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Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are

forms of degenerative retinal disorders that may result in vision impairment or

even permanent blindness. Early detection of these conditions is essential to

maintaining a patient’s quality of life. The fundus photography technique is non-

invasive, safe, and rapid way of assessing the function of the retina. It is widely

used as a diagnostic tool for patients who suffer from fundus-related diseases.

Using fundus images to analyze these two diseases is a challenging exercise,

since there are rarely obvious features in the images during the incipient stages

of the disease. In order to deal with these issues, we have proposed a deep

learning method called FunSwin. The Swin Transformer constitutes the main

framework for this method. Additionally, due to the characteristics of medical

images, such as their small number and relatively fixed structure, transfer

learning strategy that are able to increase the low-level characteristics of the

model as well as data enhancement strategy to balance the data are integrated.

Experiments have demonstrated that the proposed method outperforms other

state-of-the-art approaches in both binary andmulticlass classification tasks on

the benchmark dataset.
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1 Introduction

An eyeball is an impressively ingenious structure, with an

optical system that mimics a traditional camera, and the fundus

which functions as the photographic plate of the camera, allows

one to see the dynamic of the blood circulation and the health

status of the human body (Musadiq et al., 2003; Lee and Szema,

2005). For example, various characteristics of certain

complications of diabetes, hypertension, coronary heart

disease, and kidney disease can be identified in the fundus

(Nathan, 1993; Wong et al., 2001; Grunwald et al., 2010; Xu

et al., 2021). Presently, fundus photography is a commonly used

method for screening the fundus. This technique enables visual

perception of structure, which allows us to determine if there is

any abnormality in the fundus (Yannuzzi et al., 2004).

Diabetic retinopathy (DR) and age-related macular degeneration

(AMD) are two ophthalmic diseases that can be diagnosed through

fundus photographs. Basic clinical manifestations of DR will appear

on fundus images as neovascularization, capillary hemangiomas,

vasodilation, hemorrhage, and occlusion of capillaries and

arterioles (Stitt et al., 2016), whereas the basic manifestations of

AMD will appear on fundus images as mainly the alteration of

fundus macula (Zarbin et al., 2014). Unfortunately, in the early stages

of the disease there may not be obvious clinical symptoms evident in

the fundus image, making diagnosis challenging (Agurto et al., 2011).

Deep learning has made great strides in medical image

diagnosis over the last decade. In particular, a number of deep

neural networks have been modified and applied for detecting

diseases related with fundus images in recent years. For example,

several structural features of biological damage, such as blood

vessels, fundus hemorrhage, and exudate, are added to advanced

neural networks to train classification models based on artificially

designed features (Alqudah et al., 2018; Ghani et al., 2019; Dong

et al., 2021). These neural frameworks can also be trained using

simple image characteristics such as pixel intensities (Das et al.,

2021; Kanimozhi et al., 2021; Selçuk et al., 2022). Besides focusing

on feature innovations, scientists will also focus on

methodological innovations, such as developing a high

performance deep neural network and integrating different

machine learning algorithms with ensemble models (Sikder

et al., 2021; Du et al., 2022).

It is true that these state-of-the-art methods have provided

good results, however, many of them do not offer a diagnosis of

disease staging, at the same time, for the detection of the above

two diseases, they must be enhanced. Furthermore, the

diagnostic performance of the models needs to be enhanced

for the above two diseases. To address the above two pivotal

questions, we propose a deep learning method based on Swin

transformer. The main contributions of this work are

summarized as follows:

For one thing, the appropriate benchmark model and other

modules are selected and optimized for integrating a suitable

deep learning framework for analyzing fundus images in

accordance with the specific research objectives. For another,

a series of highly reliable preprocessing operations are

implemented based on the properties of the fundus images,

while ensuring the integrity of the distribution of the data,

thereby enhancing the accuracy of the resulting prediction.

Finally, the ImageNet-based transfer learning mode is used as

the basis training model in order to obtain sufficient low-level

features for the learning. Consequently, when the model is fused

with high-dimensional features, the model can be perceived more

clearly (particularly some potential disease classification bases)

and classification accuracy can be improved.

The paper is organized as follows: In Section 2, we provide an

overview of the datasets and a brief description of the methods. In

Section 3, we present experimental results and conclusions based

on these results. Finally, in Section 4, we conclude the paper with

a brief summary.

2 Materials and methods

As shown in Figure 1, This study involved four major stages:

Dataset curation, data preprocessing, model training and prediction.

The collected fundus images are first cut into squares and

normalized to the same size, then the samples are balanced

based on the number of each class. In addition, mixup and

cutmix are used to further process the data. Since the Swin

Transformer demonstrates excellent performance on other

medical image classification problems, this framework is used in

this study, and its parameters are adjusted based on the model’s

performance. Finally, the binanry and mutil classification

performance of the optimized will be evaluated by the evaluation

metics. As a reminder, “Binary Classification” refers to the

classification of health and disease, whereas “Multiclassification”

refers to the classification of health and disease at different levels.

The details of each process are described in the following sections.

2.1 Benchmark dataset

In this article, we used data from the MESSIDOR dataset

(Decencière et al., 2014) that is available online for public use.

There are 1,200 color numerical images of the posterior pole of

the eye in this dataset, which correspond to two diseases: Diabetic

retinopathy (4 levels, 0–3) and macular edema (3 levels, 0–2),

where level 0 corresponds to a healthy subject. Medical experts

have provided diagnoses for each image. Full details are available

in Supplementary Tables S1, S2.

2.2 Data preprocessing

Firstly, only the middle part of the image is intercepted,

which contains all pixels within the field of view, in order to
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lessen the interference caused by large areas of black

background. And the size of these small crops is set to

960 × 960. As a second step, the simplest data enhancement

methods (rotation and mirroring) are used to increase the

number of minority samples, eliminating the effects of

categories imbalance and maintaining an equal distribution

of the dataset. For example, As regards diabetic retinopathy, the

sample sizes for 0–3 levels are 546, 153, 247, and

254 respectively. On level 1 samples, we use 180-degree

rotation, mirroring, mirroring+180-degree rotation to

expand them to three times their original size. While level

2 and 3 samples are expanded by 180-degree rotation and

mirroring. This procedure allows each subclass to attain an

approximate balance in the number of samples and eliminates

the impact of imbalanced categories. Lastly, the internal mix-up

and cut-mix methods of the network (Liu et al., 2021) will also

be used to optimize the performance of the Swin Transformer.

CutMix and MixUp enable us to create inter-class examples.

CutMix randomly interpolates the pixel values between two

images and places fragments of one image over another, while

MixUp randomly interpolates the pixels between two images.

The two processes prevent the model from being overfitted to

the training distribution and improve its likelihood of being

able to generalize to examples outside of the distribution. A

further benefit of CutMix is that it prevents a model from over

relying on any particular feature when it is performing its

classifications.

2.3 Model training

2.3.1 The pipeline of the framework
The deep learning framework implemented in this study

consists of three components, which are the backbone, the neck,

and the head.

As illustrated in Figure 2, the Swin Transformer is served as

the framework’s backbone. Its structure is reminiscent of a

convolutional hierarchy and the resolution is reduced by half,

while the number of channels is doubled. The first patch

partition divides the image into a series of blocks, followed

by four stages, each of which contains two parts: patch merging

(the first block is linear) and Swin Transformer block. Patch

merging is similar to pooling; however, it does not lose

information in the process.

As depicted in Figure 3, Swin Transformer Block is basically

similar to a common transformer block except that it uses

window multi-head self-attention (W-MSA) and mobile

window multi-head self-attention (SW-MSA) to replace multi-

head self-attention (MSA) module. With this moving-window

method, self-focused computations are limited to a non-

overlapping local window, allowing for inter-window

connectivity. Moreover, this hierarchical converter is capable

of modeling images of various sizes and has linear computation

complexity. As a result of these features, Swin converter is highly

competitive in handling a wide variety of visual tasks (Zhang

et al., 2021; Jiang et al., 2022).

Global Average Pooling (GAP) composes the neck of the

framework. There are several advantages of GAP over traditional

fully ensemble layers. One is that it is more suitable for

convolutional structures by improving the compatibility of

function maps and categories, another is that there are no

parameters to adjust in the global media collection, meaning

that overestimation at the global level can be reduced. It

contributes to the achievement of good results in many

network structures for medical data (Bien et al., 2018; Valan

et al., 2019; Shahhosseini et al., 2021).

Linear CLS is the head of the framework. Using this module

makes the model relatively simple and easier to train since the

mapping between features and categories is clearly visible. Its loss

function is described as follows:

Loss � −∑
n

i�1
y(i) log(p(xi)) (1)

Where p(xi) is the result of the model output computed by

softmax and y(i) is calculated as follows:

FIGURE 1
Overview of the proposed methodology.
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y(i) �
⎧⎪⎪⎨
⎪⎪⎩

α

n
, i ≠ class

1 − α + α

n
, i � class

(2)

Where n is the number of categories, i is the predicted label, and

class is the current real category. Where α is smoothing

coefficient, which we set to 0.1, as in (Liu et al., 2021).

2.3.2 Parameter setting
This framework has the following parameters: the batch size

is set to 32, the epoch is set to 600, and the initialization policy of

the CLS head is TruncNormal, which has a standard deviation of

0.02. Additionally, AdamW is used as the optimizer with a

learning rate of 0.0001 and decay rate of 0.05. All other

parameters are set to the default values.

2.3.3 Performance metrics
Performance metrics have been employed to assess the

predictive performance of our models, including sensitivity,

specificity, accuracy, and F1-score. In medical image analysis,

these evaluation measurements are well established and they

have been used in the benchmark studies on the diagnosis of

fundus-related diseases as well. The metrics are calculated as

follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Acc � TP + TN

TP + FP + TN + FN

SN � RE � TP

TP + FN

SP � TN

TN + FP

PR � TP

TP + FP

F1 − Score � 2 × PR × RE

PR + RE

(3)

The variables TP, FP, TN and FN represent the true positive,

false positive, true negative, and false negative values,

respectively. RE and PR represent recall and precision.

3 Results and discussions

3.1 The result of binary classification on
diabetic retinopathy and macular edema

This paper compares nine state-of-the-art methods that

have been widely used in medical imaging in recent years,

which are Conformer (Peng et al., 2021), ConvNeXt (Liu

et al., 2022), HRnet (Wang et al., 2020), Vgg 11 (Simonyan

FIGURE 2
The framework of the Swin transformer.

FIGURE 3
The details of the Swin Transformer Block.
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and Zisserman, 2014), Mlp-Mixer (Tolstikhin et al., 2021),

Res2Net 50 (Gao et al., 2019), ShuffleNet V1 (Zhang et al.,

2018), T2T Vit (Yuan et al., 2021) and Vit Transformer

(Dosovitskiy et al., 2020).

As depicted in Table 1, the proposed method yielded the best

results for diabetic retinopathy on both the accuracy and F1-

score, and for sensitivity, our effect is second only to that of VIT

Transformer, which is only 0.43% worse. With regard to

specificity, our effect ranks third, which is 10.36% less than

that of the highest-performing model. Similarly, for macular

edema, as illustrated in Table 2, accuracy, F1-score, and

sensitivity of the proposed model have reached the highest

values, 98.66, 98.96, and 98.68%, respectively, while their

specificity is 1% lower than the best model.

The relationship between specificity and sensitivity is often

asymmetric, so it is very challenging to make sure both will

produce positive results. We have maintained that the objective

of this project is to better screen out patients with diseases,

therefore in terms of method design and model training, we have

sought a higher degree of sensitivity. Perhaps this explains why

our model is less specific than other models in binary diagnostics

of these disorders.

3.2 The results of multi-classification on
diabetic retinopathy and macular edema

Having to deal with the problem of multi-classification,

macro-average is used to calculate these indicators. According

to this principle, increasing the proportion of each category of

images will increase the weight of that category. The final result of

the indicator is the sum of the results obtained from multiplying

the corresponding indicator results of each subcategory by their

respective weights.

Table 3 and Table 4 illustrate that the proposed method is

superior to other models in various indicators with regard to the

TABLE 1 Comparing the existing methods of binary classification for
diabetic retinopathy.

Methods Accuracy Sensitivity Specificity F1-score

Conformer 0.8855 0.8817 0.8963 0.9193

Convnext 0.8267 0.9613 0.4451 0.8913

HRnet 0.8378 0.8796 0.7195 0.8891

Vgg11 0.8156 0.8538 0.7073 0.8725

Mlp Mixer 0.8585 0.9226 0.6768 0.9060

Res2net50 0.8267 0.8452 0.7744 0.8782

Shufflenet_v1 0.8045 0.8796 0.5915 0.8693

T2T Vit 0.8553 0.8323 0.9207 0.8948

Vit Transformer 0.8076 0.9419 0.4268 0.8786

Our Method 0.9062 0.9376 0.8171 0.9366

TABLE 2 Comparing the existing methods of binary classification for
macular edema.

Methods Accuracy Sensitivity Specificity F1-score

Conformer 0.9745 0.9755 0.9727 0.9801

Convnext 0.9320 0.8962 0.9966 0.9443

HRnet 0.9453 0.9283 0.9761 0.9563

Vgg11 0.7947 0.7283 0.9147 0.8204

Mlp Mixer 0.9441 0.9453 0.9420 0.9561

Res2net50 0.9648 0.9566 0.9795 0.9722

Shufflenet_v1 0.9648 0.9698 0.9556 0.9726

T2T Vit 0.9587 0.9377 0.9966 0.9669

Vit Transformer 0.9611 0.9604 0.9625 0.9695

Our Method 0.9866 0.9868 0.9863 0.9896

TABLE 3 Comparing the existing methods of multi-classification for
diabetic retinopathy.

Methods Accuracy Sensitivity Specificity F1-score

Conformer 0.7704 0.7524 0.9122 0.7691

Convnext 0.7123 0.6754 0.8770 0.6999

HRnet 0.7374 0.7031 0.8954 0.7311

Vgg11 0.6211 0.5630 0.8547 0.6013

Mlp Mixer 0.7248 0.7121 0.8942 0.7246

Res2net50 0.6352 0.5568 0.8665 0.6054

Shufflenet_v1 0.6101 0.6500 0.8383 0.6026

T2T Vit 0.6950 0.7023 0.8679 0.6845

Vit Transformer 0.7563 0.7268 0.9150 0.7490

Our Method 0.8412 0.8154 0.9413 0.8400

TABLE 4 Comparing the existing methods of multi-classification for
macular edema.

Methods Accuracy Sensitivity Specificity F1-score

Conformer 0.9733 0.9733 0.9865 0.9733

Convnext 0.8214 0.8147 0.9104 0.8091

HRnet 0.8761 0.8725 0.9379 0.8745

Vgg11 0.6136 0.6035 0.8056 0.5753

Mlp Mixer 0.9210 0.9202 0.9602 0.9209

Res2net50 0.8882 0.8849 0.9443 0.8872

Shufflenet_v1 0.9635 0.9638 0.9816 0.9636

T2T Vit 0.9174 0.9144 0.9583 0.9160

Vit Transformer 0.9514 0.9510 0.9754 0.9514

Our Method 0.9866 0.9866 0.9932 0.9866

Frontiers in Physiology frontiersin.org05

Yao et al. 10.3389/fphys.2022.961386

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.961386


TABLE 5 Performance of binary classification before and after data augmentation.

Methods Accuracy Sensitivity Specificity F1-score

Diabetic Retinopathy No Augmentation 0.5444 1.0 0 0.7050

Augmentation 0.9062 0.9376 0.8171 0.9366

Macular Edema No Augmentation 0.9389 0.7941 0.9726 0.8308

Augmentation 0.9866 0.9868 0.9863 0.9896

FIGURE 4
Model convergence performance of binary classification.
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multiclassification problem of diabetic retinopathy and macular

edema. In comparison with the binary classification problem, our

model does not demonstrate any reduction in the multi-

classification problem. It may be that there are only three

subcategories to classify, or that there are distinct features

which separate subcategories.

3.3 Performance of data enhancement on
the model

The data augmentation test was conducted on the binary

classification. Table 5 summarizes the changes to evaluation

indicators of the proposed method before and after data

enhancement. Following data enhancement, almost all

indicators were improved. There are two main factors

contributing to this: The first is the expansion of

minorities by rotating and flipping against class

imbalances; this allows the data to be more balanced,

reduces the impact of unbalanced data on the model, and

enhances its performance. Additionally, fundus images the

physiological structure reflected by fundus images is

relatively fixed, that is, the distribution of segmentation

targets in fundus images is essentially regular, and the

semantic understanding of these targets is rather

straightforward. So, low-resolution information provides

specific features that are necessary for target object

recognition. Although the model has gained sufficient low-

level features from migration learning, there are still only a

limited number of original images available for input, which

means that the enhanced images compensate for the lack of

original data.

3.4 Performance of transfer learning on
the model

An assessment of transfer learning was conducted on the

binary classification. Accordingly, the accuracy, sensitivity,

specificity, and F1-score values of diabetic retinopathy are

respectively 0.7393, 1, 0 and 0.8501. Similarly, these indicators

of macular edema are 0.6457, 1, 0, and 0.7847. ACC and F1 of

both diseases increased significantly following the addition of

transfer learning.

3.5 Convergence of the model

As an example, we exploit the binary classification problem to

demonstrate the effects of model convergence. Figures 4A,B show

the convergence of the model in DR and MD respectively. The

abscissa represents the number of epochs used, while the ordinate

represents the value of the loss suffered by the epoch. As shown in

Figure 4A, the model converges more effectively only after data

augmentation. While in 4B the model without data augmentation

achieves better convergence, it is not evident from the actual test

results.

Loss declines may not be apparent when the model cannot

solve the problem of category imbalance. Accordingly, we can

consider balancing the data set to resolve this issue. However,

when the number of pictures increases because of a data balance,

the overall loss may increase slightly, although this may be due to

the increase in images, which does not adversely affect our

classification accuracy.

3.6 Running environment and time cost

The experiments were conducted using a computing server

with an Intel i9-11900K CPU, an NVIDIA RTX-3090 GPU, and

Kingston 32 GB memory. Ubuntu 18.04 is the operating system

of the server. In general, the training time for a picture is 0.02 s

and the testing time is 0.007 s.

4 Conclusion

In this project, a method referred to as FunSwin is

proposed as a means to solve the problem of grading

diabetic retinopathy and estimating macular edema risk

using fundus images. The basic framework for the method

is Swin Transformer, with some modules based on some

features of medical data to improve performance. In

comparison to the existing studies on this benchmark

dataset, FunSwin was found to outperform the existing

studies in binary classifications and multi-classifications of

these two diseases. Furthermore, as regards binary

classification, when each subcategory of disease is given the

same amount of training data, i.e., assuming that all data for

each subcategory is balanced, then the binary classification

effect of the model will still be improved. The study however,

may need further evaluations in the clinical practices. There

have been very few clinical studies on AI-based retinal diseases

due to a variety of challenges, such as regulatory requirements

and the annotations of experienced clinicians. Additionally,

there is no specific evidence that these fundus-related

symptoms are directly connected to particular diseases.

After receiving ethical approval and the accumulating of a

large, well-annotated dataset, this limitation of the proposed

method will be resolved in a future study. In future studies, we

also intend to use FunSwin in treating other retinal disorders,

such as stroke, heart disease, etc.
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