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Aims: To investigate and characterise the pharmacokinetics of febuxostat and the

effect of the covariates of renal function and body size descriptors on the pharmaco-

kinetics of the drug.

Methods: Blood samples (n = 239) were collected using sparse and rich sampling

strategies from healthy (n = 9) and gouty (n = 29) subjects. Febuxostat plasma con-

centrations were measured by a validated high-performance liquid chromatography

method. Population pharmacokinetic analysis was performed using NONMEM. A

common variability on bioavailability (FVAR) approach was used to test the effect of

fed status on absorption parameters. Covariates were modelled using a power model.

Results: The time course of the plasma concentrations of febuxostat is best

described by a two-compartment model. In the final model, the population mean for

apparent clearance (CL/F), apparent central volume of distribution (Vc/F), apparent

peripheral volume of distribution (Vp/F), absorption rate constant (ka) and apparent

intercompartmental clearance (Q/F) were 6.91 l h�1, 32.8 l, 19.4 l, 3.6 h�1 and

1.25 l h�1, respectively. The population parmater variability (coefficient of variation)

for CL/F, Vc/F and Vp/F were 13.6, 22 and 19.5%, respectively. Food reduced the

relative biovailability and ka by 67% and 87%, respectively. Renal function, as

assessed by creatinine clearance, was a significant covariate for CL/F while body

mass index was a significant covariate for Vc/F.

Conclusions: Renal function and body mass index were significant covariates. Further

work is warranted to investigate the clinical relevance of these results, notably as

renal impairment and obesity are common occurrences in people with gout.
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1 | INTRODUCTION

Febuxostat is used to treat gout by reducing serum urate

concentrations.1–7 It inhibits the two isoforms of xanthine oxidore-

ductase (XOR), namely xanthine dehydrogenase (XDH) and xanthine

oxidase (XOD, also abbreviated as XO).8–10 The pharmacokinetics of

febuxostat have been examined primarily in subjects without gout

using standard noncompartmental analysis11–21 and more recently by

compartmental analysis using a two-staged approach.22 Febuxostat is

rapidly absorbed in healthy subjects under fasting conditions and

extensively cleared by phase I (�35%, oxidation) and phase II (�40%,

glucuronidation) metabolism, with febuxostat-glucuronide and

unchanged drug (1-6%) being excreted in the urine.12,15 Plasma con-

centration declines steeply by up to 100-fold over the dosage interval

(24 h).15,22 The maximum plasma concentrations (Cmax) and time (Tmax)

to achieve the peak concentrations of febuxostat were similar

between male and female healthy subjects.11,14–16,21,22 The apparent

clearance of the drug tended to be lower in females compared to

males, but this difference was diminished when the apparent

clearance was normalised for body weight.22 The pharmacokinetic

data derived from studies in healthy subjects are characterised by

large coefficients of variation,23 warranting further investigations to

identify possible causes of this variability. In healthy subjects, food

was found to reduce the rate but not the extent of absorption

(AUC0-48h).
17 Mild (Child–Pugh class A) and moderate (Child–Pugh

class B) hepatic impairment did not affect the pharmacokinetics of the

drug.14 By contrast, reports of the effect of renal function on the

pharmacokinetics of febuxostat have been discordant.18,24–26 An

effect of renal function on the apparent clearance of febuxostat is

unexpected because only a small proportion of febuxostat is

eliminated unchanged in the urine. The pharmacokinetics of

febuxostat have been examined using both one-compartment24 and

two-compartment25 population pharmacokinetic models. Details and

differences between these models24,25 are described in Supporting

Information Table S1). The influence of renal function on the apparent

clearance of febuxostat differs between these pharmacokinetic

models.24,25 Renal function had no effect on the apparent clearance

of febuxostat in the one-compartment model.24 By contrast, there

was a significant effect of creatinine clearance, as a measure of renal

function, on the apparent clearance of febuxostat in the two-

compartment model.25 Furthermore, body weight influenced both the

apparent clearance (CL/F) and the apparent volume of distribution

(Vd/F) of febuxostat in the one-compartment model.24 By contrast,

with the two-compartment model, body weight was a significant

covariate for the apparent clearance of febuxostat only25 (Supporting

Information Table S1). The description of the two-compartment

model is limited,25 however, as the study was only presented in an

abstract form and had deficiencies, such as a large residual coefficient

of variation (71%), lack of a value of the intercompartmental clearance

(Q, L h�1) and an estimated absorption rate constant (ka) of 13 h�1

corresponding to a half-life of absorption of 0.053 hours (3 minutes),

a value that is biologically implausible given that febuxostat achieves

maximum plasma concentration between 0.5 and 1.5 hours post-dose

under fasting conditions.15

The objectives of the present work were first to examine the

pharmacokinetics of febuxostat using population modelling tech-

niques and data from individuals with and without gout. Second, we

aimed to investigate the influence of the covariates of renal function

on the apparent clearance (CL/F) and body size descriptors on both

the CL/F and apparent central volume of distribution (Vc/F) of

febuxostat.

2 | METHODS

2.1 | Study populations and blood sampling

Data from two clinical studies were used in the analysis: study A, a

single-dose pharmacokinetic-pharmacodynamic (PK-PD) study of

febuxostat (80 mg) in healthy subjects, and study B, a multisite,

open label, prospective PK-PD study of febuxostat in patients with

gout. The studies (SVH 15/276 and SVH 16/22) were approved by

the Human Research Ethics Committee of St Vincent's Hospital,

Sydney and registered on the Australian New Zealand Clinical Trials

Registry (ACTRN 12617001346369 and ACTRN

12616000959471). All study participants provided oral and written

consent. The study A cohort were administered a single dose of

febuxostat (80 mg) under fasting conditions.22 Blood samples (5 ml

each) were collected from each subject immediately before drug

What is already known about this subject

• The pharmacokinetics of febuxostat has been derived

mainly from healthy subjects.

• The pharmacokinetics parameters of febuxostat are

characterised by large between-subject variability.

• The impact of renal function on the apparent clearance of

febuxostat and body size descriptors on both the

apparent clearance and apparent volume of distribution is

uncertain.

What this study adds

• The pharmacokinetics of febuxostat are best described

by a two-compartment model with first-order absorption

and elimination.

• Creatinine clearance and body mass index are significant

covariates on the apparent clearance and volume of

distribution of febuxostat, respectively.
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administration and at the following time points after administration:

1, 3, 6, 9, 24 (±2), 31 (±1), 48 (±2), 72 (±2), 96 (±2) and 102 hours.

In study B, subjects with gout were administered a range of doses

(40-160 mg/day) of febuxostat in a treat-to-target approach in real

clinical settings. Up to four blood samples per patient per dose

level were collected at steady state at least 7 days after commenc-

ing and/or changing the dose of the drug at 1 (±0.25), 6 (±2),

10 (±2) and 24 (±2) hours post-dose.

2.2 | Bioanalysis

Blood samples were vortexed and plasma separated and kept at

�20 �C until analysis. Plasma concentrations of febuxostat were mea-

sured using a validated HPLC method with fluorescence detection.27

The lower limit of quantification (LLQ) of this method was

0.005 μg mL�1. Serum creatinine concentrations were determined by

the Jaffe method28–30 at local pathology laboratories; this assay is

subject to routine validation for precision and accuracy.

2.3 | Population modelling

2.3.1 | Software

Population pharmacokinetic analysis was performed by nonlinear

mixed-effects modelling using NONMEM version 7.4.1.31 Wings for

NONMEM (WFN version 7.4.132) was used as a DOS-based interface

to NONMEM. First-order conditional estimation with interaction

(FOCEI) was used to fit models. Post-processing NONMEM outputs

and generating graphs were conducted using R software version 3.4.33

2.3.2 | Modelling strategy

One- and two-compartment models with first-order absorption with

and without lag time were evaluated to determine the base structural

model. The elimination phase was assumed to follow first-order kinet-

ics. Additive, proportional and combined (additive and proportional)

residual error models were evaluated. All detectable plasma concen-

trations of febuxostat were included as continuous data, including

points below the limit of quantification (BLOQ), which was shown to

improve the stability of population pharmacokinetic models.34

Between-subject variability (BSV) was modelled on pharmacokinetic

parameters using a log-normal distribution.

2.3.3 | Covariate modelling

Covariates of renal function on the apparent clearance and body size

descriptors on both the apparent clearance and apparent central

volume of distribution (Vc/F) were examined in a univariate selection

process using a power model (Equation 1).

θ¼ θpop� Cov=Covmedianð Þθcov ð1Þ

The effect of renal function was assessed in terms of baseline

estimated glomerular filtration rate (eGFR), as estimated by the

Chronic Kidney Disease-Epidemiology [CKD-EPI] Equation 200935),

on-treatment eGFR (as estimated by CKD-EPI 200935 and Modified

Diet Renal Disease (MDRD]),36 with and without adjustment for body

surface area, and on-treatment creatinine clearance as estimated by

the Cockcroft-Gault equation (Equation 2), with and without adjust-

ment for ideal body weight.37

CrCL¼ 140�ageð Þ�WT�F½ �= Scr�0:8136ð Þ ð2Þ

where CrCL is creatinine clearance (mL min�1), F is 1 if male and 0.85

if female, age is in years, WT is weight (kg) and Scr is serum creatinine

(μmol l�1).

CrCL adjusted for ideal body weight IBWð Þ
¼ 140�ageð Þ� IBW�F½ �= Scr�0:8136ð Þ

where the IBW is calculated as follows:

females IBW = 45.5 kg + 0.9 kg/cm for each cm >152 cm

males IBW = 50 kg + 0.9 kg/cm for each cm >152 cm

Body size descriptors were assessed as body weight, lean body weight

(LBW) as calculated by the Boer equation38 (Equation 3a,b), body

mass index (BMI) and body surface area (BSA) as estimated by the Du

Bois formula39 Equation 4).

Boer equation:

For males¼0:407�WTþ0:267�HT�19:2 ð3aÞ

For females¼0:252�WTþ0:473�HT�48:3 ð3bÞ

where WT is body weight (kg) and HT is height (cm).

Du Bois formula:

BSA¼0:007184�WT0:425�HT0:725 ð4Þ

The effect of food on ka and oral availability (F) was examined

since subjects in study B were allowed to take febuxostat with or

without food. A common variability on oral availability (FVAR)

approach was tested which employs a common random effect for oral

availability that allows parameters affected by oral availability (CL/F,

Vc/F, Q/F and Vp/F) to have a shared common source of

variability.40–43 This approach consequently aims to stabilize models

by accounting for an important source of correlation between the

apparent clearances and volumes, and thereby reducing the unex-

plained between-subject variability in these parameters.

Significant covariates were examined in a classic forward addition

(P value of .05) followed by backward elimination at a higher threshold

(P < .01, equivalent to an absolute change in the objective function

value of 6.63.44
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Model selection and predictive performance

Model selection was based on the change in the objective function

value, a minimum drop of objective function value (OFV) of �3.84,

equivalent to a P value of .05, biological plausibility and precision of

parameter estimates and subjective criteria.43–47 The following diag-

nostic plots were used to assess the predictive performance of the

model: observed concentration (Cobs) versus population predicted

value (PRED), Cobs versus individual predicted value (IPRED) and con-

ditional weighted residual error (CWRES) versus time after the dose.

The extent of shrinkage was evaluated by post hoc Bayesian

estimate-based diagnostics. The final model was evaluated using a

prediction-corrected visual predictive check (pcVPC). In pcVPC, a total

of 1000 replications of the original data set were simulated by NON-

MEM using the final model to generate the expected concentrations

and 95% prediction intervals. The observed data were overlaid on the

prediction intervals and compared visually.

3 | RESULTS

3.1 | Subject characteristics

A total of 39 participants were recruited in study A (healthy young

subjects, n = 9) and study B (patients with gout, n = 30). Cohort B

was older, on multiple medications, and had comorbidities and

reduced renal function compared to the healthy subjects (Table 1). A

total of 239 samples (study A n = 92 samples and study B n = 147

samples) were collected from the participants, of these 13 samples

had concentrations of febuxostat below the limit of quantification

(BLOQ < 0.005 μg mL�1). Most of the pharmacokinetic data were

derived from febuxostat 80 mg (n = 179 samples, 75%). The contribu-

tion of the other doses (40, 120, and 160 mg/day) to the data sets

was therefore small.

3.2 | Base model

A two-compartment model with first-order absorption provided a

better description of the data compared to a one-compartment model

(ΔOFV = 266.367). The residual error was best described by a

proportional residual error model. A summary of the pharmacokinetic

model building steps is given in Supporting Information Table S2.

Inclusion of the BLOQ data (13 samples), as observed, improved the

performance of the model (Supporting Information Table S2)

compared to removing them from the dataset. In the base model, all

parameters were estimated with high precision (≤20% standard error

[SE]; Table 2). Shrinkage was low (<37%) except for Q/F and the Vp/F

(Table 2). The BSV for all parameters was retained in the base model.

TABLE 1 Summary of the characteristics of the study subjects

Characteristics Study A (n = 9) Study B (n = 30)

Population Healthy subjects Gout patients

Gender Males = 6, females = 3 Males = 24, females = 6

Age (year) 26.2 ± 4.9 62.1 ± 13.4

Weight (kg) 69.5 ± 12.1 98.1 ± 28.5

Body mass index (kg m�2) 24.0 ± 2.7 34.2 ± 9.6

Lean body mass (kg) 53.2 ± 8.2 63.3 ± 13.0

Body surface area (m2) 1.9 ± 0.4 2.1 ± 0.3

Baseline serum creatinine (μmol L�1) 78.2 ± 7.2 126.5 ± 41.7

On-treatment serum creatinine (μmol L�1) 78.2 ± 7.2 128.8 ± 47.2

Baseline eGFR (CKD-EPI 2009 equation, mL min�1 1.73 m�1) 115.3 ± 8.4 57.8 ± 27.9

On-treatment eGFR (CKD-EPI 2009 equation, mL min�1

1.73 m�2)

115.3 ± 8.4 58.0 ± 29.0

On-treatment eGFR (MDRD equation, mL min�1 1.73 m�2) 101.3 ± 8.4 54.8 ± 28.3

On-treatment eGFR (CKD-EPI 2009 equation, mL min�1) 120.1 ± 17.0 69.4 ± 35.7

On-treatment eGFR (MDRD equation, mL min�1) 105.8 ± 15.7 67.0 ± 33.9

On-treatment creatinine clearance (Cockcroft-Gault, mL min�1) 120.7 ± 20.7 83.0 ± 43.2

On-treatment creatinine clearance corrected for ideal body

weight (Cockcroft-Gault, mL min�1)

113.5 ± 19.5 56.3 ± 31.1

Febuxostat mean dose (mg) 80 89.2

Comorbidities Nil Hypertension (58%), hypercholesterolaemia (46%),

diabetes (27%), chronic kidney disease (35%),

coronary artery disease (15%) and heart failure (12%)

Cotherapies Diuretics (23%), aspirin (0%)

Note: Data are presented as mean ± SD.

Abbreviations: eGFR, estimated glomerular filtration rate; CKD-EPI, chronic kidney disease-epidemilogy equation;35 MDRD, modified diet renal disease;36

SD, standard deviation.
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3.3 | Covariates

In the forward univariate selection of covariates, renal function as

assessed by on-treatment creatinine clearance (TCrCL, mL min�1) was

the most significant covariate for the apparent clearance of febuxo-

stat. The use of baseline MDRD, and on-treatment MDRD, CKD-EPI

and eGFR resulted in smaller improvements in the model compared to

the on-treatment creatinine clearance. BMI was a significant covariate

for the apparent central volume of distribution (Supporting Informa-

tion Table S2). Body weight was also a significant covariate on the

apparent clearance of febuxostat (Supporting Information Table S2).

However, it was excluded during the forward addition and backward

deletion steps. The inclusion of TCrCL and BMI in the model reduced

the coefficient of variation on the apparent clearance and apparent

central volume of distribution by 31% and 29%, respectively (Table 2

and Supporting Information Figure S1). The full model including

common variability on oral availability approach, fed status on ka and

F, TCrCL on CL/F, and BMI effect on Vc/F resulted in the highest

reduction in the OFV. Food reduced the oral availability and

absorption rate constant by 67% and 87%, respectively. When BSV

was re-investigated after inclusion of covariates, it was found that

removing BSV on Q/F and ka had no negative impact of model fit. All

aforementioned covariates were retained in the model during the

backward elimination step (Supporting Information Table S2). The

population parameter values of the final model are reported in Table 2.

All pharmacokinetic parameters were estimated with good precision

(% SE < 30%) (Table 2). The diagnostic plots for the final model are

depicted in Figure 1.

The final model is described below:

F¼TVF�FVAR, where FVAR¼EXP ETAð Þ

CL=F¼ϴ1� TCrCL=99ð Þ0:52

Vc=F¼ϴ2� BMI=30:6ð Þ0:996

where FVAR is between-subject variability on oral availability, TVF is

the typical population estimate of the absolute oral availability, which

is unknown and thus is set to 1 such that CL/F and Vc/F are apparent

oral parametes, ϴ1 and ϴ2 are the population means for CL/F and

Vc/F, respectively, CL/F is the apparent clearance of febuxostat

(l h�1), FVAR is common variability on the oral availability of the drug,

TABLE 2 Population
pharmacokinetic parameter estimates of
febuxostat by final model

Estimate SE% for the estimate

CL/F (ϴ1) 6.91 6.0

Covariate TCrCL (ϴ6) 0.52 11.0

Vc/F (ϴ2) 32.8 10.0

Covariate BMI (ϴ7) 0.996 17.6

Q (ϴ3) 1.25 13.9

Vp/F (ϴ4) 19.4 11.9

ka (ϴ5) 3.62 29.3

Covariate food on oral availability �0.667 7.5

Covariate food on ka �0.869 5.7

BSV (shrinkage %)

BSV-CL/F (ϴ1) 13.6 (37.4) 34.8

BSV-Vc/F (ϴ2) 22.0 (35.4) 45.8

BSV-Q (ϴ3) - -

BSV-Vp/F (ϴ4) 19.5 (58.2) 52.8

BSV-ka (ϴ5) - -

BSV-FVAR 27.7 (21.2) 25.4

RUV-CV% (shrinkage %) 39.9 (10.1) 6.1

Abbreviations: BMI, body mass index (kg m�2); BSV, between-subject variability; CL/F, apparent

clearance (L h�1); FVAR, common variability on oral availability; ka, absorption rate constant (h�1); Q,

intercompartmental clearance (L h�1); RUV, residual unexplained variability; TCrCL, on-treatment

creatinine clearance (mL min�1); Vc/F, apparent central volume of distribution (L); Vp/F, apparent

peripheral volume of distribution (L).

The final model is described below:

F = TVF � FVAR, where FVAR = EXP (ETA)

CL/F = ϴ1 � (TCrCL/99)0.52

Vc/F = ϴ2 � (BMI/30.6)0.996

where TVF is the typical population estimate of the absolute oral availability, which is unknown and thus

is set to 1 such that CL/F and Vc/F are apparent oral parameters.
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Vc/F is the apparent central volume of distribution (L), TCrCL is the

on-treatment creatinine clearance as calculated by the Cockcroft-

Gault equation (mL min�1) and BMI is the body mass index (kg m�2).

The observed concentrations of febuxostat versus the individually

predicted (IPRED) concentrations using Bayesian estimation showed

improvement compared to the model predicted concentrations

(PRED). Scatter plots of conditional weighted residuals (CWRES)

versus the predicted concentrations (PRED) and the time after dose

(TAD) were randomly distributed (Figure 1). The pcVPC of the final

model resulted in a good description of the observed data (Figure 2).

4 | DISCUSSION

The time course of the plasma concentrations of febuxostat was best

described by a two-compartment model. This is consistent with our

previous report, which demonstrated that febuxostat has mean initial

and terminal half-lives of 2 and 14 h, respectively, with 81% of

febuxostat being eliminated from plasma in the first 9 h post-dose.22

The inclusion of the observed plasma concentrations of febuxostat

that were below the limit of quantification (BLQ) (n = 13 samples)

improved the performance of the model, which is in line with reports

in the literature that including the BLQ data, as reported by the assay

regardless of the lower limit of quantification, improved the perfor-

mance of population models.34

The population estimate of CL/F by the present model was

6.91 l h�1. This value was slightly greater than that reported for

healthy Chinese subjects (5.3 Lh�1),17,20 but less than that found for

healthy African Americans (10.5 l h�1)11,12,14–16,18–20 and for

Japanese subjects who had gout or were hyperuricaemic (9.9 l h�1).48

The mean value of the Vc/F estimated by the present model was

F IGURE 1 Scatter plots of
the goodness of fit for the final
model. (A) Observed plasma
concentration of febuxostat
(OBS) versus predicted plasma
concentrations of febuxostat
(PRED). (B) Observed plasma
concentration of febuxostat
(OBS) and individually predicted

plasma concentrations of
febuxostat using Bayesian
estimations (IPRED).
(C) Conditional weighted
residuals (CWRES) versus time
after dose. (D) Conditional
weighted residuals (CWRES)
versus predicted plasma
concentrations of febuxostat
(PRED)
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32.8 l. This value was similar to the mean value of Vc/F of 32.2 l

estimated by the published two-compartment model.25 The mean

value of Vp/F (19.4 l) estimated by the present model was comparable

to the value estimated by the published two-compartment model

(22.2 l).25 Furthermore, the mean value of ka estimated by the full

model was 3.62 h�1, which is in line with the value assumed

(ka = 2.18 h�1) by Hirai et al49 and the one-compartment model

(ka = 2.52 h�1).24

In the present study, a heterogeneous population comprising

healthy subjects and typical patients with gout allowed the influence

of a wide span of renal function and body weight values to be exam-

ined. In the present model, the on-treatment creatinine clearance, as

estimated by the equation of Cockcroft-Gault, and body mass index

were significant covariates for the apparent clearance and apparent

central volume of distribution of febuxostat, respectively.

The impact of renal function on the apparent clearance of febuxo-

stat in the present study was significant despite published data

indicating that only 1-6% of febuxostat is excreted unchanged in the

urine. Febuxostat glucuronide, which compromises about 40% of the

dose, is also excreted by the kidneys. However, it is well established

that acyl glucuronides of many drugs are readily cleared by the

kidneys and therefore may accumulate in renal impairment.50

Subsequent in vivo hydrolysis of the glucuronides may then

regenerate the parent compound, which reduces the overall apparent

clearance of the parent drug. This process of glucuronidation and

hydrolysis to release the parent drug is called futile cycling and is a

known feature of drugs that are cleared predominantly by forming

acyl glucuronides.50 However, we neither determined the plasma

concentrations of febuxostat glucuronide to test this hypothesis nor

noted the classical “delayed” peaks in individual profiles, particularly

in view of the sparse sampling, which often characterise acyl-

glucuronde futile cycling. The clinical relevance of the present results

warrants further investigations.

It was of note that a greater influence of renal function was

observed when the on-treatment creatinine clearance was used as

the estimate for renal function as opposed to eGFR (as estimated by

the CKD-EPI 2009 and MDRD equations). The possible reason is that

the creatine clearance but not eGFR is scaled to body weight, which

was also a significant covariate of the apparent clearance but was

removed during the forward addition and backward deletion steps.

In the present study, food reduced the oral availability of the drug

by 67%. In the study by Khosravan et al,13 food was associated with a

50% reduction in Cmax and a 20% reduction in AUC0-24 in healthy

subjects. By contrast, in the study by Liu et al,17 the authors examined

the plasma concentrations of febuxostat in healthy subjects for a longer

period of time (48 h, AUC0-48) and found a negligible effect of food on

the extent of absorption. In the present study, we expected that food

would lower the rate, but not the extent, of absorption of febuxostat.

However, in patients with gout the blood samples were collected over

a dosage interval of 24 h at steady state and thus food effects on the

extent of absorption were observed over this interval. Although the

effect of food on the oral availability and absorption rate constant using

the common variability approach improved model predictions, there

were still some underestimations of the high concentrations of plasma

febuxostat by the final model. However, the pcVPC showed a good

description of the data. None of the study participants were on any

medication that was known to affect the pharmacokinetics of

febuxostat. It has been reported in the literature that polymorphisms in

uridine diphosphate (UDP)-glucuronosyltransferase (UGTs) (namely the

six and 28 variants) reduced the apparent clearance of febuxostat by

22%.51 Analysis the DNA of patients for possible interactions between

variant UGTs and the apparent clearance of the drug was not

undertaken in the present study. It is therefore not known whether any

polymorphisms in UGTs could have confounded the results of the

present study51 or the two previously published population

pharmacokinetic models.15,24 There was only one subject in study B

F IGURE 2 Prediction corrected visual
predictive check of the final model (black) and
observed (red) data. The x axis is a logarithmic
scale. The solid lines are the median and the
dashed lines are the 2.5th and 97.5th percentiles
of simulated data from the model. Shaded bands
represent the 90% confidence intervals of the
median and 2.5th and 97.5th prediction intervals
from the final model.
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who had hepatic impairment (Child-Pugh grade A). Mild and moderate

hepatic impairment (Child-Pugh grades A and B) had no effect on the

pharmacokinetics of febuxostat.14

5 | CONCLUSION

Renal function had an effect on the apparent clearance of febuxostat.

Body mass index was a significant covariate of the apparent central

volume of distribution. Further work is warranted to investigate the

clinical relevance of these results, notably as renal impairment and

obesity are common occurrences in people with gout.
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