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Abstract

Large experimental efforts are characterizing the regulatory genome, yet we are still missing
a systematic definition of functional and silent genetic variants in non-coding regions. Here,
we integrated DNasel footprinting data with sequence-based transcription factor (TF) motif
models to predict the impact of a genetic variant on TF binding across 153 tissues and
1,372 TF motifs. Each annotation we derived is specific for a cell-type condition or assay
and is locally motif-driven. We found 5.8 million genetic variants in footprints, 66% of which
are predicted by our model to affect TF binding. Comprehensive examination using allele-
specific hypersensitivity (ASH) reveals that only the latter group consistently shows evi-
dence for ASH (3,217 SNPs at 20% FDR), suggesting that most (97%) genetic variants in
footprinted regulatory regions are indeed silent. Combining this information with GWAS
data reveals that our annotation helps in computationally fine-mapping 86 SNPs in GWAS
hit regions with at least a 2-fold increase in the posterior odds of picking the causal SNP.
The rich meta information provided by the tissue-specificity and the identity of the putative
TF binding site being affected also helps in identifying the underlying mechanism supporting
the association. As an example, the enrichment for LDL level-associated SNPs is 9.1-fold
higher among SNPs predicted to affect HNF4 binding sites than in a background model
already including tissue-specific annotation.

Author Summary

A large fraction of genetic variants that have been associated with complex traits are found
outside of protein coding genes and likely affect gene regulation. Many experimental
efforts have been dedicated to mapping regulatory regions in the genome but there are not
many systematic methods that integrate functional data and regulatory sequences to pre-
dict the potential effect of any genetic variant on any given tissue and motif. Here we pres-
ent a tissue and factor specific annotation that provides a predicted functional effect for
both common and rare genetic variants. These predictions, certain of which are validated
experimentally, show that the majority of genetic variants in gene regulatory regions are
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actually silent. Annotating those that are not silent allows us to investigate the molecular
basis for the genetic architecture of many common traits and also to study the evolution-
ary properties that different types of regulatory sequences have across tissues or transcrip-
tion factors. Overall, our study supports the concept that polygenic variation in binding
sites for distinct classes of transcription factors has been a major target of evolutionary
forces contributing to disease risk and complex trait variation in humans.

Introduction

Despite large ongoing efforts to characterize regulatory regions in the human genome (e.g.,
ENCODE [1], Roadmap Epigenomics [2]), the lack of a regulatory genetic code to discriminate
functional from silent non-coding variants in regulatory sequences poses severe limitations in
interpreting the results of many human and population genetic analyses. For example, large
numbers of genetic variants associated with disease and normal trait variation have been iden-
tified through genome-wide association studies (GWAS) [3]; yet a formidable challenge
remains in determining the specific molecular mechanisms underlying association signals in
non-coding regions. Similar challenges also arise when exploring the evolutionary functional
significance of non-coding variants, for example through analysis of differences in genotype
distribution across populations [4, 5]. This is also complicated by the fact that GWAS hits and
signals of selection are usually found in large regions of association and do not directly pin-
point the true causative variants. In general, we do not know in which cell types/tissues these
variants may have a functional impact.

Computationally and experimentally derived annotations for regulatory regions have been
used to functionally characterize GWAS hits [1, 6-12]. However, a simple positional overlap
between a genetic variant and regulatory regions is a necessary but not a sufficient condition to
demonstrate an impact on TF binding. Many experimentally derived annotations are very use-
ful to identify broad genomic regions across many cell-types, but lack the resolution necessary
to pinpoint the regulatory sequences. High resolution functional assays like DNase-seq and
ATAC-seq combined with computational methods that integrate sequence motif models [8, 9,
13, 14] can effectively dissect the regulatory elements; yet the motif models for transcription
factor (TF) binding are generally not sufficiently well calibrated to predict the binding impact
of a sequence change. Alternative ChIP based approaches (such as ChIP-seq and ChIP-exo),
may provide increased TF and regulatory element specificity, but rely upon the availability of
antibodies to target specific TFs or tagged TFs [15, 16]. The consequence is that we cannot pro-
vide a satisfactory answer to the following questions: Which genetic variants are more likely to
impact binding of specific TFs? What is the fraction of genetic variants in regulatory regions
that are not neutral? If we can adequately answer these questions, we may further ask: Did
polygenic adaptation occur at binding sites for the same TF? Do variants in certain types of TF
footprints and tissues contribute to variation in specific complex traits?

To help answer these questions, we have extended the CENTIPEDE approach to generate a
catalog of regulatory sites and binding variants encompassing more than 600 experimental
samples from the ENCODE and Roadmap Epigenomics projects with DNase-seq data, and
recalibrated sequence motif models for more than 800 TFs. We then incorporated ASH infor-
mation to provide additional empirical evidence, to validate the accuracy of the computational
predictions and to estimate the fraction of genetic variants in regulatory regions that are not
neutral. Importantly, our annotation is specific at the motif level (i.e., TF-specific) and at the
sample level (i.e., tissue-specific). We then compare our results with the only alternative TF-
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centric annotation that has been recently published [17], but we also compare with non TF-
centric SVM derived annotations [18]. Using our new catalog, we then examined genomic
properties of the annotations, identifying characteristics that predict variants that disrupt bind-
ing, and demonstrated the action of natural selection on TF binding sites. Finally, we annotated
and interpreted variants associated with complex traits, and we validated their allele-specific
enhancer activity by reporter gene assays.

Results

Computational prediction of functional variants in regulatory sequences

The CENTIPEDE approach allows to predict TF activity by integrating sequence motif models
together with functional genomics data, and gains the most information from high-resolution
data such as DNase-seq or ATAC-seq [19]. The spatial pattern in which reads are distributed,
or footprint, is specific for each TF and can be very useful for discriminating between classes of
TFs with distinct profiles [13]. In the original CENTIPEDE approach, the sequence models are
pre-determined; e.g, k-mers or previously defined position weight matrix (PWM) models.
However, many sequence models in existing databases were created with very few instances of
known TF binding sites and do not represent the full spectrum of sequence variation that can
be tolerated without affecting binding. Here, we have extended CENTIPEDE to readjust the
sequence models for TF binding (Fig 1 and S1 Fig) using DNase-seq data and sequence ortho-
logs (Methods). Compared to the original motif models the consensus sequence is largely
maintained in the recalibrated motifs (S6 Fig). However, when we consider ChIP-seq peaks as
validation we obtain superior precision recall characteristics (S7 Fig, Section 6.1 in S1 Text)
and a much higher correlation with the prior probability of binding calculated by CENTIPEDE
(S8 Fig, Section 6.2 in S1 Text).

Across all 653 DNase-seq samples, we identified a total of 6,993,953 non-overlapping foot-
prints corresponding to 1,372 motifs active in at least one tissue and collectively spanning
4.15% of the genome. Each individual sample contained, on average, 280,000 non-overlapping
footprints for 600 motifs and spanning 0.162% of the genome, indicating that footprints are
highly tissue specific. Considering all SNPs from 1000 Genomes Project (1KG) at any allele fre-
quency (even singletons), we found 5,810,227 (0.19% of the genome) unique genetic variants in
active footprints (footprint-SNPs), 3,831,862 (66%) of which are predicted to alter the prior
odds of binding >20-fold (effect-SNPs) based on the logistic sequence model hyperprior in the
CENTIPEDE model (Fig 1C and 1D, Equation 2 in S1 Text). Effect-SNPs are further classified
as switch-SNPs (264,965) if the allele flips the prior odds of binding. Importantly, in any of
these categories we retain for each prediction the motif identity (TF-specific) and the underly-
ing sample (cell-type specific) information.

Allele-specific analysis confirms need for accurate prediction of function

These functional categories we computationally defined provide an answer to the question of
which genetic variants in DNasel sensitive regions are more likely to affect binding. To experi-
mentally assess the accuracy of our answer, we used Quantitative Allele-Specific Analysis of
Reads (QuASAR) [20] to perform joint genotyping and ASH analysis within DNase I hyper-
sensitivity (DHS) regions (S2 Fig). While the initial quality filtering is the same as for the CEN-
TIPEDE analysis, the parameters of the QUASAR model also allowed us to detect tissues with
chromosomal abnormalities or samples from pooled individuals (Section 4.2 in S1 Text).
These DNase-I samples were therefore excluded from ASH analysis (S9 and S10 Figs, S6
Table). Across the remaining 316 samples suitable for ASH analysis, we identified 204,757
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Fig 1. A visual description of the methods. (A) Data sources (B) lterative process of using CENTIPEDE and seed sequence models (bottom left) to call
footprints (top), then to revise the sequence models (bottom right), and call footprints again. (C) Computational predictions of genetic variant impact on factor
binding. Conditional on a motif sequence match and observing a DNase-seq footprint a prediction is made using CENTIPEDE’s logistic model for the the
prior probability of binding for each allele: py, for the high binding allele (upward triangle), and p, for the lower binding allele (downward triangle). (D) SNPs in
non-coding regions are successively classified into nested categories base on being in a DHS, CENTIPEDE footprints and having a predicted functional
impact on binding (based on the difference between p; and p; .)

doi:10.1371/journal.pgen.1005875.g001

heterozygous SNPs (hSNPs) in DHS sites (DHS-hSNPs) with coverage > 10x and with MAF >
0.05.

Overlapping our predictions with the DHS-hSNPs, 55,044 are footprint-hSNPs, 26,773 of
these are effect-hSNPs, and 5,991 of these are switch-hSNPs. Overall, our computational pre-
dictions are highly concordant with the direction of ASH; 75% of the sequence models show
positive correlation between the predicted and observed ASH (S11 Fig, S7 Table, Section 5.4 in
S1 Text). Each of the nested SNP functional categories have marked differences in p-value dis-
tribution (Fig 2A) for the QuASAR test of ASH. Compared to what would be expected from
the null uniform distribution, effect-hSNPs and switch-hSNPs have 8x and 14x times more
SNPs with p < 0.001 respectively, showing that our functional annotations can predict ASH.
Furthermore, these enrichments for lower p-values are much higher than those of DHS-hSNPs
(4x) and footprint-hSNPs (6x), indicating that identifying SNPs in DHS regions and/or foot-
prints alone is not enough to predict functional effects on binding. A similar observation can
be made using the observed allelic ratios across CENTIPEDE annotations (S12 Fig). The result
that SNPs that are just located in footprints or DHS regions tend to be silent is also true for
other existing annotations (S13 Fig) or if we change the threshold for discriminating between
footprints-SNPs and effect-SNP (S14 Fig). We also see that conservation score alone is not
accurate enough to predict which SNPs have a functional impact on binding (S16 Fig).
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Fig 2. Determining which genetic variants affect TF binding. (A) ASH p-value densities for heterozygous SNPs in different categories (the dotted blue
line represents the null distribution). Numbers shown are the estimated proportion of true signal, i.e., 1 — 7,,. (B & C) Precision versus Recall operating curve
(PROC) comparing CENTIPEDE predictions to (B) dsQTLs (Degner et al., 2012) [23] and (C) CTCF binding QTLs (Ding et al., 2014) [24]. For our annotation
(in purple), the line is drawn for different threshold on what is considered an effect-SNP, with the (x) indicating all footprint-SNPs and the (+) indicating the
default threshold of 20x difference between alleles. (B) Except for CATO (Maurano et al., 2015; dark blue) [17] and our annotation, the other prediction
methods were already included in Lee et al. (2015) [18]. Note, the curve of some methods do not end at the lower-right corner because not all the dsQTLs
have an annotation (e.g., if they are not in footprints). (C) For both CATO and effect-SNPs we only considered CTCF motifs, while for the methods that are not
TF-centric all the scores are used. (D) Comparison of predicted binding effect for CTCF footprint-SNPs to CTCF-QTLs. Each dot represents a SNP within a
CTCF binding region (ChIP-seq peak) and in a CENTIPEDE footprint with the same color annotation as in (A), the x-axis shows the predicted change in
binding and the y-axis the QTL effect size for the alternate allele.

doi:10.1371/journal.pgen.1005875.9002
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Table 1. Summary of allele-specific hypersensitivity SNPs. Each row represents a category that is a sub-
set of the category in the previous row. Each column reports the number of heterozygous SNPs, SNPs dis-
playing significant ASH (20% FDR), and the estimated proportion of non-null hypotheses using Storey’s g-
value approach. In parentheses are reported the numbers for SNPs that are not present in any of the subse-
quent subsets and are the basis for our partitioned g-value approach to detect ASH-hSNPs.

# hSNPs # ASH-hSNPs (20% FDR) 1-n,
All DHS-hSNPs 204,757 (179,137) 0(0) 2.1 (1.7)%
Footprint-hSNPs 55,044 (42,098) 0 (0) 3.1 (0.3)%
Effect-hSNPs 26,773 (26,773) 3,217 (3,217) 56.5 (56.5)%

doi:10.1371/journal.pgen.1005875.t001

To quantify the fraction of genetic variants that in each annotation will truly affect TF bind-
ing, we used ASH p-values as input evidence and followed the strategy of Benjamini et al. [21]
to perform multiple testing correction in each category separately using Storey’s g-value proce-
dure [22]. At an FDR threshold of 20%, we detected 3,217 unique hSNPs displaying significant
ASH (Table 1), hereafter referred to as ASH-hSNPs. Taking into account LD (R* < 0.8) these
ASH-hSNPs constitute at least 3,158 independent loci. Several of the ASH-hSNPs were signifi-
cant in more than one cell-type, giving a total of 4,940 observations of ASH-hSNPs across all
samples. The 20% FDR threshold was chosen because this data was not originally sequenced to
the depth that is generally required to call ASH at a single site with high confidence. In this
reanalysis, we instead focus on the aggregate distribution of p-values to estimate the proportion
of true null hypotheses (Storey’s procedure 7, estimate). We estimate that 56% of the effect-
SNPs show evidence of ASH. While this conservative estimate can be considered a lower
bound, it is still much higher than the estimates for DHS-SNPs (2.1%) and footprint-SNPs
(3.1%), indicating that most SNPs in DHS regions and even in the putative binding sites do not
affect binding.

In addition to the DNase-seq ASH validation, we compared our annotations to the results
of QTL analyses targeting DNase-seq sensitivity sites (dsQTLs, [23]), and CTCF binding sites
from ChIP-seq [24]. For dsQTLs, using the same PROC analysis (see Fig 2B) as in [18] demon-
strates that effect-SNPs have a good performance compared to SNPs identified using a SVM
approach or CATO [17]. Note that we have not repeated the PROC analysis for the methods
studied by [18], but we used directly the results provided by them, as PROC analysis could be
sensitive to a redefinition of the underlying true labels of the set used to evaluate performance
(see discussion in Section 7 in S1 Text). If we constrain the gk-SVM model to those predictions
that overlap with our CENTIPEDE footprints, the precision (at 10% recall) improves to 80%.
This indicates that SVMs are better sequence models than PWMs, but are not as specific with-
out footprint information. To further investigate the TF-specificity accuracy of our annotations
we used CTCF QTLs. CTCF is a very special type of TF with insulation [25], DNA loop organi-
zation [26], and barrier functions [27]. Compared to training an SVM on the DNase-seq data-
set (non TF-centric), models that are TF-centric such as CATO and our effect-SNPs (integrat-
ing the footprint and sequence preferences) demonstrate a superior accuracy in discriminating
dsQTLs that are also CTCF QTLs from those that may affect other factors (see Fig 2C). Among
all CTCF footprint-SNP instances, all those that are also effect-SNPs are enriched for low
CTCF QTL p-values and we predicted the correct direction (the allele with higher binding) in
100% of the cases (Fig 2D, Section 3.3 in S1 Text).

Some of the alternative methods include information such as conservation, distance to the
TSS and allele frequency, however we have not included them in our annotation as we wanted
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to use those measures for analyzing the potential impact on organismal function and study dif-
ferences among distinct TF motifs.

Characterization of functional regulatory variants

Regions of the genome with demonstrated molecular function (e.g. genic regions) generally
show reduced diversity [28] and a site frequency spectrum skewed towards rare variants. This
is due to negative (purifying) selection, which prevents alleles from reaching high frequencies
in the population if the molecular trait translates to a negative impact on organismal function.
We investigated whether a similar skew in the site frequency spectrum exists at functional non-
coding variants (effect-SNPs). We observed that effect-SNPs display an enrichment for rare
variants (< 0.5%) comparable to what it is observed in coding regions (Fig 3A), where rare var-
iants are 1 to 2 times more likely to be non-synonymous changes than synonymous [29].

eQTL studies have found that variants associated with gene expression tend to occur close
to the transcription start site (TSS) [30-33]. We detect a similar trend among our annotations,
with 83% of footprint-SNPs occurring within 100kb of the TSS. However, we find a 1.12-fold
depletion of effect-SNPs within 300 bases of a TSS (Fig 3B), which represents the core pro-
moter region [34]. Effect-SNPs in this region are also enriched among rare variants (MAF <
0.001, 1.15-fold enrichment, Fisher’s test p-value = 6.027 x 107"?). This is likely because effect-
SNPs in these regions have a major impact on regulatory processes that are shared across tis-
sues. Accordingly, we also discovered a 1.18-fold enrichment for effect-SNPs in footprints
active in 5 or fewer samples and a 1.38-fold depletion for effect-SNPs in footprints active in 50
or more samples (Fig 3C).

Since allele frequency can be correlated with distance to the TSS or sequence conservation,
and shared footprints may also be more common at the promoter region, we tested several fea-
tures (individually explored in Fig 3) in a joint model (Methods). All tested factors are signifi-
cant predictors when considered together in a multiple regression logistic model, and the
direction of the effect is the same as when they are considered separately (S8 Table). These
results support the hypothesis that factors binding closer to the TSS and/or active in many tis-
sues are housekeeping factors and those that recruit the transcriptional machinery and as a
consequence are less likely to harbor common regulatory variants.

Motif-wise characteristics of functional regulatory variants

To examine the distribution of ASH-hSNPs across the different regulatory factors, we calcu-
lated the ASH enrichment ratio for each TF defined as the fraction of ASH-hSNPs over hSNPs
relative to the average fraction across all TF (S17 Fig, Section 8.3 in S1 Text). At a nominal p-
value cutoff of p < 0.01 (Binomial test), we detected 32 motifs enriched for ASH and 56
depleted for ASH (Fig 4A; S9 Table). In cases where multiple motifs correspond to the same
factor, we observe similar enrichment for ASH-hSNPs (510 Table), most notably for the factor
AP-1, showing a >2.5-fold enrichment for ASH SNPs in all but one of the seven motif models.
We see the same pattern for motifs significantly depleted of ASH-hSNPs, such as CTCF
(1.5-fold median depletion) and E2F (1.8-fold median depletion). ASH enrichment ratios are
also consistent across factors with similar functions. For example, three factors in addition to
AP1 with roles in the immune response, CREB [35], ¢/EBP [36], and NF-xB [37] are over
2-fold enriched for ASH-hSNPs within their binding sites (S11 Table).

We then examined the genomic characteristics at TF binding sites to identify features that
distinguish motifs enriched for ASH versus those that are not. We found that motifs enriched
for ASH are significantly farther from the TSS, having an average median distance to the TSS
of 23kb compared to 17kb for those depleted (Mann-Whitney p = 3.2 x 10”%; Fig 4B).
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for ASH-hSNPs. Notches on the boxplots are a non-parametric 95% Cl interval on the median based on the inter-quartile range (IQR).

doi:10.1371/journal.pgen.1005875.9004

Furthermore, motifs enriched for ASH are active in significantly fewer samples, on average
active in 20% vs 40% for those depleted (Mann-Whitney p = 1.9 x 10~; Fig 4C), indicating
that TFs with a high degree of ASH across their binding sites tend to be active in fewer tissues.
This further confirms that changes in footprints active in a large number of tissues (constitu-
tionally active) are more likely to have pleiotropic effects and therefore impact negatively the
fitness of the organism and suggests polygenic mechanisms of evolution on motifs categories
(i.e. groups of binding sites for a given TF or for TFs regulating genes with similar functions).

Evidence for motif-wise selection in TF binding sites

An important question in evolutionary biology is the extent to which selection has acted on cis-
regulatory elements in humans [38-41]. While methods are being developed to address this
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question [42, 43], such methods have only been applied to a narrow subset of TFs, and, in the
case of [43], rely on RNA expression data to classify mutations as up- or downregulating tran-
scription relative to the reference enhancer sequence. Given our categorization of footprint-
SNPs relative to their effect on factor binding, we performed an initial survey of selection across
TF binding sites using a test similar to the McDonald-Kreitman (MK) test [44] (S3 Fig, Section
8.4 in S1 Text). Applying our modified motif-wise MK test, we obtained a selection score for
TF motifs with a sufficient number of binding sites (Fig 5A, S12 Table). At an FDR of 1%, we
observe 84 factors whose binding sites are enriched for fixed functional differences (higher
selection scores), suggestive of positive selection acting on those sites. Among the top scoring
motifs are several factors that regulate neural and neuro-developmental processes, including
POUI1F1, PHOX2B, DBX2, UNCX, and YY1 which were not previously seen [42]. Among the
factors with the lowest selection scores, we find ARNT, RBPJ, CREB1, POU2F2, and MYC
which match with what has previously been observed [42]. While the interpretation of a posi-
tive selection score is generally that of positive selection, interpreting negative scores is more
challenging. Generally, deleterious alleles are much less likely to reach fixation in populations
than neutral alleles, however a negative selection score could also be explained by relaxation of
selection or balancing selection. To identify the most likely evolutionary scenario for variation
in binding motifs with negative selection scores, we calculated the derived allele frequency
(DAF) for SNPs in binding sites. We observed an excess of rare alleles for SNPs in binding sites
with a negative selection score (Fig 5B, S19 Fig, Section 8.5 in S1 Text), suggestive of weak puri-
fying selection, rather than relaxation of selection (similar DAF spectrum across categories) or
balancing selection (excess of intermediate frequency alleles).
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Fig 5. Examining selection on TF binding sites. (A) Comparison of fixed functional (Dy) to fixed silent (Ds) (y-axis) versus polymorphic functional (Py) to
polymorphic silent (Ps) (x-axis) variants across all of the binding sites for each TF examined. Scores towards the top left are suggestive of positive selection
(excess of fixed functional changes) while scores towards the bottom right are suggestive of weak negative (purifying) selection. Several of the highest- and
lowest-scoring factors are shown labeled with the corresponding TF. (B) Derived allele frequency for SNPs within TF binding sites. For each pairwise bin of of
DAF (rows) and selection score (columns), the enrichment is defined as the ratio between the observed proportion of SNPs in that bin and the expected (i.e.,

the product of the two marginal probabilities).

doi:10.1371/journal.pgen.1005875.9005
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We next asked whether the excess of functional polymorphism relative to functional diver-
gence were influenced by background selection from nearby genes (S18 Fig), as functional reg-
ulatory variants may occur closer to the TSS, compared to silent variants. We find a mild but
significant positive correlation between selection score and median TSS distance (Spearman p
=0.16, p = 5.6 x 10~°). Additionally, there is a negative correlation between tissue specificity
and selection score (Spearman p = —0.20, p = 1.2 x 10™"°). While some of the selection signal
may come from nearby genes, there does appear to be a pattern of selective constraint on
broadly active factors binding in promoter regions.

Functional regulatory variants help identify and interpret causal
GWAS hits

Given that our annotations comprise predicted functional effects across multiple cell-types/tis-
sues and are anchored at footprints for known TF motifs, we asked if they could help interpret
genomic hits reported in the GWAS catalog. We first considered a gross overlapping approach
that considers each variant in a GWAS hit region equally likely to be causal (using an 7* cutoff
of 0.8 from 1KG Project data, as in Ward et al. [10]). In GWAS hit regions, we compared the
proportion of effect-SNPs over footprint-SNPs and found a moderate 1.11-fold enrichment for
effect-SNPs (p < 2.2 x 107", 95% CI: 1.10—1.14). These moderate but statistically significant
enrichments are typical of other annotations as well and are likely due to the fact that: i) we
only consider the strongest GWAS hits (missing variants with moderate and small effects), ii)
not all the factors and tissues may have the same enrichment, and iii) lack of resolution, as
expanding the GWAS hit region makes the enrichment effects more moderate. Nevertheless, if
we add our annotation to category 2 SNPs from the RegulomeDB [8] (SNPs with multiple reg-
ulatory annotations, but not yet shown to be functional), we detect a 1.6-fold enrichment for
GWAS hits compared to category 2 SNPs alone (p = 6.11 x 107>, 95% CI: 1.27—1.99). This
result demonstrates that our annotation adds relevant information as it filters genetic variants
not likely to be functional, but the overlap approach employed cannot take full advantage of
the resolution and contextual information provided by our CENTIPEDE predictions.

To better test if the annotated effect-SNPs can help fine-mapping and give a mechanistic
support for variants associated with complex traits, we integrated them into GWAS meta anal-
yses for 18 traits (see S13 Table) using the recently developed hierarchical model fgwas [45].
Importantly, in this analysis we used as input the association p-values measured or imputed to
all known common variants in the genome. Furthermore, for each trait we compare to a base-
line model [45] that considers previously defined annotations [11, 46] and confounders (e.g.,
distance to TSS, coding region, and others). For each trait, we identified factors whose binding
sites were enriched for associated SNPs (Fig 6A and 6B, 520 Fig and S14 Table) over the base-
line model (the enrichments reported by fgwas are log-odds ratios from the model
parameters).

Opverall, we observed high enrichments for biologically relevant factors. For example, the
enrichment for effect-SNPs in OCT-4 (POU5F1, a TF with a key role in embryonic develop-
ment and stem cell pluripotency [47]) regulatory sequences when considering genetic variants
associated with human height is 6.6-fold higher (95%CI: 3.7-8.2) than in the baseline model.
This is consistent with previous observations of genetic variants associated with height being
enriched in embryonic stem cell DHS sites [48]. We also observed an enrichment for the devel-
opmental regulators TBX15 (3.9x), FOXD3 (3.9x), and NKX2-5 (4.7x) for genetic variants
associated with height. From a study of low-density lipoprotein (LDL) levels in the blood,
enriched factors include the liver-specific factor HNF4A (9.1x), as well as several regulators of
immune function, including CREB1 (3.7x), IRF1 (6.2x), and IRF2 (7.1x).
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Fig 6. Integration of annotations into GWAS results. (A & B) Enrichment (log»(change in prior odds w.r.t the baseline model)) of factors for association
with (A) height and (B) low-density lipoprotein levels. Error bars are drawn for 95% confidence intervals. (C & D) Association plots showing the Bayes factor
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>0.4.

doi:10.1371/journal.pgen.1005875.9006

Our high resolution annotations allowed us to dissect the most likely functional variant

(posterior probability of association, PPA > 0.2) in 88 previously identified GWAS regions
(S15 Table, S23 Fig). For all 88 but 2 of these SNPs we have at least a 2-fold increase on the pos-
terior odds of picking the potentially causal genetic variant according to fgwas (8.5x median
fold increase) when compared to the comprehensive baseline annotation used by [45]. We
then performed reporter gene assays for 21 SNPs to validate the predicted allelic effect on gene
expression and the underlying molecular mechanism (Fig 7A and 7B, S16 Table, Methods).
Among the regions tested we validated that 11 have enhancer/repressor activity and 10 have
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variants with allele-specific activity (p < 0.05, BH-FDR = 10%). This corresponds to 48% vali-
dation rate which is much greater than the 5% that would be expected by chance (Binomial test
p=2.01x 10~%). Overall the predicted effect on binding and the change in gene expression are
well correlated (Spearman p = 0.612, p-value = 0.0032), and the three SNPs with opposite
effects may represent binding sites for repressors. Spearman correlation is robust to outliers,
removing potential outlier rs540909 results in p = 0.657 (p-value = 0.002). We also achieve a
similar correlation when we use our predictions to evaluate mutations in enhancers from a pre-
viously published reporter assay [49] that match our CENTIPEDE footprints (Spearman p =
0.76, p-value = 4.37 x 10>, S22 Fig, Section 9.4 in S1 Text).

As an example, rs4519508, associated with a 2.1cm decrease in height [50], is in a binding
site for the cell-cycle regulator family E2F (Fig 6D). Our annotation increased the PPA from a
baseline of 10.5% to 44.4%, and it is the highest associated SNP in the association block (S21A
Fig). This E2F footprint is active in >300 tissues (most of them fetal) and we detected ASH at
this SNP in lung fibroblasts, validating that the reference allele at rs4519508 confers stronger
binding than the alternate. Interestingly, in the reporter assay we observed 1.5-fold increased
expression in the presence of the alternate allele, suggesting that at this location, E2F is acting
as a repressor. Finally, this SNP is located within the promoter of PPP3R1, a regulatory subunit
of calcineurin important for cardiac and skeletal muscle phenotypes; and a SNP in the same
region has been shown to be associated with endurance [51] in humans. The p-value of associa-
tion for this GWAS locus (p = 8.1 x 10~°) does not reach genome-wide significance in the
height meta-analysis data we used [50]; however, in a recent more extensive meta-analysis for
height [52] this locus achieves genome-wide significance p = 8.4 x 10~'°, demonstrating that
our annotation can be useful to rescue relevant loci.

Finally, a SNP associated with LDL levels, rs532436, is within a footprint for USF, an E-
box motif (Fig 6C). Adding our annotation increased the PPA of the SNP from 39.7% to 94.7%
(S21B Fig). We found that the alternate allele, associated with a 0.0785 mg/dL increase of LDL
in the blood, is predicted to have a lower binding probability and results in 1.8-fold lower
expression, compared to the reference allele. This SNP is identified by GTEx [53] as an eQTL
for two proximal genes in whole blood: ABO (p = 5 x 10°) and SLC2A6 (GLUTS, a class III
glucose transport protein; p = 8 x 10~°). The SNP has an opposite effect on expression of the
two genes, with the alternate allele showing lower expression for ABO and higher expression
for SLC2A6.

These results show that our integrated analysis provides support for likely mechanisms link-
ing regulatory sequence changes to complex organismal phenotypes. Furthermore, these mech-
anisms can be directly investigated through molecular studies, providing additional support
that these sequence changes are truly functional.

Discussion

We have developed an approach for assessing functional significance of non-coding genetic
variants in DNase-seq footprints. Our strategy integrates sequence information with functional
genomics data to predict the impact of single nucleotide changes on tissue-specific TF binding.
This is achieved while integrating footprint information that preserves the identity of the
underlying factor with high specificity. By borrowing data from ENCODE and Roadmap Epi-
genomics, we generated one of the most comprehensive catalogs available to date annotating
regulatory regions and functional genetic variants across the genome.

Thus far, most common approaches for identifying regulatory variants from functional
genomics data assume that each SNP in a regulatory region is equally likely to be functional. A
key finding in this study is that genetic variants in active regulatory sequences, as defined by
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DNase I sensitivity and footprinting, are mostly silent; only 2.1% of SNPs in DHS regions and
3.1% of SNPs in CENTIPEDE footprints are estimated to have ASH. This is analogous to SNPs
in coding regions, where most genetic changes are synonymous and do not result in an amino
acid change [29]. The sequence model developed in this study provides a very useful filter for
non-coding genetic variants that are not functional, resulting in a tissue-specific and motif-spe-
cific annotation of effect-SNPs (56.5% of which are estimated to have an impact on ASH). This
is crucial information to take into account when we attempt to understand the molecular
mechanism behind GWAS hits and evolutionary signals of selection. As additional functional
genomics studies are performed, across larger sample sizes, tissue types and cellular conditions,
it will be important to further determine the functional subset of regulatory variants within
binding sites to achieve greater power in functionally annotating genetic variants associated
with complex traits.

We find that genetic variants that are predicted to impact TF binding are depleted in the
core promoter regions, exhibit higher sequence conservation in closely related species, tend to
have low allele frequency and are enriched in tissue-specific footprints. These properties largely
reflect the family-wise characteristics of motifs, which are further reflected in signals of selec-
tion. Future studies could incorporate tissue breath, conservation and distance to TSS as fea-
tures to further filter effect-SNPs that may not show ASH. It should also be noted that our
definition of functional regulatory variants is connected to the predicted effect on binding in
the specific subset of cell-types/conditions that were available. Analyzing the allelic effects of
non-coding variants in the context of other tissue types, conditions and functional genomic
assays may potentially identify a functional role for some of the sites here defined as silent. In
this study, we treated each TF separately, but future work should further explore the combina-
torial grammar that different groups of motifs may define by cooperative binding to determine
tissue specific binding sites. This will probably require more complex sequence models (e.g.,
SVMs [18, 54] or deep neural networks [55, 56]) than the PWMs used here. Here we show that
the footprint information helps in predicting functional variants by further identifying the
underlying TF compared to a sequence-fits-all model. More sophisticated footprint models
[57] may also offer additional improvements to dissect the complexity of the regulatory
grammar.

As not all genetic variants that have an impact on binding may lead to changes in gene
expression and ultimately an organismal phenotype, combining these predictions with eQTL
data across several tissues or environmental conditions would be important to further refine
this annotation. As an example, Wen ef al. [33], using an early release of this annotation in
lymphoblastoid cell-lines demonstrates that effect-SNPs are 1.49 fold (with 95%CI[1.38, 1.63])
more likely than baseline SNPs (SNPs that are not located in a footprint) to be eQTLs
(p=4.93 x 10722); in contrast, silent footprint-SNPs are 1.15 fold (with 95%CI[1.04, 1.27])
enriched in eQTLs, comparing to baseline SNPs (p = 0.0035).

A key feature of our annotation is that it spans a large collection of tissues and transcription
factor motifs. This allowed us to trace some of the evolutionary history of TF binding and iden-
tify evolutionary constraints on specific molecular functions, which may reflect selective pres-
sures during human history. For example, we observed that immune TFs are enriched for ASH
sites, which supports the hypothesis that this may be a consequence of human adaptations to
pathogen exposures [58]. On the other hand, we identified neural development TFs that may
have undergone positive selection in humans. The large number of regulatory variants pre-
dicted in our study, together with previously reported eQTL signals [59-61], and the overall
relevance that they have in explaining complex traits provide further support for polygenic
models of complex traits in humans. By taking advantage of the factor-specific annotations in
our study, we identified motifs that are enriched for regulatory variants associated with relevant
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GWAS traits and we provide examples of molecular mechanisms behind the association sig-
nals; e.g., immune TFs in the lipids study, and developmental TFs for height. Finally, we show
how regulatory annotations improve the identification of potential causal SNPs in GWAS.
Overall, the GWAS meta-analysis and selection signals in our study support the concept that
polygenic variation in binding sites has been a major target of evolutionary forces and a key
contributor to disease risk and complex phenotypes in human populations.

Methods
Identification of active regulatory sites and motif recalibration

We used 1,949 PWM sequence models (motifs) from the TRANSFAC [62] and JASPAR [63]
databases to scan the genome for a set of representative motif matches (Section 3.1 in S1 Text).
For each motif, we used the matching sequences to calculate a new PWM model which we then
used to scan the genome and identify all genome-wide motif matches using a two step
approach:

Step 1: Initial CENTIPEDE scan and motif recalibration. For each motif, we extracted
DNase-seq data at sequence matches across 653 samples (corresponding to 153 unique tissues)
publicly available from the ENCODE and Roadmap Epigenomics projects (Sections 1 and 2.1
in S1 Text). The motifs and samples used are summarized in S1 and S2 Tables. For each motif
and only for this initial step, we used a reduced subset of motif matches that include the top
5,000 best sequence matches, and up to 10,000 additional low-scoring sequences (Section 3.1 in
S1 Text, note that for Step 2 we will use all motif matches in the genome). To avoid overfitting
and to heuristically reduce the search space, these low scoring motif instances are human
sequences that have orthologous very high scoring motif instances in the chimp or rhesus
genome. We then applied the CENTIPEDE model to survey TF activity for each 1,272,697 tis-
sue-TF pair. For each pair we then determined that the TF is active if the sequence matches
that exhibit a CENTIPEDE footprint can be predicted from the PWM score (Z-score > 5, S4
and S5 Figs). Using this criterion, we determined that 1,891 TF motifs are active in at least one
tissue. The full list of motifs active in each tissue can be found in S3 Table. We then recalibrated
the PWM model for each active motif using the sequences of all motif matches that have a
DNase-seq footprint (CENTIPEDE posterior > 0.99).

Step 2: Full genome CENTIPEDE scan and genetic variant analysis. Using the recalibrated
sequence models we scanned the human genome again for all possible sequence matches. We
used the CENTIPEDE algorithm to assess the probability that each motif instance is bound by
a TF, both to the reference and to alternate alleles when the match contained a genetic variant
catalogued in the 1KG Project [29]. In this second step, we included all high and low scoring
PWM matches down to the threshold corresponding to a CENTIPEDE prior probability of
binding of 10% (Equation 2 and Section 3.2 in S1 Text).

ChlP-seq validation of the revised sequence motif models

To evaluate whether the updated sequence models derived from DNase-seq data are better at
predicting TF binding than the original seed motifs, we compared to ChIP-seq data available
for a small set of TFs from the ENCODE project (as these data are generated in independent
experimental assays that should be highly TF-specific). Using precision recall operating charac-
teristic (P-ROC) curve analysis (see Section 6.1 in S1 Text), we determined that for a given pre-
cision (precision = 1—FDR, false discovery rate), the updated sequence models have higher
recall (sensitivity) than the original PWM in detecting ChIP-seq peaks (S7 Fig). Additionally,
we compared the correlation between the prior probability of binding (calculated by
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CENTIPEDE based on the PWMs) and the number of ChIP-seq reads overlapping motif
matches (S8 Fig, Section 6.2 in S1 Text).

Categorization of footprint-SNPs based on predicted functional impact

We classified a SNP in a CENTIPEDE footprint (footprint-SNP) as having a predicted effect
on binding (effect-SNP) if the difference in the prior log odds ratio (from the logistic sequence
model in CENTIPEDE, Equation 2 in S1 Text) between the two alleles was >3, indicating a
>20-fold change in the prior odds of TF binding. We further classified an effect-SNP as switch-
ing the likelihood of binding (switch-SNP) if the prior log odds ratio flips; i.e, if it is > 0 for one
allele and <0 for the other. To generate a final set of annotated SNPs, we aggregated the data
from each sample and motif into one table. For cases where a SNP is within multiple predicted
binding sites, we selected the factor whose CENTIPEDE likelihood ratio was the greatest, i.e.,
the factor most likely to be binding at that location.

Identification of allele-specific hypersensitivity (ASH)

Starting from raw sequencing reads, we used a custom mapper [23] to align the reads to the
hg19 reference genome. As allele-specific analysis is extremely sensitive to mapping errors and
PCR duplicates, we employed several methods to reduce these sources of potential bias (Sec-
tions 2.2—2.4 in S1 Text). To detect allele-specific hypersensitivity, we applied QuASAR [20]
to the processed read data to infer genotypes for all 1IKG SNPs and determine the likelihood of
allelic imbalance at heterozygous sites. Note that we only test a SNP with QuASAR if it is cov-
ered by >10 reads. To adjust for multiple testing, we used the g-value method [22] on the p-
values produced by QuASAR.

Validation of predicted effect-SNPs using ASH-hSNP integrated
analysis

We overlapped heterozygous SNPs (DHS-hSNPs) identified by QuASAR with CENTIPEDE
footprints-SNPs and effect-SNPs catalogued for each sample. SNPs were then partitioned
based on their predicted effect on binding into three non-overlapping categories: 1) hSNPs in
predicted footprints whose binding effect is in the direction predicted, 2) all other hSNPs in
footprints, 3) all other DHS-hSNPs. Because each annotation has a different prior expectation
of being functional, we re-adjusted for multiple testing within each annotation separately using
the g-value method [22] on p-values produced by the QUASAR model. We denote as ASH-
hSNPs those hSNPs with a g-value < 20% in any of the partitions.

Regression model for binding effect

To determine which features of a SNP are predictors of functional effect, we performed multi-
ple regression analysis using a logistic model considering the dependent binary variable Ej,
indicating whether the footprint-SNP, /, is also an effect-SNP.

logit(E,)) ~ C,+ F,+ T,+ N, + P,

We considered the following variables related to the probability of a footprint-SNP being an

effect-SNP: the footprint likelihood ratio (without the sequence model) (C;); the minor allele
frequency (F)); the absolute distance to the nearest transcription start site (77); the number of
tissues for which the motif containing the footprint-SNP was predicted to be bound (N)); the
phyloP conservation scores calculated from primates (P;).
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This model does not evaluate the sequence, rather it combines the results shown separately
in Fig 2 into a single model to characterize the predictions made by CENTIPDE. The model
was fit using the GLM function in R. The result of this regression analysis can be seen in S8
Table.

Identification of selection signals on TF motifs

To identify divergent TF binding sites, we used the UCSC liftOver tool on binding sites without
a known polymorphism to obtain orthologous regions in the chimpanzee genome. Using the
PWM model, we calculated PWM scores and CENTIPEDE prior probabilities of binding on
the chimpanzee sequences. Sites with a sequence change in the motif instance (prior probabil-
ity of binding differs from the humans sites) were classified as divergent, and were further cate-
gorized by the difference in binding affinity: “functional” for sites that change >20-fold
between species (analogous to effect-SNPs), and “silent” for those that do not. For the binding
sites containing a polymorphism, we used the definition of effect-SNPs to identify functional
for silent sites and footprint -SNPs for silent sites. For each factor motif, we then calculated the
number of binding sites belonging to each of the four categories (divergent functional, diver-
gent silent, polymorphic functional, and polymorphic silent) and calculated a selection score
similar to the McDonald-Kreitman test (Section 8.4 in S1 Text).

Integrating high-resolution functional annotations with GWAS and fine-
mapping

To integrate functional annotations and GWAS results, we used the fgwas command line tool
[45]. fgwas computes association statistics genome wide using all common SNPs from Euro-
pean populations in the 1KG Project, splitting the genome into blocks larger than LD. Sum-
mary statistics were imputed with ImpG using Z-scores from meta-analysis data. Using an
empirical Bayesian framework implemented in the fgwas software, GWAS data were then com-
bined with functional annotations. We then compared the informativeness of these annota-
tions from each of the 1891 motifs with CENTIPEDE predicted regulatory sites to a baseline
model (see Section 9.2 in S1 Text) consisting of previously used genomic annotations identified
as relevant [45]. For each locus that contains at least one SNP with a PPA > 0.2, we only con-
sider the SNP with the highest p-value or PPA from fgwas. Rather than look at a credible set,
we pick a single SNP most likely to be causal and see if that SNP has a higher PPA with the
annotation than without it. While reduction in size of the credible set is very important for
assessing fine-mapping methodologies, here our focus is on combining annotations to identify
the single most likely causal SNP per GWAS locus.

Validation of GWAS-relevant effect-SNPs

GWAS-relevant effect-SNPs located in active footprints in LCLs (the cell line used for transfec-
tion) were ranked on the Spearman correlation coefficient in S7 Table. We initially selected the
top 25 SNPs with a positive correlation, but the assays for 4 of them failed for several technical
reasons (e.g., cloning step failed). To test allele-specific effects on expression for the remaining
21 SNPs, we first constructed inserts containing the reference or alternate allele for each SNP
of interest (see Section 9.3 in S1 Text). Cloning of these inserts in the pGL4.23 vector was per-
formed using the Infusion Cloning HD kit (Clontech) and DNA was extracted using the Pure-
Yield kit (Promega). Transfections were performed into GM18507 using the standard protocol
for the Nucleofector electroporation (Lonza). Luciferase activity was measured for up to 20 rep-
licate experiments using the Dual-Glo Luciferase Assay Kit (Promega). We contrasted the
activity of each construct to the pGL4.23 vector, to assess enhancer/repressor activity of each
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region. To evaluate allele-specific effects, we contrasted the activity of the reference allele to the
alternate allele for each region and we used a t-test to assess significance at a p < 0.05 threshold.
We used the Benjamini-Hochberg [64] procedure to assess FDR across all 21 SNPs tested.

Enrichment analyses

Unless otherwise noted, tests for enrichment on two-way categorical variables are based on
Fisher’s exact test. Tests involving multiple categorical, discrete or continuous variables use a
logistic regression model and Wald’s test on each enrichment parameter, and are identified as
such.

Data availability

The generated annotation files are available as supplementary tables and at http://genome.grid.
wayne.edu/centisnps/. All other relevant data are available in the manuscript and its Support-
ing Information files.

Supporting Information

S1 Text. Supplemental Materials and Methods. This text provides more detailed explanations
of how experiments and analyses were performed, arranged into the following sections: (1)
Data sources, (2) Data Preprocessing, (3) Identification and mapping of active transcription
factors, (4) Analysis of allele-specific hypersensitivity, (5) Annotation of ASH with binding pre-
dictions, (6) Evaluation of recalibrated sequence models, (7) Precision versus recall analysis
using DNase-seq and CTCF QTLs, (8) Genomic annotation and selection signals, (9) Overlap
with genome-wide association studies.

(PDF)

S1 File. Full catalog of SNPs in footprints. Each row is a specific SNP / TF motif / cell type
combination. Columns 1-3, bed-formatted SNP position (0-based); 4, motif ID; 5, log ratio
between the prior log odds of binding for each allele; 6, prior log odds of binding for the refer-
ence allele; 7 prior log odds of binding for the alternate allele, 8 cell type.

(BGZ)

S2 File. Recalibrated motif position weight matrices.
(GZ)

S3 File. Footprint profiles of recalibrated motif position weight matrices. For each motif,
footprint profiles are aggregated across all binding sites in all 653 DNase-seq samples. Color
indicates which strand the motif matches, positive (blue) or negative (red). Text in the upper
left denotes the tissue with the highest Z-score from the CENTIPEDE mode, the motif ID, and
the corresponding transcription factor.

(G2)

S4 File. SNPs with significant ASH. Each row is a specific ASH-hSNP / TF motif / cell type
combination for which the ASH-hSNP displays significant allelic imbalance. Columns 1-3,
bed-formatted SNP position (0-based); 4, rsID; 5-6, reference and alternate alleles; 7-8 refer-
ence and alternate read counts; 9-10, reference and alternate Pr(binding) from CENTIPEDE;
11, cell type; 12 motif ID.

(GZ)
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S1 Table. DNase samples and sources. Listed for each sample is the source, the sample, and
the number of reads.
(XLSX)

S2 Table. Sources of additional data used in analyses. Download dates and, where applicable,
specific cell-types/tissues are also listed.
(XLSX)

S3 Table. Active motifs in each sample. For each sample, motifs were determined active if the
Z-score, obtained from Equation 2 in S1 Text, was > 5, and if the motif instances showed cor-
relation with DHS peaks (Section 3.2 in S1 Text).

(XLSX)

S$4 Table. Comparison of ASH within footprints between PWM models. Shown is the num-
ber of ASH-hSNPs within footprints identified by the two sets of PWM sequence models. The
counts are stratified by p-value from the QuASAR test of ASH. Note that the old models, by
default, only select sites with a PWM score > 12; for comparison, the same constraint has been
placed on the sequences used from the new models.

(XLSX)

S5 Table. Validation of genotype predictions. A comparison of 1KG genotypes and those
called by QuASAR for the 12,650 loci examined in the LCL GM12878.
(XLSX)

S6 Table. Summary of post-processing filters. The first three rows show the threshold and
number of samples filtered for each parameter independently. After applying the three filters,
the remaining samples were manually examined and known cancer samples were removed.
(XLSX)

S7 Table. Motif-wide correlation between CENTIPEDE and ASH results. For each motif,
CENTIPEDE predictions were compared to ASH data using 1) Spearman correlation and 2) a

logistic model using the functional predictions to predict the ASH.
(XLSX)

S8 Table. Predictiveness of genomic characteristics on functional effects. We considered the
following characteristics in a regression analysis to determine their predictiveness as to whether
a footprint-SNP is also an effect-SNP.

(XLSX)

S9 Table. Enrichment of ASH-hSNPs within binding sites. Factors with at least 100 heterozy-
gotes in a predicted binding site are listed along with the counts, ratios, and enrichments of
ASH-hSNPs, footprint-SNPs, and switch-SNPs within them.

(XLSX)

$10 Table. Comparison of multiple motifs for a single factor. Motifs corresponding to the
same transcription factor are similarly enriched or depleted for ASH-hSNPs.
(XLSX)

S11 Table. ASH effects for several immune-related factors. For each factor listed, we calcu-
lated the aggregate ASH enrichment ratio across all sequence models corresponding to that fac-
tor.

(XLSX)
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S12 Table. Selection score for individual metifs. For each factor motif, we used a modified
MK test to calculated a selection score. Shown for each motif is the number of binding sites
belonging to each category used in the MK test (divergent functional, divergent silent, poly-
morphic functional, and polymorphic silent) as well as the score.

(XLSX)

$13 Table. Summary of GWAS meta analysis traits examined. Shown for each trait is the
trait abbreviation and the citation for the meta analysis study.
(XLSX)

$14 Table. Factor binding sites enriched for GWAS SNPs. For each trait, factors whose bind-
ing sites are enriched for SNPs associated with the trait are listed. Shown also are the lower and

upper limits of the 95% confidence interval.
(XLSX)

S15 Table. SNPs associated with GWAS traits that fall in CENTIPEDE-predicted TF bind-
ing sites. PPA, Posterior probability of association estimated by fgwas for each SNP. “Before”
indicates the PPA from the base model, “after” indicates the PPA after adding footprint anno-
tations to the model. The p-values listed are derived from the z-scores that are used as input for

fgwas.
(XLSX)

$16 Table. Reporter gene assay results. For each of the SNPs tested, listed are the results for
the reference allele (top) and the alternate allele (bottom). Shown is the average and standard
error (across replicates) of the firefly luciferase activity normalized to the renilla luciferase
activity, for each construct (Norm Expr) and for the pGL4.23 vector (Empty Vector). The last
two columns are the ¢-test p-values comparing the activity of the reference allele to the alternate
allele (vs ref), and of each allele to the pGL4.23 vector (vs empty). Underlined alleles indicate
the allele predicted to have stronger binding.

(XLSX)

S1 Fig. Flowchart detailing steps of the CENTIPEDE-based annotation of regulatory
regions and variants. Numbers next to boxes refer to the corresponding section in the Supple-

ment.
(PDF)

S2 Fig. Flowchart detailing ASH analysis pipeline. Numbers next to boxes refer to the corre-
sponding section in the Supplement.
(PDF)

$3 Fig. Flowchart detailing analysis pipeline for identifying selection across TFBS. “Prior
Odds Ratio > 20” is the same criteria as the one used to define effect-SNPs. Numbers next to

boxes refer to the corresponding section in the Supplement.
(PDF)

$4 Fig. Binding profiles of AP-1 motif M00172. Footprint profiles are aggregated across all
binding sites in all 653 DNase-seq samples, and stratified by Z-score (color). The higher the Z-
score, the more likely a factor is bound as predicted by the CENTIPEDE model.

(PDF)

S5 Fig. Distribution of Z-scores across samples and motifs. Shown is the full distribution of
Z-scores (calculated with Equation 2 in S1 Text) across every sample-motif pair. The dotted
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vertical line at Z = 5 shows the selected threshold for factor activity.
(PDF)

S6 Fig. Comparison between seed and revised sequence model. For each factor motif, shown
is the original seed sequence model (left) and the revised model (right). x-axis: position within
motif, y-axis: information content. (A) NRSF (B) CTCF (C) PU.1 (D) AP-1.

(PDF)

S7 Fig. Precision-recall curves for seed (blue) and revised (black) sequence models. For each
TF binding motif, CENTIPEDE-predicted footprints in GM12878 cells were compared using
ENCODE ChIP-seq data as a gold standard. (A & B) CTCF (C & D) GABP (E & F) NRSF (G &
H) PU.1.

(PDF)

S8 Fig. Comparison of prior Pr(binding) derived from PWM scores to ChIP-seq read data
across all motif matches using seed (blue) and revised (black) sequence models. Due to
thresholds on the match score (see Section 3.2 in S1 Text), few models have data Pr

(binding) < 0.2. For ease of display data is binned in 10% increments. Points represent the
average number of ChIP-seq reads within that bin and vertical lines represent the 95% confi-
dence interval. Spearman correlation (legend) is calculated using the full data set without bin-
ning. (A & B) CTCF (C & D) NRSF (E & F) PU.1.

(PDF)

S9 Fig. Reference allele ratio p at 1KG variants. (A) Plot showing p allele ratios for SNPs
interrogated for CD34 primary cells (used for ASH analysis). Three peaks on the histogram
(right) correspond to homozygous reference (top), heterozygous (middle), and homozygous
alternate (bottom) SNPs. (B) Plot showing p allele ratios for SNPs interrogated for the cancer
line K562 (discarded for ASH analysis). Signatures of chromosomal abnormalities are evident
from the scatterplot, such as copy number variation and loss of heterozygosity.

(PDF)

$10 Fig. Distribution of values used for post-ASH analysis filter criteria. On all four panels
y-axis represents the parameter M that is reciprocally related to the dispersion of rho in the
QuASAR model. Dotted lines represent values used to filter samples. (A) Dispersion and corre-
lation between p and ¢ (B) Dispersion and p estimation. Bottom plots show zoomed view of
samples with M < 100.

(PDF)

S11 Fig. Correlation between CENTIPEDE predictions and observed ASH. SNPs identified
in both the CENTIPEDE and ASH analysis are shown, shaded by p-value of allelic imbalance
from QuASAR. Points circled in red display significant ASH at 20% FDR. The blue line is a
logistic curve fit using points with a p < 0.1.

(PDF)

$12 Fig. Magnitude of allelic imbalance within predicted functional annotations. Each line
represents a density plot of the magnitude of allelic imbalance |(allele ratio—0.5)| for SNPs
within each functional annotation.

(PDF)

$13 Fig. ASH p-value densities for different SNP categories. Shown are three additional cate-
gories of SNPs from recent studies of functional variation within TF binding sites.
(PDF)
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S14 Fig. Comparison of thresholds for functional annotation categories. ASH p-value den-
sities for different SNP categories. For effect-SNPs and switch-SNPs, shown are different
thresholds used for defining the category (20x is the threshold used throughout this analysis).
The dotted blue line represents the null distribution.

(PDF)

$15 Fig. Identification of ASH using only PWM score. ASH p-value densities for different
SNP categories and PWM (sequence match) match scores. Numbers in parentheses are the
number of SNPs in those categories. The dotted blue line represents the null distribution.
(PDF)

S16 Fig. Identification of ASH using phyloP conservation score. ASH p-value densities for
different SNP categories and SNPs with indicated phyloP conservation scores. Numbers in
parentheses are the number of SNPs in those categories. The dotted blue line represents the
null distribution.

(PDF)

$17 Fig. Distribution of ASH enrichment ratios. For all motifs with > 100 hSNPs, an ASH
enrichment ratio was calculated as # ASH-hSNPs (20% FDR) / # hSNPs across all binding sites
genome-wide. The black line shows the average ratio across all motifs. Several factors whose
binding sites are highly enriched or depleted for ASH-hSNPs are labeled.

(PDF)

S18 Fig. Identifying selection signals in TF binding sites. (A) Density plot showing the distri-
bution of selection scores from the modified MK test. (B) Comparison of selection scores to the
number of tissues each factor is predicted to be active in. (C) Comparison of selection scores to
the median distance to the TSS across all sites for a given factor.

(PDF)

S19 Fig. Derived allele frequency and selection score. Shown are the relative enrichments for
each DAF/selection score bin, for all variants (A) and for singletons and doubletons (B).
(PDF)

$20 Fig. Enrichment of transcription factors motifs from fgwas. Shown are the log,(enrich-
ment) values with 95% confidence intervals for each factor whose binding sites are enriched for
SNPs associated with the traits in S14 Table. x-axis is truncated at 10 for ease of display.

(PDF)

S21 Fig. Association plots identifying SNPs in footprints. Log Bayes factor (top) and poste-
rior probabilities (bottom) of association to the indicated trait for all genetic variants in the
regions containing rs4519508 and rs532436.

(PDF)

$22 Fig. Correlation of CENTIPEDE predictions and mutated enhancers in HepG2 and
K562 cells. For each point, plotted is the difference in the change in probability of binding
(mutated prior log ratio—reference prior log ratio, x-axis) versus the log,(fold change) between
mutated and wild type reporter constructs (y-axis). The black line represents the best-fit line
from a linear model fit on all 22 points.

(PDF)

$23 Fig. Association plots identifying SNPs in footprints from fgwas. For each SNP in S13
Table, two plots show the log Bayes factor (top) and posterior probabilities (bottom) of
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association to the indicated trait for all genetic variants in the region containing the SNP.
(PDF)
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