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Abstract

Unraveling the complex demographic histories of natural populations is a central problem in

population genetics. Understanding past demographic events is of general anthropological

interest, but is also an important step in establishing accurate null models when identifying

adaptive or disease-associated genetic variation. An important class of tools for inferring

past population size changes from genomic sequence data are Coalescent Hidden Markov

Models (CHMMs). These models make efficient use of the linkage information in population

genomic datasets by using the local genealogies relating sampled individuals as latent

states that evolve along the chromosome in an HMM framework. Extending these models to

large sample sizes is challenging, since the number of possible latent states increases

rapidly.

Here, we present our method CHIMP (CHMM History-Inference Maximum-Likelihood

Procedure), a novel CHMM method for inferring the size history of a population. It can be

applied to large samples (hundreds of haplotypes) and only requires unphased genomes as

input. The two implementations of CHIMP that we present here use either the height of the

genealogical tree (TMRCA) or the total branch length, respectively, as the latent variable at

each position in the genome. The requisite transition and emission probabilities are obtained

by numerically solving certain systems of differential equations derived from the ancestral

process with recombination. The parameters of the population size history are subsequently

inferred using an Expectation-Maximization algorithm. In addition, we implement a compos-

ite likelihood scheme to allow the method to scale to large sample sizes.

We demonstrate the efficiency and accuracy of our method in a variety of benchmark

tests using simulated data and present comparisons to other state-of-the-art methods. Spe-

cifically, our implementation using TMRCA as the latent variable shows comparable perfor-

mance and provides accurate estimates of effective population sizes in intermediate and

ancient times. Our method is agnostic to the phasing of the data, which makes it a promising

alternative in scenarios where high quality data is not available, and has potential applica-

tions for pseudo-haploid data.
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Author summary

The demograpic history of natural populations shapes their genetic variation. The

genomes of contemporary individuals can thus be used to unravel past migration events

and population size changes, which is of anthropological interest. Moreover, it is also

important to uncover these past events for studies investigating disease related genetic

variation, since past demographic events can confound such analyses. Here we present a

novel method for inferring the size history of a given population from full-genome

sequencing data of contemporary individuals. Our method is based on a Coalescent Hid-

den Markov model framework, a model frequently applied to this type of inference. A key

component of the model is the representation of unobserved local genealogical relation-

ships among the sampled individuals as latent states. This is achieved by numerically solv-

ing certain differential equations that describe the distributions of these quantities and

ultimately enables inference of past population size changes. Other methods performing

similar inference rely on availability of high quality genomic data, whereas we demon-

strate that our method can be applied in situations with limited data quality.

This is a PLOS Computational Biology Methods paper.

Introduction

Advances in technology for full-genome sequencing have made it possible to collect large

amounts of genomic data for increasingly large samples from many species and diverse popu-

lation groups. This wealth of genetic data has much to tell us about underlying biological and

population genetic phenomena. These datasets can be used to study the relatedness among

individuals to study complex demographic histories, helping unravel population size changes,

population structure, and migration events. In addition, adaptation of beneficial alleles or

other forms of selection leave characteristic signatures in genomic sequencing data. Thus,

genetic variation across individuals, in human populations in particular, can be used to reveal

genetic factors underlying traits relevant for medical and health-related applications. Genome

wide association studies are a widely-used tool to detect such associations. However, effects of

population structure can confound the results of these association studies [1]. Thus, it is

imperative to develop population genetic tools for the analysis of whole-genome sequencing

data that can infer the underlying demographic history and establish appropriate null models

for studying adaptation and associations of genetic variation with certain phenotypes or dis-

ease outcomes.

To date, many methods have been presented in the literature that infer different aspects of

demographic histories from different signals in the data. The focus in this study is on the infer-

ence of the size history of a single population, and here we briefly review methods with a simi-

lar focus. Several methods perform inference using the site frequency spectrum (SFS), either

assuming no linkage between sites [2, 3], or complete linkage [4]. These methods can be effi-

ciently applied to large sample sizes which particularly improves their ability to infer recent

population size changes [3, 5]. However, these methods do not leverage information about

decay of linkage disequilibrium along the chromosome, which has been shown to increase

power, see Figure 2 in [6]. Other methods make use of linkage information by fitting demo-

graphic models to the empirical distribution of long shared tracts of Identity-By-Descent
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directly [7, 8]. Since these methods consider tracts above a certain length threshold, they are

most powerful at inferring recent population size changes. While these methods account for

some linkage information, they do not model the correlation in tract length along the genome.

Some recent methods aim to directly reconstruct the multi-locus genealogy relating the sam-

pled individuals from high-quality genomic sequencing data [9–11]. Such genealogies are use-

ful for a variety of down-stream analyses and can be used for demographic inference as well.

A powerful class of methods to infer population size histories that account for linkage, both

in terms of length of shared haplotypes and correlation along the genome, are Coalescent Hid-

den Markov Models (CHMMs). These methods are based on the Sequentially Markovian Coa-

lescent (SMC) [12, 13]. In this framework, the correlations among the marginal genealogies

relating the sampled individuals at each locus in the genome due to chromosomal linkage and

ancestral recombination events is approximated by a Markov chain. The observed genetic vari-

ation is subsequently modeled by a mutation process on these marginal genealogies. Using the

full marginal genealogies as latent states in a Hidden Markov Model (HMM) framework is

prohibitive, but employing lower-domensional summaries of these genealogies facilitates com-

putationally efficient inference of population size histories.

A number of different CHMM-based inference tools have been developed, including PSMC
[14], MSMC [15], MSMC2 [16], SMC++ [6], and diCal [17, 18]. These methods differ in the

sample size that they can analyze and in how the marginal genealogies are represented in the

respective CHMM. For example, PSMC can only be applied to samples of size 2, whereas

MSMC2 is commonly applied to samples with sizes around 10. However, the computational

cost of the latter does increase substantially with sample size. SMC++ can be applied to large

samples and the data does not need to be phased, whereas diCal requires phased data and is

also only applicable to sample sizes around 10. The specific implementation details result in

each method performing well for certain sample sizes and for certain time periods [19, 20], but

no method performs uniformly well across all parameter regimes.

Here, we present our novel CHMM method, CHIMP (CHMM History-Inference ML Pro-

cedure). We present two implementations of CHIMP that differ in the hidden state space

that they use for the CHMM. One implementation uses the TMRCA, the time to most recent

common ancestor of the local genealogical tree, while the other uses L, the total branch

length of the tree. Our method uses the number of derived alleles at a given site as the

emission of the HMM, and is therefore agnostic to the phasing of data. Moreover, we imple-

mented a flexible composite likelihood scheme that enables efficient scaling to large sample

sizes, resulting in runtimes faster than MSMC2, specifically for the implementation using

TMRCA. The latter also shows comparable inference accuracy in intermediate times, around the

Out-Of-Africa bottleneck and more recently in humans, and outperforms other methods for

ancient times. Since the method is agnostic to phasing, it has potential applications to pseudo-

haploid data.

The paper is organized as follows. In NOVEL CHMM METHODS, we present the general SMC

framework that is the basis for CHMMs, and detail the implementation steps for our specific

choice of the latent variables. Extending previous work [21], we present an algorithm to effi-

ciently compute the necessary transition and emission probabilities for the CHMM by numeri-

cally solving certain systems of differential equations and incorporate them into a standard

Expectation-Maximization (EM) framework for maximum-likelihood inference. In RESULTS,

we compare the performance of CHIMP to other state-of-the-art methods, specifically MSMC2
[16] and Relate [11], in several simulation studies over a range of demographic scenarios,

and also present an application of our method to data from the 1000 Genomes dataset. Lastly,

in DISCUSSION, we discuss possible extensions of our framework to infer more complex demo-

graphic histories involving multiple populations and to analyze time stratified samples
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characteristic of ancient DNA datasets. We also discuss how the posterior distribution of the

latent states could be applied to study signatures of selection in the genome.

Novel CHMM methods

In this section, we will present relevant background on the Sequentially Markovian Coalescent

(SMC) which is the basis for our method, and we will describe our implementation of an

HMM framework for inference of past population sizes using TMRCA or the total branch length

L as the hidden states.

CHMM model under variable population size

The genetic variation observed in a sample of n haploid sequences from a given population is

affected by its population size history N(k), where N(k) is the number of diploid individuals in

the population k generations before present. We use coalescent theory to model the effects that

a time varying population size has on the genealogy of the sample, which in turn affects the

pattern of observed genetic variation. In the coalescent framework, it is convenient to measure

time in units of 2N(0) generations and to consider the population size relative to the size at

present. To this end, we introduce the relative coalescent-scaled population size

ZðtÞ≔
Nð2N0tÞ

N0

;

where N0� N(0) is an arbitrarily chosen reference population size and k = 2N0 t.
The single-locus coalescent models the genetic variation among n sampled haploids at a

particular locus in the genome [22]. In the coalescent, the genealogy of the sample is described

by following the ancestral lineages of the n haplotypes (sampled at present) back in time. Each

pair of lineages can coalesce (find a common ancestor) at a given rate λ(t) that can vary with

time t. The coalescent rate is the inverse of the relative population size λ(t) = 1/η(t), which

reflects the fact that ancestral lineages coalesce faster in small populations but coalescence is

slower when the population size is large. This process proceeds until all lineages coalesce into a

single lineage, referred to as the most recent common ancestor (MRCA), the genetic ancestor

of all haplotypes in the sample. The time of this final coalescent event is denoted by TMRCA.

The coalescent thus gives the distribution of genealogies at a single locus. One can model the

observed genetic variation at the given locus by superimposing mutations on the genealogy

according to a Poisson process with rate θ/2, where θ = 4N0 μ is the population-scaled muta-

tion parameter and μ is the per generation per site mutation probability.

The standard coalescent models the marginal genealogy at a single locus. To analyze geno-

mic sequence data, one can use the ancestral recombination graph (ARG), which extends the

regular coalescent model to describe the full multi-locus genealogy for n sampled haplotypes

across L loci [23, 24]. Specifically, the ARG models the genealogies at each individual locus

and their correlations induced by presence or absence of ancestral recombination events. Just

as in the single-locus case, mutations can be superimposed onto these genealogies to model the

observed genetic variation in multi-locus genomic sequence data. While the ARG is a useful

tool to simulate genomic data [24–26], in many scenarios its applicability for likelihood-based

population genetic inference is hindered by its complexity: The space of possible ARGs grows

quickly with the number of samples and the length of the genome.

One factor contributing to the complexity of the ARG is the fact that the marginal genealo-

gies at distant loci can depend on each other [12]. The Sequentially Markovian Coalescent

(SMC) [13], and its modified version SMC’ [27], simplifies the model by assuming that the dis-

tribution of the marginal genealogy at a given locus only depends on the genealogy at the
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previous locus in the sequence, that is, it assumes that the sequence of marginal genealogies is

a Markov chain. Under the SMC, the sequence of marginal genealogies is generated as follows.

The genealogy at the first locus is distributed according to the standard coalescent. To proceed

from one locus to the next, ancestral recombination events occur according to a Poisson pro-

cess at rate r

2
on the branches of the current genealogy, where ρ = 4N(0)r, and r is the per base-

pair per generation recombination probability. If no recombination events occur, the marginal

genealogy is copied unchanged to the next locus. However, if recombination does occur, the

lineage above the recombination event is removed up to the next coalescent event involving

this lineage. To obtain the genealogy at the next locus, the removed lineage is then replaced by

a new lineage that undergoes the standard coalescent dynamic, ie. it can coalesce with the regu-

lar coalescent rate into the other ancestral lineages. The distribution of the genealogical trees at

each locus is fully determined by the genealogy at the previous locus in the sequence, and thus

the sequence of genealogical trees is a Markov chain. An illustration of this generative process

for the marginal genealogies is depicted in panels A) and B) of Fig 1.

CHMMs use the SMC as the basis for computing likelihoods of observed genomic sequence

data. The marginal genealogies are the hidden states in the HMM, and by superimposing

mutations onto these trees, the likelihood of the observed genetic variation can be computed

as emissions conditional on the hidden state at a given locus (Panel C of Fig 1). However,

implementing the full model depicted in Fig 1 in a likelihood-based inference method is

intractable due to the prohibitively large hidden state space, which is a consequence of the con-

tinuous nature of the genealogical times and the fact that the number of topologies grows

super-exponentially with the number of samples. Thus, most existing implementations of

CHMMs use a suitable discretization of time and approximate the full local genealogical trees

using lower dimensional summaries (often only one-dimensional) to arrive at a finite hidden

Fig 1. Panel A shows the marginal genealogy being propagated unchanged along the genome until an ancestral

recombination event is encountered, and the genealogy modified accordingly. In panel B, the new genealogy is

propagated until a second recombination event is encountered. Panel C demonstrates a realization of the mutation

process along the genealogy at each locus and the resulting observed genetic data.

https://doi.org/10.1371/journal.pcbi.1010419.g001
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state space for the HMM. We note that discretizing time is not always necessary when using

this framework [28].

We introduce a novel method, CHIMP, which is a CHMM with a one-dimensional hidden

state space. In our method, we either use the TMRCA (time to most recent common ancestor,

i.e. tree height) or L (total branch length of the tree) as the hidden state. We use S + 1 increas-

ing times (or lengths) t0 = 0< t1 < . . .< tS =1 to partition the positive real numbers into S
discrete intervals. The CHMM is in state si at locus ℓ if ti−1� Tℓ< ti, where Tℓ denotes the

TMRCA at locus ℓ (and likewise for L‘). The set of possible states {s1, . . ., sS} is denoted by S.

The sequence of states the CHMM occupies along the complete genome is~s ¼ ðs1; . . . ; sLÞ,
where sℓ is the state at locus ℓ.

For the emission observed at a given locus, our method uses the number of derived alleles d
at that locus. Since the data consists of n haplotype sequences, we can observe up to n − 1

derived alleles at a locus, thus the set of possible emissions is D≔ f0; . . . ; n � 1g. Note that D
includes 0 to model loci where all samples share the same allele. The vector of observations

across the genome is~d ¼ ðd1; . . . ; dLg, where dℓ is the number of derived alleles at locus ℓ.
With these definitions for the state space and emission space for our CHMM, we introduce the

transition and emission probabilities, given by matrices A and B, respectively, with elements

Aij ¼ P½s‘þ1 ¼ sjjs‘ ¼ si�; ð1Þ

Bid ¼ P½d‘ ¼ djs‘ ¼ si�; and ð2Þ

Pi ¼ P½s‘ ¼ si�: ð3Þ

The quantity P is the marginal distribution of the hidden states, and thus it is also the dis-

tribution of s0, the first state in the CHMM. Fig 2 depicts a schematic of the transition and

emissions in this CHMM.

We note that if the ancestral or derived state of the alleles is not known, it is possible to

instead use the number of minor alleles and adjust the emission probabilities appropriately by

folding them. However, our current implementation does not support this. In addition, every

locus where all individuals share the same allele is counted as d = 0. If the ancestral allele is

known, one could in principle distinguish between all individuals sharing the ancestral or the

derived allele. In the latter case, the respective mutation would have happened before the

MRCA of the sample, which could possibly indicate a more recent MRCA at the respective

locus. This scenario could in principle be included in the model. However, we do not incorpo-

rate this into our model and leave it for future exploration, since it would require assumptions

about the divergence times from the outgroups, and it is unclear whether it would improve

accuracy of the inference substantially.

TMRCA as hidden state

To use TMRCA as the hidden state in our CHMM, we discretize the continuous random variable

into discrete intervals partitioned at certain ti as described in CHMM MODEL UNDER VARIABLE

POPULATION SIZE. We now describe the numerical methods used to compute the corresponding

transition and emission probabilities in Eqs (1), (2) and (3).

Transition probabilities. To compute the transition probabilities, we employ an aug-

mented ancestral process with recombination Ar
[21]. This process closely resembles the regu-

lar ancestral process with recombination [29] and describes the joint distribution of the

genealogies of n samples for two adjacent loci separated by a recombination distance of ρ. We

use Ar
to compute the respective transition probabilities in the matrix A.
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The process Ar
ðtÞ is initialized at the present (t = 0) and tracks the ancestral lineages at two

loci, a and b, simultaneously as they evolve backwards in time. Initially, there are n lineages,

each ancestral to both loci a and b of one of the n sampled haplotypes. As in the standard coa-

lescent with varying population size, ancestral lineages coalesce with rate λ(t). Additionally,

recombination events can occur on each lineage ancestral to two loci at rate r

2
and decouples

the dynamics of the two loci. The two decoupled lineages then evolve independently and yield

distinct genealogies for each of the loci. Ultimately all lineages coalesce into a common ances-

tor for both loci.

The states of Ar
ðtÞ are denoted by tuples describing the configuration of lineages, (kab, ka,

kb, κ). Here, kab is the number of active lineages ancestral to both loci (coupled), ka are the line-

ages ancestral only to locus a, and kb are the lineages ancestral only to b (uncoupled). Finally, κ
explicitly tracks the number of recombination events that have occurred since t = 0. While kab
2 {1, 2, . . ., n}, the decoupled lineages are constrained such that ka, kb 2 {0, 1, . . ., κ} since

there can be at most as many uncoupled lineages as recombination events. In the full ancestral

process, κ takes values from 0 to1, since there can be an arbitrary number of recombination

events between the two loci. The unboundedness of κ renders this full process difficult to

solve. In the remainder of this work, we restrict κ to be at most 1 (and consequently also

restrict ka and kb to be 0 or 1). This restriction is motivated by the assumption that the recom-

bination rate between two adjacent loci is low, so we expect to see at most one ancestral recom-

bination event separating the genealogies at two neighboring loci. Henceforth, Ar
ðtÞ will refer

to this restricted process. We speculate on the consequences if this assumption is violated in

DISCUSSION.

Fig 3 shows an example trajectory of this augmented ancestral process. Recombination

events decouple a shared lineage, while coalescence events fuse two active lineages. If an

uncoupled lineage (one of type ka or type kb) coalesces with a coupled lineage (one of type kab),
the resulting lineage contains ancestry that traces to both loci a and b in our sample, and is

Fig 2. Schematic of our CHMM for a sample of size 4. Information about the underlying tree at each locus is

captured by the state si. S ¼ fs1; . . . ; s5g is the set of intervals into which the respective summary of the tree (TMRCA or

L) can fall. The states change from each locus to the next in accordance with the transition matrix A and the observed

number of derived alleles at each locus is emitted in accordance with the emission probabilities B.

https://doi.org/10.1371/journal.pcbi.1010419.g002
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therefore a coupled lineage. We note that Ar
allows for a joint lineage to recombine (split) and

immediately coalesce back together.

We set Ar
ð0Þ ¼ ðn; 0; 0; 0Þ, which corresponds to initializing the process in a state with n

lineages at the present time, each ancestral to both loci in a single sample. The absorbing states

are (1, 0, 0, 1) and (1, 0, 0, 0), which correspond to the states where all lineages for both loci

have fully coalesced after 0 or 1 recombination events have occurred.

The possible transitions between states and their respective rates are given in Table 1. The

rates in the first three rows of this table correspond to all possible coalescent events. These

Fig 3. Example trajectory of Ar
ðtÞ with the state denoted by tuples. At t = 0 there are three lineages of type kab

ancestral to both loci for their respective samples. The lineages split at ancestral recombination events and join at

coalescence events where they find a common ancestor. The trajectory ultimately culminates in the state (1, 0, 0, 1),

signifying that there is one lineage ancestral to both loci in all present-day samples, and that one recombination event

occurred in this genealogy.

https://doi.org/10.1371/journal.pcbi.1010419.g003

Table 1. The table shows the possible transitions out of a given state (kab, ka, kb, κ) and their respective rates. The

first row gives the rate for coalescence between two lineages that are ancestral to both loci. The second row gives rate

for two types of events, coalescences between two lineages ancestral to only locus a, and coalescences of a lineage ances-

tral only to a with a lineage ancestral to both. The third row reflects similar events for locus b. The last row gives the

rate of recombination events. Note that these rates are defined to permit a maximum of 1 ancestral recombination

event occurring between locus a and b.

Transition from (kab, ka, kb, κ) to: Rate

(kab − 1, ka, kb, κ)
lðtÞ

kab
2

 !

(kab, ka − 1, kb, κ)
lðtÞ

ka
2

 !

þ kakab

" #

(kab, ka, kb − 1, κ)
lðtÞ

kb
2

 !

þ kbkab

" #

(kab − 1, ka + 1, kb + 1, κ + 1)
(
kab
r

2
; if k ¼ 0

0; else

https://doi.org/10.1371/journal.pcbi.1010419.t001
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rates are all proportional to the time-dependent coalescent rate λ(t). The first row describes

coalescence among the lineages ancestral to locus a and b, which results in reducing the num-

ber of these lineages by 1. The rate for these events is proportional to all possible pairs of such

lineages. The second row describes events that reduce the number of lineages ancestral to only

a by one, which can either be a coalescent event among the a lineages, or a coalescence event

between one lineage ancestral to a and another ancestral to a and b. Again, the rate is propor-

tional to the number of such lineage pairings. The third row describes the respective events for

the b lineages. The fourth row corresponds to recombination events, with a rate proportional

to the recombination rate ρ/2. These recombination events can only happen in lineages ances-

tral to a and b and reduces their number by one. Such events result in one lineage ancestral to

only a and one only to b, increasing the respective numbers by one, and also increasing κ by

one. Note that the rates for the recombination events reflect the fact we restrict the process to

have at most one recombination event.

Define gr
s
ðtÞ≔P½Ar

ðtÞ ¼ s� to be the probability that the augmented ancestral process is

in state s 2 R at time t, where R is the set of all possible states. Then~g rðtÞ ¼ ðgr
s
ðtÞÞ

s2R is the

distribution of the process at time t, a vector of probabilities over all the states s 2 R. Since Ar

is a continuous-time Markov process, the evolution of~g rðtÞ is given by the system of ordinary

differential equations (ODEs)

d
dt
~g rðtÞ ¼~g rðtÞ �QrðtÞ; ð4Þ

where Qρ(t) is the rate matrix consisting of the rates given in Table 1. The rate matrix is time-

dependent, since the coalescent rates λ(t) are as well. We can now obtain the probabilities

~g rðtÞ by numerically integrating Eq (4).

Moreover, from the distribution~g rðtÞ, we can compute the cumulative joint distribution

function (CDF) of the TMRCA at the two loci, P[Ta� τa;Tb� τb], where 0� τa, τb<1, and Ta

and Tb are the TMRCA’s at a and b respectively. Without loss of generality, we assume that τa<
τb and obtain

P½Ta � ta;Tb � tb�

¼ P½Ta � ta;Tb � ta� þ P½Ta � ta;Tb 2 ðta; tb��

¼ gð1;0;0;0ÞðtaÞ þ gð1;0;0;1ÞðtaÞ þ P½Ta � ta;Tb 2 ðta; tb��

¼ gð1;0;0;0ÞðtaÞ þ gð1;0;0;1ÞðtaÞ þ gð1;0;1;1ÞðtaÞ � P½sðtbÞ ¼ ð1; 0; 0; 1Þ j sðtaÞ ¼ ð1; 0; 1; 1Þ�

¼ gð1;0;0;0ÞðtaÞ þ gð1;0;0;1ÞðtaÞ þ gð1;0;1;1ÞðtaÞ � ½1 � e
�

R tb
ta

lðtÞdt
�:

ð5Þ

In the first equality, we partition the probability according to whether Tb< τa or Tb> τa.
The second equality holds, because P[Ta� τa;Tb� τa] is the probability that the ancestral pro-

cess is in an absorbing state where both loci have found the TMRCA by time τa. The third equal-

ity follows from the fact that P[Ta� τa;Tb 2 (τa, τb]] is the probability that the lineages at a
found a common ancestor by time τa and the lineages at b find a common ancestor after τa,
but before τb, which is only possible if a recombination event occurred. Since this term is con-

ditional on a having found its TMRCA, only 2 lineages can be remaining (one ancestral only to

b, and one the common ancestor of a) due to the assumption that κ� 1, and thus the term

simplifies to the coalescence probability of two lineages between times τa and τb. The final

equality follows.

By evaluating Eq (5) at the values ta; tb 2 ftig
S
i¼0

, the interval boundaries for the discretized

state space, we can obtain a joint cumulative distribution function (CDF) for Ta and Tb,
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denoted ACDF. From this it is straightforward to compute the matrix that comprises the values

of the discrete joint probability mass function (PMF), APMF. Dividing the joint probabilities by

the marginal probabilities, we arrive at A, the transition probability matrix itself:

ACDF
ij ≔P½Ta � ti;Tb � tj�

APMF
ij ≔ACDF

ij � ACDF
i� 1;j � ACDF

i;j� 1
þ ACDF

i� 1;j� 1

ð6Þ

Aij≔
APMF

ij
P

k2SAPMF
ik

ð7Þ

Additionally, we can obtain the vector of marginal probabilities P as

Pi ¼
X

j2S

APMF
ij : ð8Þ

Emission probabilities. To compute the emission probabilities with TMRCA as the hidden

state, we introduce an augmented single-locus ancestral process with mutation Ay
which is an

extension to the regular ancestral process [30] that is motivated by the fact that, conditional on

the coalescent tree, mutations are Poisson distributed along the branches with rate y

2
. Similar to

the recombination case, we only consider at most one mutation event, motivated by the

assumption that the per locus mutation rate is low. We speculate on the consequences if this

assumption is violated in DISCUSSION. The states of this process are denoted by (k, k�), where k
is the number of active lineages ancestral to the n samples, and k� is the number of lineages

that were active at the time of the first mutation event along the genealogy (going backwards

in time). If no mutation has occurred yet, k� assumes a value of −1.

The process is initialized in (n, −1), a state before any mutation has occurred with one

ancestral lineage for each sample. The transition rates are given in Table 2 and an example tra-

jectory is shown in Fig 4. The possible transitions are either two lineages coalescing or a lineage

mutating. The rate for coalescence is given by the coalescent rate λ(t) times the number of pos-

sible pairs that can coalesce, and such an event reduces the number of lineages by one. The

rate for a transition via mutation is given by the mutation rate y

2
multiplied with the number of

lineages that a mutation can occur on. The number of lineages that were active at the time of

the mutation event is recorded in the second component of the state. Since we restrict to one

mutation event at most, if this number is set once, it will not be set again. The process is

absorbed in any state (1, k�) with k� 2 {−1, 2, . . ., n}. Note that it is important to continue the

process after a mutation event occurred until all lineages are coalesced so that we obtain the

full distribution of the TMRCA.

Similar to the procedure for Ar
, we collect all transition rates in a matrix Qθ(t). We further

define gy
s
ðtÞ≔P½Ay

ðtÞ ¼ s� as the probability that the ancestral process Ay
is in a state s 2M

Table 2. The transition rates of the augmented ancestral process Ay
. The first row gives the rate of a coalescence

event of two lineages, while the second row gives the rate for mutation events. Note that only one mutation event is

permitted.

Transition Rate

(k, k�)!(k − 1, k�)
lðtÞ

k

2

 !

(k, −1)!(k, k) k y

2

https://doi.org/10.1371/journal.pcbi.1010419.t002
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at time t, where M is the set of all possible states. The evolution of the vector of all probabilities

~g yðtÞ ¼ ðgy
s
ðtÞÞ

s2M is given by the system of ODEs

d
dt
~g yðtÞ ¼~g yðtÞ �QyðtÞ:

Again, we obtain the solution to these ODEs numerically.

Using the distribution of this process, we can compute the cumulative distribution of

TMRCA jointly with the probability of emitting d derived alleles as

P½TMRCA � t; 0 derived alleles� ¼ P½Ay
ðtÞ ¼ ð1; � 1Þ�;

since this gives the probability that all lineages are coalesced by τ and no mutation occurred,

and

P½TMRCA � t ; d derived alleles�

¼ P½Ay
ðtÞ ¼ ð1; k�Þ for k� 2 f2; . . . ; ng; d derived alleles�

¼
X

k�2f2;...;ng

gy
ð1;k�ÞðtÞ � P½d derived allelesjmutation while k� lineages�

¼
X

k�2f2;...;ng

gy
ð1;k�ÞðtÞ �

n � d � 1

k� � 2

� �

n � 1

k� � 1

� �

ð9Þ

for d 2 {1, . . ., n − 1}. The first equality in Eq (9) follows from the fact that TMRCA< τ if and

only if the ancestral process has found an absorbing state (all lineages have coalesced) before τ.

In the second equality, we partition this probability with respect to the specific number of line-

ages active when the mutation occurred, which is encoded in the absorbing state. For the last

equality, we substitute the probability of emitting a certain number of derived alleles given that

there were k� active lineages at the time of the mutation. This probability is given by the proba-

bility that one of the k� lineages subtends d leafs, see Ch. 2.1 in [31]. It is independent of the

time of the mutation.

Fig 4. Example trajectory of the ancestral process with mutation for n = 3 samples with the state (k, k�) indicated

on the left. The mutation process is superimposed onto the regular genealogical process. In this example, the mutation

happens when there are two ancestral lineages, resulting in two samples carrying the derived allele.

https://doi.org/10.1371/journal.pcbi.1010419.g004
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By evaluating these probabilities at times t 2 ftig
S
i¼0

, we compute the discretized joint CDF

for the emissions, BCDF, which is again used to compute the joint probabilities BPMF and ulti-

mately the emission probabilities B for the CHMM by conditioning on the hidden state:

BCDF
id ≔P½TMRCA � ti; y ¼ d� ð10Þ

BPMF
id ≔BCDF

id � BCDF
i� 1;d

Bid≔
BPMF
idP
kBPMF

ik
:

ð11Þ

The transition and emission probabilities can then be used to compute likelihoods of

observed sequence data and perform inference using an EM algorithm, which will be described

in more detail in INFERRING MODEL PARAMETERS.

Total branch length as hidden state

We now describe the implementation of our CHMM with the total branch length (sum of all

branch lengths) of the genealogical tree L as the hidden state at each locus. As before, we dis-

cretize L by partitioning the real line with a set of values t0 = 0, <t1 < . . .< tS =1.

Transition probabilities. We follow a previously introduced approach [21] to compute

the joint distribution of the marginal total tree length at locus a and b. We begin by computing

the joint distribution of the total tree length accumulated up to a certain time t in the past.

Using the augmented ancestral process Ar
(introduced in TMRCA AS HIDDEN STATE), which com-

putes the requisite distributions for TMRCA, together with the quantity

v‘ðkab; ka; kb; kÞ≔ ðkab þ k‘Þ1fkabþk‘>1g; ð12Þ

where ℓ 2 {a, b}, we define

AaðtÞ ¼ vaðAr
ðtÞÞ

and

AbðtÞ ¼ vbðAr
ðtÞÞ

to count the number of active lineages that are ancestral to locus a or b at a given time t. Note

that this includes the lineages ancestral to both loci. We define the marginally accumulated

tree length

L‘ðtÞ≔
Z t

0

A‘ðsÞds: ð13Þ

The quantities La(t) and Lb(t) can be thought of as the total branch lengths that has aggre-

gated at each locus as the process evolves back in time. This holds because the integrand in Eq

(13) is the number of lineages at a specific locus at a given time and total branch length is accu-

mulated linearly along each active lineage. The indicator function in Eq (12) signifies that the

process stops accumulating tree length once only a single lineage is left, that is, the TMRCA is

reached. Using this notation, we now define the probabilities

Fsðt; x; yÞ≔P½Ar
ðtÞ ¼ s; LaðtÞ � x; LbðtÞ � y�;

which give the joint distribution of tree length accumulated at both loci up to time t and of the

ancestral process Ar
ðtÞ being in state σ.
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Previous work [21] shows that the values of~F≔ ðFsðt; x; yÞÞs2R can be obtained as the solu-

tions of the system of partial differential equations (PDEs)

@t
~F þ @x

~F � Va þ @y
~F � Vb ¼ ~F �QrðtÞ ð14Þ

and its corresponding boundary conditions

Fsðt; x; yÞ ¼

P½Ar
ðtÞ ¼ s; LbðtÞ � y�; if x � nt

P½Ar
ðtÞ ¼ s; LaðtÞ � x�; if y � nt

0; if x ¼ 0 or y ¼ 0:

8
>>><

>>>:

These equations are given in terms of the rate matrix Qρ(t) of the augmented ancestral pro-

cess Ar
and the diagonal matrices

V‘≔ diagfv‘ðsÞ1fv‘ðsÞ>1gg;

which represent the accumulation of tree length along the active ancestral lineages.

It has been shown [21] that the quantities P½Ar
ðtÞ ¼ s; LaðtÞ � x�≕Fsðt; xÞ (and the corre-

sponding quantities for b) can in turn be obtained as the solution of the PDEs

@t
~F þ @x

~F � Va ¼ ~F �QrðtÞ ð15Þ

with boundary conditions

Fsðt; xÞ ¼

(P½Ar
ðtÞ ¼ s� ¼ gr

s
ðtÞ; if x � nt

0; if x ¼ 0:

We implemented a previously introduced scheme, see Appendix B in [21], to compute the

solutions to these PDEs and provide the details of our implementation in Section 1 in S1 Text.

Lastly, the joint distributions of tree length at loci a and b can be obtained from the solu-

tions of the absorbing states of Ar
and is given by

P½La � x;Lb � y� ¼ Fð1;0;0;0Þðt; x; yÞ þ Fð1;0;0;1Þðt; x; yÞ
h i��

�
�
t¼maxðx;yÞ

2

; ð16Þ

where La and Lb denote the total branch length of the genealogies at locus a and b respectively.

Evaluating these probabilities at x; y 2 S ¼ ft0; t1; . . . ; tSg yields the elements of the joint

cumulative probability matrix ACDF. This discretized joint distribution can then be used in Eqs

(6) and (7) to compute APMF and ultimately the transition probabilities A for the CHMM

when using the total tree length L as the hidden state. Similarly, the initial distribution can be

obtained using Eq (8).

Emission probabilities. Computing the emission probabilities closely follows the steps

for the transition probabilities. However, we use the ancestral process with mutation Ay

instead of the process with recombination Ar
, and instead of one variable for time and two for

tree length (t, x, y), we only need to use one variable for time and one for tree length (t, x) since

we only consider emission at one locus. Before we can compute the emission probabilities, we

first need to compute the joint probability of accumulating a certain tree length by t and Ay
ðtÞ
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occupying a certain state:

Fðk;k�Þðt; xÞ ¼ P½Ay
ðtÞ ¼ ðk; k�Þ; LðtÞ � x�:

Here, L(t) is the accumulated tree length at this locus, defined similarly to Eq (13) as

LðtÞ≔
Z t

0

vyðAy
ðsÞÞds;

where vθ(k, k�) = k. Similar to the transition probabilities and previous work [21], the vector of

these probabilities can be obtained as the solution to the following system of PDEs

@t
~F þ @x

~F � Vy ¼ ~F � ~QyðtÞ; ð17Þ

with boundary conditions

Fðk;k�Þðt; xÞ ¼

(
P½Ay

ðtÞ ¼ ðk; k�Þ�gy
ðk;k�ÞðtÞ; if x � nt

0; if x ¼ 0;

where ~QyðtÞ is the matrix of transition rates of the process Ay
and the diagonal matrix

Vy≔ diagfvyðsÞ1v‘ðsÞ>1g:

The solution to this system can be obtained using similar approaches as previous work [21],

and we provide details in Section 1 in S1 Text. Similar to Eq (9), we can then combine the

probabilities for the absorbing states with the respective combinatorial factors to obtain the

joint probability distribution of the tree length L and the observed number of derived alleles as

P½L � x; y ¼ d� ¼
X

k�
Fy
ð1;k�Þðt; xÞjt¼x

2
�

n � d � 1

k� � 2

� �

n � 1

k� � 1

� � :

We can then again evaluate these probabilities at the discretization points x 2 S ¼
ft0; t1; . . . ; tSg to obtain the entries of the matrix of cumulative probabilities BCDF, which can

be substituted into Eqs (10) and (11) to obtain BPMF, and ultimately the emission probabilities

B for the CHMM using L as the hidden state, that is, the probabilities of observing a certain

number of derived alleles, given the tree length.

Inferring model parameters

In this section we detail the procedure for inferring demographic model parameters using the

HMM framework introduced in the previous section and introduce some extensions of the

algorithm.

Expectation-Maximization algorithm. We use the Expectation-Maximization (EM)

algorithm for HHMs to iteratively infer~l, the parameters of the coalescent rate function λ(t)
(and consequently the population size history η(t)). For λ(t), we use either a piecewise constant

parametrization or a spline parametrization as described in more detail in Section 2.1 in S1

Text, and thus we infer a finite number of parameters. We choose the discretization for the

hidden states independent from the population size history. We provide details in Section 3 in

S1 Text. Briefly, for TMRCA, we use a discretization roughly equidistant on an exponential

scale, and for L, we choose a discretization such that the marginal distribution over the hidden

states under a constant population size is approximately uniform.
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We denote the parameters in the k-th iteration by~lk. The initial parameters~l0 can be spec-

ified either by the user or by Watterson’s estimator (see Section 2.2 in S1 Text). For the k-th

iteration of the E-step, we compute the initial (P), transition (A), and emission (B) probabili-

ties under the coalescent rate function given by~lk. In the case of TMRCA as the hidden state, we

use a Dormand-Prince algorithm of order 8(5,3) [32], to solve the respective ODEs. When

using L as the hidden state, we compute the probabilities by solving the associated PDEs using

the scheme detailed in Section 1 in S1 Text, where we again use the Dormand-Prince method

for the boundaries that require solving ODEs.

Using these probabilities, we then apply the Forward-Backward algorithm, see Ch. 13.2.2 in

[33], to the observed genotype data~d ¼ ðd1; . . . ; dLÞ, where dℓ is the number of derived alleles

at locus ℓ. In Section 5 in S1 Text, we explain how we process input from vcf-files to obtain

this vector of derived allele counts. The Forward-Backward algorithm yields the likelihood of

the current demographic parameters, and its results can be used to compute

E~s j~d ;~lk ½#ði! jÞ transitions�, E~s j~d ;~lk ½# ði # dÞ emissions�, and E~sj~d ;~lk ½s1 ¼ i�, the number of

expected transitions from state i to j, expected emissions of d derived alleles given state i, and

the expected initial state, respectively, all conditional on the current parameters and the data.

We use the scaled implementation for numerical stability, see Ch. 13.2.4 in [33]. Evaluating

the Forward-Backward algorithm at each nucleotide site in the genome can become prohibi-

tive. We thus detail two strategies to speed-up these computations in Section 4 in S1 Text: a

locus-skipping method that compresses the computations between segregating sites, and a

meta-locus method that groups segments of the genome into meta-loci to reduce the effective

number of loci.

After each E-step we perform an M-step during which we update the values of~l by numeri-

cally maximizing the objective function, defined as the expected log-likelihood of~l with

respect to the conditional distribution of the hidden states given the data and the current

parameter estimates~lk,

Qð~lj~d;~lkÞ ¼
X

i2S

logðPið
~lÞÞ � E~s j~d ;~lk ½s1 ¼ i�

þ
X

i;j2S

logðAijð
~lÞÞ � E~s j~d ;~lk ½# ði! jÞ transitions�

þ
X

i2S;d2D

logðBidð
~lÞÞ � E~sj~d ;~lk ½# ði # dÞ emissions�;

ð18Þ

where we explicitly denote the initial, transition, and emission probabilities as functions of~l

to stress that they are computed for the parameters that we optimize over. The parameters that

maximize this function and thus yield the updated parameters for the next iteration are given

by

~lkþ1 ≔ argmax
~l

½Qð~lj~d;~lkÞ�:

Since CHIMP evaluates the Q function numerically, we use the Nelder-Mead simplex opti-

mization procedure for numerical optimization [34]. We observed some dependence of the

results on the shape and orientation of the intial simplex for the Nelder-Mead procedure in

each M-step, as the overall search direction can be biased by the orientation. To alleviate this

bias, we initialize each M-step using a simplex created by adding and subtracting fixed values

to the previous optimum along the coordinate axis [35], if the number of parameters to
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estimate is less than 5. For 5 or more parameters, we initialize the simplex by adding percent-

ages of the previous values along the coordinate directions [36], as implemented in scipy.
optimize. While this distinction based on number of parameters seems unintuitive, we

found that the performance differed substantially, and this approach performed best.

The optimization is performed in a search space of logarithmic coalescence rates, which is a

uniquely robust space in which to perform optimization of coalescent rates [37] and also has

the benefit that the parameters for the coalescent rates are positive by design. In Section 2.3 in

S1 Text, we provide details on different implementations to possibly regularize the population

size function in the inference, however, no regularization was used for the simulation studies

presented in RESULTS. After finding the optimal coalescent rates using the EM algorithm, we

invert and scale them to recover the estimates for the population size history N(k).

Composite likelihood. Our method takes as input genotype data of a sample of n haploids

at L consecutive sites of the genome. However, in addition to applying the EM algorithm to all

sampled haploids, we can also define a composite likelihood optimization scheme as follows.

We can choose a set of subsets of the given haploids. These subsets can differ in size and can

overlap each other, or be non-overlapping. In the E-step, for a certain subset of size ns and

given~lk, we can then compute E~sj~d ;~lk ½# ði! jÞ transitions�, E~sj~d ;~lk ½# ði # dÞ emissions�, and

E~s j~d ;~lk ½s1 ¼ i�, where d 2 {0, . . ., ns − 1}, and compute the Q function in Eq (18) based on the

expected values for just this subset. We can then sum the Q functions across all subsets to

obtain a composite function that is then maximized in the M-step. Repeating these EM-steps

until convergence thus maximizes a composite likelihood, where the likelihoods of the subsets

are multiplied.

This is procedure is useful in two ways. Firstly, subsets of different sizes are expected to

have their TMRCA at different times in the past, and the expected length of the trees will also

differ. Thus, subsets of differing sizes potentially yield power to infer the size history in differ-

ent periods. We explore this idea in EVALUATING COMPOSITE LIKELIHOOD APPROACHES. Secondly,

the numerical procedures to compute the transition and emission probabilities are more com-

putationally expensive for larger sample sizes. Thus, this composite likelihood scheme also

allows us to more efficiently analyze large samples. The E-step scales linearly with the number

of samples in each subset. Moreover, the computational time of the M-step depends only on

ns, which is especially beneficial if the M-step is computationally more expensive (which we

found to be the case when using L as the hidden state). Thus, using this composite approach

with smaller subsets, rather than analyzing the whole sample at once, decreases runtime

substantially.

We also use this composite likelihood scheme to perform parameter inference using

sequence data from different chromosomes simultaneously by aggregating the conditional

expectations across chromosomes. In addition, this composite likelihood scheme is closely

related to MSMC2 [16], as the authors use all overlapping sub-groups of size ns = 2 for the

E-Step, and combine them in a similar way for the M-Step. In our software implementation,

we allow the user to specify the subsets for this composite likelihood in two ways. The user can

specify a list of sizes. for each of the given sizes, the complete sample is divided uniformly at

random into non-overlapping subsets of the given size. The composite likelihood then multi-

plies across all subsets of a given size, and also multiplies across sizes. Alternatively, the user

can specify an input file that explicitly lists the subsets (of potentially differing size) to be multi-

plied. The latter can be used to define overlapping subsets. We choose to not implement over-

lapping subsets as command line options, as the combinatorics can quickly become

prohibitive.
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Results

Before presenting an application of our method to population genomic data for humans from

the 1000 Genomes project [38], we evaluate the accuracy of our method by performing a series

of simulation studies on data generated under various demographic scenarios. We inferred the

population size history from these simulated datasets using CHIMP with TMRCA and L as the

hidden state under different composite likelihood schemes, and compared the results to infer-

ence using MSMC2 [16] (v2.1.2) and Relate [11] (v1.1.3). Note that we use MSMC2 and

Relate to infer the size history of a single population, but the methods can also be applied to

samples from multiple populations to characterize population structure. For each study we

used the specified model of the demographic history to simulate m = 16 replicates of data

using msprime [26] (v1.0.4), where each replicate consists of n = 200 haplotypes of length

200 Mbp. The per generation per site recombination and mutation rates we used were r = μ =

1.25 � 10−8, to mirror applications to human genetic data. We inferred the population size his-

tory for each of the replicates using the different methods and visualized the variability of the

estimates across replicates. The scenarios presented here all require the inference of 15 or

more parameters. If no prior information is available, a common strategy in the literature is to

estimate a piecewise-constant size history with many changepoints, to be able to capture most

relevant features of the true underlying history. We explore inference in a bottleneck and a

piecewise growth scenario where we restrict to few given changepoints and a low number of

parameters to be inferred in Section 7 in S1 Text.

We note here that the performance of Relate improved when we simulated and analyzed

data with a human recombination map (see Section 8 in S1 Text). This is likely due to the fact

that Relate benefits from cold spots (regions of low recombination rate) in the recombina-

tion map. However, the performance of CHIMP and MSMC2 were not substantially adversely

affected when they were run with the (inaccurate) assumption of a constant recombination

rate. For this reason, we proceeded with a uniform recombination map in our simulation stud-

ies. The current implementation of CHIMP does require the user to specify a genome-wide

recombination rate. Since the results of CHIMP were not affected much by varying recombina-

tion rates, we also expect the method to be resilient against misspecification of this parameter.

We first explore different composite likelihood schemes for CHIMP, and then compare

CHIMP against the other methods in the different demographic scenarios. In each case, we

either use the full 200 haplotypes simulated, or use a subset of 10 haplotypes chosen uniformly

at random. We use CHIMP-T to indicate when TMRCA is used as the hidden state, and

CHIMP-L when L is used. Moreover, we use subscripts to indicate the (composite) likelihood

scheme used. CHIMP-T 10 and CHIMP-L10 indicate the use of non-overlapping subsets of size

10, whereas CHIMP-T 2;5;10 and CHIMP-L2;5;10 indicate the composite likelihood multiplying

across all non-overlapping subsets of size 2, all non-overlapping subsets of size 5, and all non-

overlapping subsets of size 10. Thus, CHIMP-T 10 for a sample of size n = 10 is just the likeli-

hood using TMRCA as the hidden state, whereas CHIMP-T 10 for a sample of size n = 200 is the

composite likelihood multiplying across all non-overlapping subsets of size 10. Unless speci-

fied otherwise we use non-overlapping subsets.

The method MSMC2 can analyze all pairs of haplotypes in the dataset, which we did for the

samples of size n = 10, but was computationally prohibitive for samples of size n = 200. For the

later case, we instead restricted MSMC2 to analyze a subset of 50 non-overlapping pairs of hap-

lotypes (100 haplotypes total) since memory requirements of the method became a limitation

beyond this number. Moreover, in an effort to ensure a fair comparison between the methods,

we ran all analyses for a piecewise constant parametrization of the population size history, and

chose the same change points across the methods. The change points could be explicitly
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specified for CHIMP and Relate. For MSMC2, specifying change points was achieved by pro-

viding a time-segment pattern (as required by the method) that placed the change points as

close to the desired ones as possible. This yielded a close match in most cases, with minor inac-

curacies in more recent times and very ancient times. To intialize the iterative inference meth-

ods, we chose Watterson’s estimator for CHIMP, as detailed in Section 2.2 in S1 Text, and the

default initialization for MSMC2.

To aid visualizing and summarizing the performance of a method in a specific setting, as

well as comparing the results between methods, we also plot the mean absolute deviation from

the true population size in generation k, or mean signed error, across the replicates

DðkÞ≔
1

m

Xm

j¼1

log
N̂ ðjÞðkÞ
NtrueðkÞ

� ��
�
�
�

�
�
�
�;

where N̂ ðjÞ is the population size estimated in replicate j, and for each method, compute the

integral of this quantity � ¼
R kmax
kmin

DðkÞ 1

k dk as a measure of discrepancy from the truth over

the full history. Here kmin and kmax are the minimum and maximum of the respective discreti-

zations with one logarithmic discretization step subtracted and added, respectively. Note that

the factor 1

k suppresses deviations in the distant past and transforms the integral to a regular

integral of Δ on a log(k) timescale, which matches the visualization more closely.

Evaluating composite likelihood approaches

A benchmark for population size inference that has been used in recent studies is a population

size history that exhibits oscillations, referred to as sawtooth history [6, 11, 15, 20]. We will

analyze a continuous version of this scenario in INFERENCE FOR CONTINUOUSLY VARYING POPULA-

TION SIZE HISTORY, but we were first interested in comparing the performance of the methods

for a piecewise constant version so that the true population size history could in principle be

exactly recovered using the different methods. To this end, we simulated data under a piece-

wise constant sawtooth history, were the population size oscillates between 50,000, 15,811, and

5,000 at 14 change points that are equidistant on a logarithmic scale between 57 and 448,806

generations before present. We simulated 16 replicates for this scenario.

We sampled n = 10 haplotypes uniformly at random from the simulated data and inferred

the population size history using MSMC2, CHIMP-T2 with overlapping subsets, and CHIMP-

Tns
for ns 2 {2, 5, 10} with non-overlapping subsets. In addition, we performed the same com-

parisons with L as the hidden state instead of TMRCA. The results are shown in Fig 5. We

observe that CHIMP-T2 with overlapping subsets performs almost identical to MSMC2, which

is expected, since the two methods use essentially the same composite likelihood model. There

are however striking differences in the very recent and very ancient times. We believe that

these differences are due to the optimization scheme used in the M-Step, and both approaches

don’t have much power in the respective time periods. The method MSMC2 uses a Powell opti-

mizer, whereas CHIMP uses a Nelder-Mead scheme. While developing our method and experi-

menting with different optimization schemes we noticed that Powell behaves erratically if it

has little power, whereas Nelder-Mead does not change the initial value, which results in the

observed patterns.

Furthermore, note that CHIMP-T2 performs very similar, regardless of whether overlapping

or non-overlapping subsets are used. We conclude that using overlapping subsets adds little

information, if the data is simulated from a panmictic population, as is the case here, but could

differ more when analyzing real datasets. Nonetheless, we only use non-overlapping subsets

in the remainder, since this reduces the runtime substantially. Lastly, note that for smaller sub-

sets ns = 2, the method performs better in the recent time, whereas larger subsets, the
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performance in the ancient time is better. Again, this might be expected, since samples of

smaller size have a more recent TMRCA. However, the improvement in ancient times for larger

subsets is not as pronounced as the improvement for small subsets in the recent times.

For CHIMP-L we observe similar trends, but the overall performance is worse. Especially

for ns = 5 and 10, the population size is strongly overestimated around 10, 000 generation

before present. This is likely due to the fact that we infer many demographic parameters (when

compared to the inference in Section 7 in S1 Text) which results in a high dimensional infer-

ence problem with a likelihood surface that is more difficult to navigate and causes the method

to converge to a local optimum. The fact that the direction of the bias replicates over different

datasets suggests that the initial parameter choice and the details of the numerical optimization

procedure (Nelder-Mead algorithm) affect the navigation to the local optima. Note that

CHIMP-L2 performs slightly worse than CHIMP-T 2, which use the identical composite likeli-

hood model. This is because the former performs up to 15 EM-Steps, whereas the latter per-

forms up to 25, the default parameters for our method. While this is suboptimal here, it did

result in a better overall performance of the methods.

Motivated by these results, we further investigate possible composite likelihood schemes.

Since ns = 2 performs well in the recent past, whereas ns = 10 perform better in the ancient

past, we aimed to combine these approaches into a scheme that performs well across all times.

We thus analyze the same datasets using CHIMP-T 2;10, CHIMP-T 2;5;10, CHIMP-L2;10, and

CHIMP-L2;5;10, that is, in addition to multiplying the composite likelihoods for different sub-

sets of the same size, we multiply them across sizes as well, and show the results in Fig 6. While

these composite likelihood schemes do perform better then ns = 2 in the ancient past, and bet-

ter then ns = 10 in the recent past, they do not fully retain the best performance of their compo-

nents. Since CHIMP-T 2;5;10 performs best overall, we do include this scheme in the

comparisons in the remainder. It is possible that the performance could be improved by

weighing the different subsets differently in the composite likelihood, but we leave such explo-

ration for future work.

Fig 5. Results of inference in the piecewise sawtooth scenario from a sample of size n = 10 for different subset sizes using either TMRCA (Panel A)

or L (Panel B) as the hidden state. We infer the population sizes in the intervals, fixing the change points to match the truth (shown in black). For

CHIMP, we use non-overlapping subsets of sizes ns = 2, 5, and 10. For ns = 2, we also present overlapping subsets (-o). We present results obtained

using MSMC2 for comparison. Solid lines are averages over 16 replicates and the standard deviation is indicated by the shaded areas. Mean signed

error Δ(k) is shown in bottom plot and has been smoothed using moving average for visualization purposes. The integral ϕ is indicated in the legend.

Note that MSMC2 groups epochs in the very distant past due to limits of the method interface.

https://doi.org/10.1371/journal.pcbi.1010419.g005
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Inference for piecewise constant sawtooth demography

In this section, we analyze the samples simulated under the piecewise constant sawtooth his-

tory using a uniformly sampled subset of size n = 10 and the full sample of size n = 200 with

the methods CHIMP, MSMC2, and Relate. The results of this comparison are depicted in

Fig 7. We observe that CHIMP-T 2;5;10 estimates the population sizes well across all times,

except for some smoothing in recent times. CHIMP-T 10 estimates the size history accurately in

the intervals 500 generations before present and further in the past, but also smooths the his-

tory in the very recent intervals. In general, CHIMP-L10 behaves more erratically. It also does

not infer the very recent times correctly, and is only correct for some of the intermediate inter-

vals. The accuracy does not change substantially when using samples of different sizes.

MSMC2 shows accurate performance for intermediate times despite smoothing out some of

the oscillations, but demonstrates high variability and a systematic upward bias below 100 gen-

erations and above 100,000 generations before present. Its accuracy does not change much

between analyzing samples of different sizes. Relate has a high variability and upward bias

for very recent times if the sample size is low, but the recent sizes are very accurately estimated

when using a large sample size. The accuracy for intermediate and ancient times is not very

high, and this performance is only slightly improved in intermediate times for larger sample

sizes. Ultimately, between the different methods tested, each performs better in some time-

frame or for specific sample sizes and worse for others. Measured in terms of integrated mean

signed error ϕ, CHIMP-T 2;5;10 shows the overall best performance in this demographic

scenario.

Fig 6. Results of inference in the piecewise sawtooth scenario from a sample of size n = 10 for the composite

likelihood schemes CHIMP-T 2;10, CHIMP-T 2;5;10, CHIMP-L2;10, and CHIMP-L2;5;10. In these cases, the likelihood is

multiplied across non-overlapping subset of the respective sizes, and multiplied across sizes. We present results

obtained using MSMC2 for comparison. We infer the population sizes in the intervals, fixing the change points to

match the truth (shown in black). Solid lines are averages over 16 replicates and the standard deviation is indicated by

the shaded areas. Mean signed error Δ(k) is shown in bottom plot and has been smoothed using moving average for

visualization purposes. The integral ϕ is indicated in the legend. Note that MSMC2 groups epochs in the very distant

past due to limits of the method interface.

https://doi.org/10.1371/journal.pcbi.1010419.g006
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Inference for continuously varying population size history

In addition, we studied the performance of the inference methods on models of continuously

varying population size history. Specifically, we considered the (continuous) sawtooth model

implemented in stdpopsim [39] (ID = Zigzag_1S14). In this model, the population size

alternates between a maximum of 14,312 and a minimum of 1,431, with three maxima and

three minima equidistant on a logarithmic scale between 33 and 34,133 generations before

present. Note that the maxima and minima are roughly a fifth than in previously used models

[6, 15]. We nonetheless decided to use this model here to investigate performance over a wider

range of demographic scenarios in our simulation study. The second model we considered

here is a bottleneck followed by exponential growth, a cartoon of an Out-Of-Africa population

size history [40, 41]. In this model, the ancestral population size of 10,000 sharply drops to

2,000 at 4,000 generations before present. At 1,000 generations before present, the population

size starts growing up to the present at an exponential rate of 0.25% per generation. Again, we

simulated 16 replicates in each scenario with 200 haplotypes of length 200 Mbp and analyzed

each replicate with each method on the full sample and on a subsample of size 10. We used the

same discretization across methods for a better comparison, first specifying a minimum and

maximum time and then choose 19 equidistant change points between these values (inclusive)

on a logarithmic scale. The minimum and the maximum time were 40 and 40,000 for the saw-

tooth, and 200 and 20,000 for the bottleneck followed by growth scenarios, respectively.

The results in the sawtooth scenario are shown in Fig 8. We observe that for CHIMP and

MSMC2, the accuracy does again not differ substantially between the different sample sizes.

Again, the three versions of CHIMP smooth the population sizes earlier then 200 generations

before present. Among these, CHIMP-T 2;5;10 follows the truth most closely, whereas CHIMP-

T 10 and CHIMP-L10 underestimate the very recent size 50 generations before present. The first

peak, the second peak, and the ancestral population size are captured accurately by CHIMP-

T 2;5;10, whereas CHIMP-T 10 and CHIMP-L10 show some inaccuracy around the first peak.

MSMC2 captures both peaks, but slightly overestimates the ancestral size and substantially

Fig 7. Results of inference in the piecewise sawtooth scenario for sample size 10 (Panel A) and 200 (Panel B). We compare the results using

CHIMP, MSMC2, and Relate to infer the population sizes in the intervals, fixing the change points to match the truth (shown in black). Solid lines

are averages over 16 replicates and the standard deviation is indicated by the shaded areas. Mean signed error Δ(k) is shown in bottom plot and has

been smoothed using moving average for visualization purposes. The integral ϕ is indicated in the legend. Note that MSMC2 groups epochs in the very

distant past due to limits of the method interface. (�) For sample size 200, MSMC2 was run on 50 non-overlapping pairs.

https://doi.org/10.1371/journal.pcbi.1010419.g007
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overestimates the recent sizes with a high degree of variability between replicates. For a small

sample size, Relate overestimates recent sizes. It does infer two peaks, but the sizes and tim-

ing do not fully align with the truth. For a large sample size, Relate infers recent population

sizes with high accuracy, but still underestimates the sizes of the two peaks. In terms of inte-

grated mean signed error ϕ summarizing the overall accuracy, CHIMP-T 2;5;10 performs best.

Fig 9 shows the results in the scenario where a bottleneck is followed by exponential growth.

In this scenario, all five methods capture the general trend of the population size history.

Fig 8. Results of inference in the continuous sawtooth scenario for sample size 10 (Panel A) and 200 (Panel B). We compare the results of CHIMP,

MSMC2, and Relate using a piecewise constant population size history with 19 change points. Truth shown in black. Solid lines are averages over 16

replicates and shaded areas indicate standard deviation. Mean signed error Δ(k) is shown at bottom and has been smoothed using moving average for

visualization purposes. The integral ϕ is indicated in the legend. (�) For sample size 200, MSMC2 was run on 50 non-overlapping pairs.

https://doi.org/10.1371/journal.pcbi.1010419.g008

Fig 9. Results of inference in the bottleneck followed by growth scenario for sample size 10 (Panel A) and 200 (Panel B). We compare the

inference of CHIMP, MSMC2, and Relate using a piecewise constant population size history with 19 change points. Truth shown in black. Solid lines

are averages over 16 replicates and shaded areas indicate standard deviation. Mean signed error Δ(k) is shown in bottom plot and has been smoothed

using moving average for visualization purposes, The integral ϕ is indicated in the legend. (�) For sample size 200, MSMC2 was run on 50 non-

overlapping pairs.

https://doi.org/10.1371/journal.pcbi.1010419.g009

PLOS COMPUTATIONAL BIOLOGY Robust inference of population size histories from genomic sequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010419 September 16, 2022 22 / 32

https://doi.org/10.1371/journal.pcbi.1010419.g008
https://doi.org/10.1371/journal.pcbi.1010419.g009
https://doi.org/10.1371/journal.pcbi.1010419


Again, the performance of CHIMP and MSMC2 does not differ substantially between sample

sizes used in the analysis, however, Relate overestimates the recent sizes when using a small

sample, but underestimates the history when using a large sample. CHIMP-T 2;5;10, MSMC2, and

Relate smooth out the abrupt decline of the population size at the beginning of the bottle-

neck, whereas CHIMP-T10 and CHIMP-L10 do infer a sharper decline, but oscillate too much

and do not infer the correct timing. We believe that some of the oscillations of CHIMP-T10 and

CHIMP-L10 are caused by the fact that the piecewise constant history is segmented into many

pieces in a short time period, and the methods loose power. It is interesting to note that incor-

porating smaller subsets into the composite likelihood CHIMP-T 10 via CHIMP-T 2;5;10 does

seem to recover some power. All methods but Relate infer the correct ancient sizes in the

very distant past. In this scenario, the method MSMC2 exhibits the best overall performance

metric ϕ.

Computational efficiency

In general, the runtime of the CHMM methods CHIMP and MSMC2 scale linearly with number

of loci L. In addition, the CHIMP methods scale linearly with the sample size, where we can use

the composite likelihood framework introduced in INFERRING MODEL PARAMETERS to reduce the

effective sample size used in the computation of the transition and emission probabilities. If all

pairs of samples are used in MSMC2, the method scales quadratically with the sample size, but

when using non-overlapping pairs, like in our analysis of large samples, it scales linearly.

Relate scales linearly with number of loci and quadratically with samples size. However, the

method is implemented very efficiently and allows fast reconstruction of multi-locus genealo-

gies for large sample sizes.

To exhibit the actual computational performance of the different methods in the simulation

study, we list the average run-times in the different scenarios in Table 3. Since we ran MSMC2
using 50 non-overlapping pairs of samples instead of the full 200, these are the times that we

report. Additionally, runtimes for MSMC2 are slightly inflated, as the number of CHMM states

had to be increased to allow for the closest matching of demographic epochs. For all CHIMP
methods, we observe a difference in performance between small and large samples, which is

expected, since the number of subsets that are combined increases. We also note that the sce-

narios with few parameters to infer reported in Section 7 in S1 Text required less runtime than

the more general scenarios. This is likely a result of fast convergence to an optimum when only

a few parameters describe the model, whereas convergence is slower in a higher dimensional

parameter space. The performance of MSMC2 shows little variability across sample size and

scenarios. Since for a sample of size n = 10, we analyze all
10

2

 !

¼ 45 overlapping pairs, it is

Table 3. Run-times in hours for the analysis of simulated data in the different scenarios, averaged over the respective 16 replicates in each case. The runtimes for

MSMC2 are slightly inflated, as the number of CHMM states had to be increased to allow for the closest matching of demographic epochs. (�) For the n = 200 scenarios,

MSMC2 was only run on 50 non-overlapping pairs of samples.

CHIMP-T 10 CHIMP-T 2;5;10 CHIMP-L MSMC2� Relate

Piecewise Sawtooth (n = 10, Fig 7A) 0.6 1.1 14.5 3.7 0.2

Piecewise Sawtooth (n = 200, Fig 7B) 1.9 9.4 15.5 6.1 8.9

Sawtooth (n = 10, Fig 8A) 1.0 1.7 19.8 4.1 0.1

Sawtooth (n = 200, Fig 8B) 2.2 9.9 20.3 5.1 3.0

Bottleneck + Growth (n = 10, Fig 9A) 1.0 1.3 19.3 5.2 0.1

Bottleneck + Growth (n = 200, Fig 9B) 2.1 8.2 20.3 3.6 3.7

https://doi.org/10.1371/journal.pcbi.1010419.t003
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expected that the performance is similar to analyzing 50 non-overlapping pairs. The perfor-

mance of Relate depends on the sample size, but shows little variability across scenarios, as

expected, since the reconstruction of the genealogy is not strongly affected by the parameteri-

zation of the demographic model.

For sample size n = 10, Relate is the fastest method, but CHIMP-T 10 is only slightly

slower. For n = 200, CHIMP-T 10 is fastest, but the runtimes of CHIMP-T 2;5;10, MSMC2, and

Relate are on a similar order of magnitude. The method CHIMP-L is substantially slower

than the other methods. In these scenarios, with many parameters to be optimized, the EM

algorithm requires many steps to converge, and each step requires evaluating PDEs to com-

pute the transition and emission probabilities. This is computationally more expensive than,

for example, evaluating ODEs as required for CHIMP-T .

Analyzing unphased and pseudo-haploid data

Our method CHIMP can be readily applied to unphased genomic data, and we will provide an

explicit example in INFERRING POPULATION SIZE HISTORY FROM UNPHASED HUMAN DATA. It is therefore

a promising method for applications where high quality phased genomes are not available, for

example in human ancient DNA or for non-model organisms. In the simulation studies pre-

sented in this paper, we used simulated data, which is perfectly phased. However, the parame-

ter inference performed using CHIMP only uses the number of derived alleles at each locus as

input, and is therefore invariant to any phasing of the data. Thus, inference under the method

will not be affected by phasing errors, and can even be performed on completely unphased

data. MSMC2, when run on all possible of pairs of samples, requires phased data. If it is run on

non-overlapping pairs of haplotypes where each pair is associated with a single individual, as

we did here for large samples, it could be run on unphased data. However, such a scheme is

not commonly used in the literature. Since Relate reconstructs multi-locus genealogies

relating haplotypes, it cannot be applied to unphased data and will be adversely affected by

phasing errors.

In addition to being able to analyze unphased data, our method can also take a form of

pseudo-haploid data as input. Generating pseudo-haploid data is a strategy often applied to

low-coverage sequencing data, where reliable diploid genotype calls are not feasible, and may

introduce unwanted biases, for example in ancient human DNA studies [42]. In pseudo-hap-

loid data, at each SNP, one sequencing read covering the respective SNP is chosen uniformly

at random, and the allele on this read is then reported as the haploid genotype for the individ-

ual. We implemented an option for CHIMP that extends the CHMM to pseudo-haploid data.

To analyze pseudo-haploid data for a sample of size n, we implement a two layered emission

model. The CHMM is implemented using the TMRCA for a sample of size 2n as the hidden

state with the respective transition probability. At each locus, the emission in the first layer is

then the number of derived alleles in a sample of size 2n. In the second layer, this sample is

then down-sampled to a number of derived alleles in a sample of size n using hypergeometric

probabilities.

We performed an additional simulation study, to demonstrate the inference from pseudo-

haploid data using our method. To this end, we simulated 20 haplotypes of length 200 Mbp

using the piecewise constant sawtooth demography (see INFERENCE FOR PIECEWISE CONSTANT SAW-

TOOTH DEMOGRAPHY). For each pair of haplotypes (diploid individual), at each locus, we selected

one of the two alleles uniformly at random to obtain a dataset of 10 pseudo-haploid samples.

We performed inference on the 10 pseudo-haplotypes of this data using CHIMP-T 2;5;10 with

the pseudo-haploid option. We compared the results to those obtained using MSMC2 and

Relate for which we naively treated the data as if it were diploid data in order to perform
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demographic inference. The results are shown in Fig 10. Not surprisingly, MSMC2 and

Relate do not infer the correct population size history, with particularly large errors in

recent times, whereas CHIMP retains an accuracy close that demonstrated for full diploid data.

We note though that our method still relies on the information that no segregating sites are

observed between the SNPs, which might not be available in low coverage sequencing data.

However, we do believe that the capability to analyze pseudo-haploid data generated in this

way presents an exciting avenue for future extensions.

Summary of simulation study

Table 4 shows a summary of the performace and some features of the different methods that

we compared in our simulation study. CHIMP and Relate can be applied to samples of arbi-

trary sizes, whereas MSMC2 is limited in this regard. Furthermore, CHIMP can be applied to

unphased data, and in limited capacity to pseudo-haploid data, but Relate requires phased

data. MSMC2 can be applied to unphased data, if the appropriate pairs of haplotypes are chosen

for the analysis. CHIMP-T 10 and Relate can be used to analyze large samples quickly.

CHIMP-T 10 is comparable, whereas CHIMP-L was very slow. The runtime of MSMC2 was

comparable with CHIMP-T 10, CHIMP-T 2;5;10, and Relate, but the method could not be run

on the full sample of size n = 200. Moreover, CHIMP and Relate are very flexible in terms of

user-specification of the demographic model, whereas MSMC2 limits the user to choose an

appropriate time-segment string.

The inference using CHIMP and MSMC2 showed very high accuracy when analyzing sce-

narios with a limited number of demographic parameters. In contrast, Relate did not per-

form well in this case. When performing inference under a flexible piecewise constant

parametrization, CHIMP-T10 has limited accuracy in recent and intermediate times, CHIMP-

Fig 10. Results of inference using 10 pseudo-haploids simulated under the piecewise sawtooth demography. We

compare the results of CHIMP-T 2;5;10 using the pseudo-haploid option, MSMC2, and Relate, fixing the change points

to match the truth (shown in black). Solid lines are averages over 16 replicates and shaded area indicates standard

deviation. Mean signed error Δ(k) is shown in bottom plot and has been smoothed using moving average for

visualization purposes. The integral ϕ is indicated in the legend. Note that Relate entirely failed to estimate a

population size in the most recent epochs, resulting in indeterminate values.

https://doi.org/10.1371/journal.pcbi.1010419.g010
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T 2;5;10 recovers some accuracy here. CHIMP-L did perform worse in intermediate times, but

all CHIMP methods perform well in ancient times. MSMC2 did not infer the population size

history well in recent and ancient times, but showed the best performance among the methods

tested here in intermediate times, however, CHIMP-T 2;5;10 is a close second. Relate inferred

recent population sizes well, if a large sample was used, but the performance was less accurate

for small samples and intermediate to ancient times. We note that the exact time-frames

depend on the baseline effective population sizes. The scenarios that we investigated here ran-

ged from Ne� 4, 000 to 12, 000.

Interestingly, the accuracy of CHIMP and MSMC2 did not increase substantially when the

methods were applied to samples of larger sizes. This is likely due to the fact that the applica-

tion of the methods to larger samples is achieved in composite likelihood schemes that effec-

tively only use smaller subsets, but might also indicate that in scenarios of truly panmictic

populations, much of the population size history can be learned from just a few individuals.

This is perhaps best exemplified by the immense success of PSMC [14], which extracts surpris-

ing amounts of information from just two haploid sequences of a single individual. Relate
appears to require a certain minimal sample size to exhibit good performance, but demon-

strates that for accurate inference of very recent population sizes, it is indeed necessary to sam-

ple many haplotypes.

In summary, CHIMP-T10 and CHIMP-T2,5,10 perform comparably to the other methods

tested here in most scenarios when inferring sizes beyond 500 generations before present, and

runs quickly on large datasets. CHIMP-T2,5,10 even recovers some accuracy below 500 genera-

tions before present. An advantage is the fact that these methods can be applied to unphased

and, in limited capacity, pseudo-haploid data; thus they offer a useful alternative to other exist-

ing methods, especially in situations where high quality data is not available. Overall, the infer-

ence accuracy of CHIMP-L10 was mediocre and the runtime was very poor. We thus do not

recommend this approach for inference of populations size histories, unless improvements

can be made in terms of efficiently computing the probabilities required for the CHMM and

navigating the high dimensional optimization problem. MSMC2 showed very high inference

accuracy for intermediate times and thus proves to be an effective method if the sample size is

not too large. Relate is fast and can be applied to large samples. The inference accuracy is

good with sufficient samples, especially in recent times, but suffers if the recombination map

does not have cold spots.

Table 4. Summary of the performance and features of the different methods compared in our simulation study. The ranges are given in generations before present.

Gener. bp CHIMP-T 10 CHIMP-T 2;5;10 CHIMP-L MSMC2 Relate

Sample size Large Large Large Limited Large

Parametrization Flexible Flexible Flexible Limited Flexible

Accuracy Few param. High High High High Mixed

k < 50 Low Mixed Low Low High (n� 1)

50 < k< 500 Low Mixed Low High High (n� 1)

500 < k< 105 High High Mixed High Mixed

k > 105 High High Mixed Low Low

Runtime Fast Fast Slow Fast (lim. n) Fast

Unphased data Yes Yes Yes Possible No

Pseudo-haploid Limited Limited Limited No No

https://doi.org/10.1371/journal.pcbi.1010419.t004
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Inferring population size history from unphased human data

To demonstrate that our method can be readily applied to population genomic datasets, we

analyzed subsamples of the 1000 Genomes dataset recently re-sequenced to high coverage

[38]. In principle, this data has been computationally phased, but we did not use the phase

information, to further demonstrate this feature of our method. Specifically, we downloaded

the dataset in vcf-format from the server provided by the authors (see also DATA AVAILABIL-

ITY), and extracted genomic data for chromosome 1 of the individuals in the population groups

LWK (African, 99 individuals), JPT (Asian, 104 individuals) and FIN (European, 99 individu-

als). Note that we did download the phased version of the data, but “removed” this information

by switching each genotype uniformly at random. We decided on these unusual processing

steps, since the phased data was more readily available for download without extensive prepro-

cessing. We then inferred the population size history for each of these population groups using

CHIMP, specifically the composite likelihood scheme CHIMP-T 2;10. We used the default

parametrization of CHIMP, except for specifying the regularization coefficient c12 = 10−5, see

Section 2.3 in S1 Text. We used a per generation mutation rate of μ = 1.25 � 10−8 and for the

per locus per generation recombination rate we used the same value r = 1.25 � 10−8. The esti-

mated population size histories are shown in Fig 11, were we used a generation time of 26.9 to

convert generations into years [43].

We observe that all three populations exhibit a similar population history up to 200,000

years before present. Following this period, the population histories start to diverge. The his-

tory of the African population (LWK) stays at around the same level, whereas the population

histories of the Non-African populations (JPT and FIN) undergo a severe bottleneck.

Towards the more recent past, the population sizes increase again. This example shows that

Fig 11. Effective population sizes estimated for the population groups LWK, JPT, and FIN from the 1000

Genomes dataset using CHIMP-T 2;10. The populations show a similar history up to approximately 200,000 years ago,

when they start to diverge. The Non-African population exhibit the well characterized Out-Of-Africa bottleneck, with

subsequent expansion in the recent past.

https://doi.org/10.1371/journal.pcbi.1010419.g011
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our method is able to recover well established features of the population size history of modern

humans, like the Out-Of-Africa bottleneck, and subsequent exponential growth in Non-Afri-

can populations [11].

Discussion

Here, we presented our novel flexible Coalescent HMM method CHIMP to perform inference

of past population sizes in a single population. The method uses either the TMRCA or the total

branch length L of the local genealogies as the underlying hidden state in this HMM frame-

work. We detailed systems of differential equations derived from the ancestral process that can

be used to compute the respective transition and emission probabilities. These differential

equations can be computationally intensive to solve, particularly for L, but we present solution

schemes that exploit a combination of approximations and exact equations to obtain solutions.

We also combine CHMMs for differently sized subsets of the sampled haplotypes to combine

power in different time periods and speed up computation. Furthermore, the framework pre-

sented here can be seen as a generalization of most previous CHMM methods, in that it can

readily be modified to use as the hidden state the pairwise coalescent times like PSMC and

MSMC2 [14, 16], the first-coalescent times like MSMC [15], as well as the coalescent time of a

distinguished pair like SMC++ [6].

We applied CHIMP for demographic inference from simulated data in a variety of scenarios

and compared the results to other state-of-the-art methods, specifically MSMC2 and Relate.

While CHIMP-L is intriguing from a theoretical perspective, it currently does not seem suit-

able for demographic inference since inference is slow and less accurate than the other meth-

ods, although more efficient approximations may ameliorate this issue. Despite the long

runtimes, CHIMP-L is also outperformed by CHIMP-T in most scenarios, albeit not substan-

tially in some. We believe that this could be due to the fact that under the infinite sites model,

the number of segregating sites is a sufficient statistic for the length of the tree, but not for the

TMRCA. Our CHMM uses the number of derived alleles as the emission, and we believe that

this provides more information about the underlying TMRCA than about the length of the tree,

thus resulting in better accuracy for CHIMP-T .

We observed that CHIMP-T 10 performs comparably to other methods in most scenarios for

time-frames more than 500 generations before present and outperformed them for very

ancient times beyond 100,000 generations before present. Our composite likelihood approach

CHIMP-T 2;5;10 performed as well for times greater than 500 generations before present, and

shows adequate performance in earlier times. The runtimes of CHIMP-T are similar to those

of the other methods in the tests we performed, and it scales very well to large samples. CHIMP
can also be run on unphased data and certain pseudo-haploid datasets, whereas Relate
requires phased data, and MSMC2 can only be run in a limited capacity without phased data.

We believe, that this makes CHIMP-T a flexible alternative to other methods when analyzing

large data sets, especially in scenarios where high quality assessment of haplotype phase is not

available, which includes non-model systems were reliable reference panels are not available.

Other interesting approaches in this context include the recent extension of Relate [44] that

can estimate population size history for low quality ancient human DNA by borrowing power

from a known genealogy of a high quality panel of related individuals.

We note that, when performing the analyses of simulated data presented here and designing

comparisons between the methods that can be deemed fair, the flexibility of the user-interface

and the heuristics to choose an a-priori discretization of the population size history for infer-

ence impacts the applicability and performance of the different methods. We showcase this

with an application of the methods to the bottleneck followed by growth scenario in Section 6
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in S1 Text, where we ran all methods using their default parameters. In Section 6 in S1 Text,

we also detail the heuristic we implemented in CHIMP for determining a default parameteriza-

tion. We found it to be robust in the scenarios that we considered and believe that it performs

well in general. However, exploring optimal ways of parameterizing models with no prior

information about the demographic history is an important area in which further study is

needed. In this context, parameter free approaches [28] present interesting alternatives.

For practitioners, we advise applying a composite method that combines power like

CHIMP-T 2;5;10 or CHIMP-T 2;10 to get good estimates for all time periods. If the more recent

time is of interest, we would advise to complement such an analysis with CHIMP-T 2 (or

MSMC2), and potentially Relate, if the data is of high quality and the sample size is large

enough. The results of the simulation study presented here are obtained under certain assump-

tions about the underlying parameters, which we motivated by applications to humans. How-

ever, for organisms with different mutation or recombination rates, and different diversity

levels, the exact details and power for inference at certain times in the past might differ. This

will also be affected by the exact parametrization of the inference method. We thus stress that

an analysis of empirical data using our method, or any other method for that matter, should be

supplemented by simulation studies to establish the right parametrization and understand the

behavior of the method in the respective scenarios.

We note that the assumption of only one recombination event per pair of adjacent nucleo-

tide sites and one mutation event per nucleotide site are more likely to be violated with increas-

ing sample size. From a practical perspective, we do not think that this is a major concern, since

due to our composite likelihood scheme, the maximal sample size our method uses internally in

the examples presented here is n = 10. From a theoretical perspective, when assuming only one

mutation event, despite several mutation events occurring on the respective tree, our method

would tend to infer shorter trees, thus likely incurring a bias towards more recent coalescence,

and underestimating population sizes. For parameters appropriate in human populations, these

events are rare, and will likely not result in noticeable bias, but in organisms with higher muta-

tion rates, this approximation has to be re-evaluated. Similarly, assuming only one recombina-

tion event would make correlation among the hidden states stronger, likely increasing the

variance of the estimates, but potentially not introducing systematic bias.

The modeling framework developed here has potential applications beyond inferring the

population size history of a single population. The differential equations that we presented to

compute the requisite probabilities for the CHMM were derived from the ancestral process in

a panmictic population, but the approach can be extended to structured populations by aug-

menting the state space, enabling inference of migration rates and divergence times, and char-

acterizing admixture between populations. Moreover, samples at different points in time (e.g.

ancient samples), can be readily incorporated into the ancestral process and thus the inference

framework as well. In addition, using the model and possible extensions presented here to

characterize the posterior distribution of the local genealogies has many interesting applica-

tions. Different forms of selection impact the local genealogies around beneficial alleles, and

thus the posterior distribution of the TMRCA or the total branch length L can help identifying

and characterizing adaptive genetic variation [11, 45].

Supporting information

S1 Text. Supplementary text for robust inference of population size histories from geno-

mic sequencing data. This supplementary text contains additionals details on the derivation,

on the implementation, and additional analyses.

(PDF)

PLOS COMPUTATIONAL BIOLOGY Robust inference of population size histories from genomic sequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010419 September 16, 2022 29 / 32

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010419.s001
https://doi.org/10.1371/journal.pcbi.1010419


Acknowledgments

We thank the Steinrücken, Novembre and Berg lab for many inputs and helpful feedback. We

also thank Maryn Carlson and Arjun Biddanda for feedback on the manuscript. In addition,

we would like to thank Margarita Orlova for assistance in performing the simulation studies.

Author Contributions

Conceptualization: Gautam Upadhya, Matthias Steinrücken.

Data curation: Gautam Upadhya, Matthias Steinrücken.

Formal analysis: Gautam Upadhya, Matthias Steinrücken.

Funding acquisition: Matthias Steinrücken.

Investigation: Gautam Upadhya, Matthias Steinrücken.

Methodology: Gautam Upadhya, Matthias Steinrücken.

Project administration: Matthias Steinrücken.

Software: Gautam Upadhya, Matthias Steinrücken.

Supervision: Matthias Steinrücken.

Validation: Gautam Upadhya, Matthias Steinrücken.

Visualization: Gautam Upadhya, Matthias Steinrücken.

Writing – original draft: Gautam Upadhya.

Writing – review & editing: Gautam Upadhya, Matthias Steinrücken.

References
1. Barton N, Hermisson J, Nordborg M. Why structure matters. Elife. 2019; 8:e45380. https://doi.org/10.

7554/eLife.45380 PMID: 30895925

2. Liu X, Fu YX. Exploring population size changes using SNP frequency spectra. Nat Genet. 2015;

47(5):555–559. https://doi.org/10.1038/ng.3254 PMID: 25848749

3. Bhaskar A, Wang YXR, Song YS. Efficient inference of population size histories and locus-specific

mutation rates from large-sample genomic variation data. Genome Res. 2015; 25(2):268–279. https://

doi.org/10.1101/gr.178756.114 PMID: 25564017
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in Population Genetics and Human Evolution. vol. 87. Springer; 1997. p. 257–270.

24. Hudson RR. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformat-

ics. 2002; 18(2):337–338. https://doi.org/10.1093/bioinformatics/18.2.337 PMID: 11847089

25. Kelleher J, Etheridge AM, McVean G. Efficient Coalescent Simulation and Genealogical Analysis for

Large Sample Sizes. PLoS Comput Biol. 2016; 12(5):1–22. https://doi.org/10.1371/journal.pcbi.

1004842 PMID: 27145223

26. Baumdicker F, Bisschop G, Goldstein D, Gower G, Ragsdale AP, Tsambos G, et al. Efficient ancestry

and mutation simulation with msprime 1.0. Genetics. 2022; 220(3):iyab229. https://doi.org/10.1093/

genetics/iyab229 PMID: 34897427

27. Marjoram P, Wall JD. Fast “coalescent” simulation. BMC Genet. 2006; 7(1):16. https://doi.org/10.1186/

1471-2156-7-16 PMID: 16539698

28. Ki C, Terhorst J. Exact decoding of the sequentially Markov coalescent. bioRxiv. 2020;.

29. Simonsen KL, Churchill GA. A Markov chain model of coalescence with recombination. Theor Popul

Biol. 1997; 52(1):43–59. https://doi.org/10.1006/tpbi.1997.1307 PMID: 9356323

30. Griffiths RC, Tavare S. Ancestral Inference in Population Genetics. Statist Sci. 1994; 9(3):307–319.

https://doi.org/10.1214/ss/1177010378

31. Durrett R. Probability Models for DNA Sequence Evolution. Springer; 2008.

32. Dormand JR, Prince PJ. A family of embedded Runge-Kutta formulae. J Comput Appl Math. 1980;

6(1):19–26. https://doi.org/10.1016/0771-050X(80)90013-3

33. Bishop C. Pattern Recognition and Machine Learning. Springer; 2006.

34. Nelder JA, Mead R. A Simplex Method for Function Minimization. Comput J. 1965; 7(4):308–313.

https://doi.org/10.1093/comjnl/7.4.308

PLOS COMPUTATIONAL BIOLOGY Robust inference of population size histories from genomic sequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010419 September 16, 2022 31 / 32

https://doi.org/10.1038/s41588-019-0483-y
https://doi.org/10.1038/s41588-019-0483-y
http://www.ncbi.nlm.nih.gov/pubmed/31477934
https://doi.org/10.1038/s41588-019-0484-x
http://www.ncbi.nlm.nih.gov/pubmed/31477933
https://doi.org/10.1006/tpbi.1998.1403
http://www.ncbi.nlm.nih.gov/pubmed/10366550
https://doi.org/10.1098/rstb.2005.1673
http://www.ncbi.nlm.nih.gov/pubmed/16048782
https://doi.org/10.1038/nature10231
http://www.ncbi.nlm.nih.gov/pubmed/21753753
https://doi.org/10.1038/ng.3015
http://www.ncbi.nlm.nih.gov/pubmed/24952747
https://doi.org/10.1371/journal.pgen.1008552
https://doi.org/10.1371/journal.pgen.1008552
http://www.ncbi.nlm.nih.gov/pubmed/32150539
https://doi.org/10.1534/genetics.112.149096
http://www.ncbi.nlm.nih.gov/pubmed/23608192
https://doi.org/10.1073/pnas.1905060116
https://doi.org/10.1073/pnas.1905060116
http://www.ncbi.nlm.nih.gov/pubmed/31387977
https://doi.org/10.1016/j.gde.2018.07.002
https://doi.org/10.1016/j.gde.2018.07.002
http://www.ncbi.nlm.nih.gov/pubmed/30056275
https://doi.org/10.1111/1755-0998.13416
http://www.ncbi.nlm.nih.gov/pubmed/33978324
https://doi.org/10.1016/j.tpb.2017.09.002
http://www.ncbi.nlm.nih.gov/pubmed/28943126
https://doi.org/10.1016/0304-4149(82)90011-4
https://doi.org/10.1016/0304-4149(82)90011-4
https://doi.org/10.1093/bioinformatics/18.2.337
http://www.ncbi.nlm.nih.gov/pubmed/11847089
https://doi.org/10.1371/journal.pcbi.1004842
https://doi.org/10.1371/journal.pcbi.1004842
http://www.ncbi.nlm.nih.gov/pubmed/27145223
https://doi.org/10.1093/genetics/iyab229
https://doi.org/10.1093/genetics/iyab229
http://www.ncbi.nlm.nih.gov/pubmed/34897427
https://doi.org/10.1186/1471-2156-7-16
https://doi.org/10.1186/1471-2156-7-16
http://www.ncbi.nlm.nih.gov/pubmed/16539698
https://doi.org/10.1006/tpbi.1997.1307
http://www.ncbi.nlm.nih.gov/pubmed/9356323
https://doi.org/10.1214/ss/1177010378
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1371/journal.pcbi.1010419


35. Spendley W, Hext GR, Himsworth FR. Sequential Application of Simplex Designs in Optimisation and

Evolutionary Operation. Technometrics. 1962; 4(4):441–461. https://doi.org/10.1080/00401706.1962.

10490033

36. Gao F, Han L. Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput

Optim Appl. 2012; 51(1):259–277. https://doi.org/10.1007/s10589-010-9329-3

37. Parag KV, Pybus OG. Robust Design for Coalescent Model Inference. Syst Biol. 2019; 68(5):730–743.

https://doi.org/10.1093/sysbio/syz008 PMID: 30726979

38. Byrska-Bishop M, Evani US, Zhao X, Basile AO, Abel HJ, Regier AA, et al. High coverage whole

genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios. bioRxiv. 2021;.

39. Adrion JR, Cole CB, Dukler N, Galloway JG, Gladstein AL, Gower G, et al. A community-maintained

standard library of population genetic models. Elife. 2020; 9:e54967. https://doi.org/10.7554/eLife.

54967 PMID: 32573438

40. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. Inferring the Joint Demographic His-

tory of Multiple Populations from Multidimensional SNP Frequency Data. PLoS Genet. 2009; 5(10):1–

11. https://doi.org/10.1371/journal.pgen.1000695 PMID: 19851460

41. Jouganous J, Long W, Ragsdale AP, Gravel S. Inferring the Joint Demographic History of Multiple Pop-

ulations: Beyond the Diffusion Approximation. Genetics. 2017; 206(3):1549–1567. https://doi.org/10.

1534/genetics.117.200493 PMID: 28495960

42. Barlow A, Hartmann S, Gonzalez J, Hofreiter M, Paijmans JLA. Consensify: A Method for Generating

Pseudohaploid Genome Sequences from Palaeogenomic Datasets with Reduced Error Rates. Genes.

2020; 11(1):50. https://doi.org/10.3390/genes11010050 PMID: 31906474

43. Wang RJ, Al-Saffar SI, Rogers J, Hahn MW. Human generation times across the past 250,000 years.

bioRxiv. 2021;.

44. Speidel L, Cassidy L, Davies RW, Hellenthal G, Skoglund P, Myers SR. Inferring Population Histories

for Ancient Genomes Using Genome-Wide Genealogies. Mol Biol Evol. 2021; 38(9):3497–3511.

https://doi.org/10.1093/molbev/msab174 PMID: 34129037

45. Stern AJ, Wilton PR, Nielsen R. An approximate full-likelihood method for inferring selection and allele

frequency trajectories from DNA sequence data. PLoS Genet. 2019; 15(9):1–32. https://doi.org/10.

1371/journal.pgen.1008384 PMID: 31518343

PLOS COMPUTATIONAL BIOLOGY Robust inference of population size histories from genomic sequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010419 September 16, 2022 32 / 32

https://doi.org/10.1080/00401706.1962.10490033
https://doi.org/10.1080/00401706.1962.10490033
https://doi.org/10.1007/s10589-010-9329-3
https://doi.org/10.1093/sysbio/syz008
http://www.ncbi.nlm.nih.gov/pubmed/30726979
https://doi.org/10.7554/eLife.54967
https://doi.org/10.7554/eLife.54967
http://www.ncbi.nlm.nih.gov/pubmed/32573438
https://doi.org/10.1371/journal.pgen.1000695
http://www.ncbi.nlm.nih.gov/pubmed/19851460
https://doi.org/10.1534/genetics.117.200493
https://doi.org/10.1534/genetics.117.200493
http://www.ncbi.nlm.nih.gov/pubmed/28495960
https://doi.org/10.3390/genes11010050
http://www.ncbi.nlm.nih.gov/pubmed/31906474
https://doi.org/10.1093/molbev/msab174
http://www.ncbi.nlm.nih.gov/pubmed/34129037
https://doi.org/10.1371/journal.pgen.1008384
https://doi.org/10.1371/journal.pgen.1008384
http://www.ncbi.nlm.nih.gov/pubmed/31518343
https://doi.org/10.1371/journal.pcbi.1010419

