; Proteintech), anti-
transferrin receptor (ab1086; Abcam), anti-LC3 (PM036; MBL), anti-TSG101
(14497-1-AP; Proteintech), anti-ATG9a (ab108338; Abcam), anti-Raptor (42-
4000; Thermo Fisher), anti-Rictor (D16H9, 9486; Cell Signaling Technology),
anti-actin (C4, sc-47778; Santa Cruz Biotechnology), and anti-tubulin (B-7,
sc-5286; Santa Cruz Biotechnology). Secondary antibodies conjugated to
DyLight 800 or 680 (Li-Cor) and the Li-Cor Odyssey imaging system were used
to reveal specific protein detection. Images were analyzed and assembled
using ImageStudioLite (Li-Cor).
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