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Simple Summary: Raman spectroscopy and imaging are label-free, non-destructive techniques to
study cellular metabolism with subcellular spatial resolution. This review focuses on applications
of Raman-based methods in a combination of stable isotope probing on cancer metabolism and
cancer imaging.

Abstract: Metabolic reprogramming is a common hallmark in cancer. The high complexity and
heterogeneity in cancer render it challenging for scientists to study cancer metabolism. Despite the
recent advances in single-cell metabolomics based on mass spectrometry, the analysis of metabolites is
still a destructive process, thus limiting in vivo investigations. Being label-free and nonperturbative,
Raman spectroscopy offers intrinsic information for elucidating active biochemical processes at
subcellular level. This review summarizes recent applications of Raman-based techniques, including
spontaneous Raman spectroscopy and imaging, coherent Raman imaging, and Raman-stable isotope
probing, in contribution to the molecular understanding of the complex biological processes in the
disease. In addition, this review discusses possible future directions of Raman-based technologies in
cancer research.

Keywords: cancer metabolism; Raman spectroscopy; stimulated Raman scattering; coherent Raman
anti-Stokes scattering; Raman imaging; lipid metabolism; stable isotope probing

1. Introduction

Reprogrammed metabolism is considered a hallmark of cancer [1]. Cancer metabolism
is a question of great interest in a wide range of fields since the “Warburg Effect” indi-
cated aerobic glycolysis, as a characteristic of cancer cells [2]. Cancer cells rely on the
acquisition of nutrients from the environment to meet the demand for energy and biomass
production. In the last few decades, features of tumor-associated metabolic alteration
were widely observed. Key questions among the tumor metabolic reprogramming rapidly
expanded our understanding of carcinogenesis. In particular, how cancer cells reprogram
their metabolism and interact with other biological processes, which mechanisms and
functions of nutrient acquisition in cancer cells are achieved, and what targeted pathways
in metabolism can be engaged to selective development of inhibitors during therapeutic
evaluation [3].

Cancer metabolism is highly complex and heterogeneous, subject to environmental
cues. The metabolic phenotype is dependent on the tumor microenvironment. It is now
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clear that even though cancer cells are from the same tumor with the same genotypes,
they can manifest distinct phenotypic states in different positions [4]. Challenges remain
in investigating the vastly complex metabolism of cancer with regards to intra-tumoral
heterogeneity, different tissues, and tumor types.

Metabolomics based on mass spectrometry is a gold standard for study of cellular
metabolites. Although lagging behind other single-cell omics methods, it recently advances
to the level where multiplex analysis from single cells could be achieved [5,6]. However,
the disadvantages of mass spectrometry metabolomics remain due to its destructive nature,
prohibiting live cell analysis. Moreover, it does not offer insights on the spatial information
of metabolite distribution, which can be crucial in heterogeneous intra-tumor environments.
Fluorescence-based methods offer high sensitivity and selectivity, and they can provide sub-
cellular resolution. However, the fluorophore labels are often much larger than the targeted
molecules and thus can hinder the intrinsic metabolism [7]. The prerequisite of knowing
the target molecules also hinders multiplex targeting and investigative probing. Consider-
ing the high complexity and heterogeneity in cancer, minimally invasive, non-destructive,
and label-free tools with imaging ability providing subcellular spatial information, are in
need to study cancer metabolism and fulfill the translational clinical need.

Raman spectroscopy technologies present several advantages for the cancer research
community. In particular, Raman spectroscopy is a label-free spectroscopic method to
provide comprehensive biochemical information, the so-called “biomolecular fingerprint”,
regarding metabolic processes in cells and tissues. In addition, Raman imaging offers
high spatial resolution at the sub-cellular level and is capable of real-time, noninvasive
examination of living cells, tissues, and organisms, based on their metabolic profiles.

This review aims to present Raman-based technologies in the area of cancer re-
search, to study the metabolism of single cells as well as physio-pathological tissues.
First, we present applications of label-free Raman spectroscopy and imaging in cancer
metabolism. Second, we discuss Raman-based technologies combined with stable isotope
probing (SIP) for studying metabolic fates of specific metabolites. The primary focus of
the methodology is on spontaneous Raman spectroscopy and coherent Raman scattering
(CRS) microscopy. Readers interested in surface-enhanced Raman scattering and other
Raman-based methodologies are referred to excellent reviews elsewhere [8–11].

2. Background of Raman Spectroscopy and Coherent Raman Scattering
2.1. Spontaneous Raman Spectroscopy and a Cell’s Fingerprint

Raman spectroscopy is an essential tool for chemists, physicists, biologists, and ma-
terials scientists. It was first experimentally observed by C. V. Raman in 1928, for which
he was awarded the Nobel Prize in 1930 [12]. In Raman spectroscopy, a sample is illu-
minated with a monochromatic laser beam (Figure 1A). The incident laser beam with a
frequency of υ0 interacts with a molecule in the sample that has a vibrational frequency
of υm. This interaction originates scattered light. The vast majority of the scattered light
is elastic scattering, the so-called Rayleigh scattering. However, due to energy exchange
between the incident photons and molecular vibration, there is a small fraction of inelastic
scattering, which has a different frequency from that of the incident light, collectively called
Raman scattering. Raman scattering consists of both Stokes scattering, which has a lower
frequency at υ0 − υm, and anti-Stokes scattering, which has a higher frequency at υ0 + υm
(Figure 1B) The Stokes spectrum is often presented as the Raman spectrum, due to its
higher intensity, as compared to the anti-Stokes lines.



Cancers 2021, 13, 1718 3 of 24

Figure 1. (A) Electromagnetic radiation interacting with a vibrating molecule. (B) Schematic en-
ergy diagrams of spontaneous Raman scattering and coherent Raman scattering (CRS). The solid
arrows indicate laser excitation or stimulated emission; the dashed arrows indicate spontaneous
scattering process.

Raman spectroscopy is now increasingly popular among biologists. A Raman spec-
trum can be regarded as a phenotype of a biological system because it provides an overall
molecular vibrational profile, containing Raman bands for major cellular building blocks,
such as proteins, nucleic acids, lipids, and carbohydrates. Figure 2 illustrates a Raman
spectrum of a single glioblastoma cell with Raman bands marked with assignments of
major biological macromolecules. A biological Raman spectrum can be divided into three
regions—the ‘fingerprint’ region that contains essential bio-information and can be seen
as a fingerprint of a cell (400–1800 cm–1); the ‘silent’ region that usually does not involve
vibrational modes contributed by biomolecules formed of naturally occurring isotopes
and can involve bands contributed by stable isotopes or triple bonds (1800–2700 cm–1);
the high-wavenumber region that is specifically contributed by the stretching vibrations of
CH groups, predominantly from lipids and proteins (2700–3200 cm–1).

The advantages of using Raman micro-spectroscopy in biological studies are high
spatial resolution; ability to detect aqueous samples; intrinsic and label-free character-
ization; non-contacting and non-destructive analysis; and easy preparation and small
sample volume.

By combining the power of optical magnification and direct visualization, Raman
micro-spectroscopy can probe biological systems at a subcellular resolution. For large
biological systems like tissues, it can collectively produce label-free Raman images with
subcellular structural and chemical information. The ability to analyze aqueous samples
separates Raman spectroscopy from other vibrational spectroscopies like infrared (IR)
spectroscopy. A water molecule has low polarizability, thus, it minimally hinders sample
signals in Raman spectroscopy and can be easily subtracted during preprocessing proce-
dures. This is particularly advantageous in biological studies because it avoids laborious
sample drying preparation, which might also alter the biochemistry of the samples.
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Figure 2. Raman spectrum—a cell’s fingerprint. Raman spectrum of a single cell of human primary
glioblastoma U87 cell line, demonstrating various bands representative of cellular constituents.

Molecular labeling using genetically encoded reporters (e.g., green fluorescent protein)
is used extensively for monitoring cellular events in biological systems [13]. The intro-
duction of unnatural functional groups might risk interfering with the native biological
processes. Raman spectroscopy, on the other hand, is label-free and able to probe bio-
logical samples in their natural setting. It also does not require any prior knowledge of
the particular substrate for selective labeling. It unbiasedly probes all macromolecules
and collectively displays their vibrational modes in one spectrum. Raman spectroscopy
is also non-contacting and non-destructive, as opposed to other analytical tools such as
gas chromatography and mass spectrometry that destroy the sample to achieve results.
This non-invasive, label-free, and spatially resolved nature renders Raman spectroscopy
suitable for in vitro and in vivo biological investigations, from investigating a single cancer
cell, to producing biochemical maps of cancerous tissues.

2.2. Coherent Raman Scattering for High-Speed Imaging

Having discussed the advantages of Raman micro-spectroscopy, the challenge is
intrinsically weak Raman scattering as approximately only 1 in 107 photons experiences
inelastic scattering [14]. Another Raman-based approach is emerging in recent decades
to obtain much stronger vibrational signals by coherent Raman scattering (CRS), which
employs multiple light sources to produce coherent Raman signals.

Coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS)
are two CRS processes [15–18]. During spontaneous Raman scattering, the pump beam
with a frequency of ν0 is incident upon the sample generating a Stokes signal νS and an
anti-Stokes signal νaS. In SRS, two laser beams at frequencies ν0 and νS are directed onto
the sample, such that the frequency difference ν0 − νS matches the frequency of a molecular
vibrational mode νm (Figure 1B). This process causes stimulated excitation of a chemically
specific signature and brings the advantage of suppressing non-resonant background.
Experimentally, either stimulated-Raman gain (SRG) of the Stokes or stimulated-Raman
loss (SRL) of the pump is measured, and optical modulation and demodulation are required
to extract the proper SRS signal [19].
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CARS involves a complex four-beam mixing process probing, as shown in Figure 1B.
As in SRS, the resonance occurs when the difference between the pump and Stokes beam
ν0 ∓ νS matches a molecular vibration in the sample. This resonance is then probed by
the third field at ν0 and generates an anti-Stokes signal at 2ν0 ∓ νS. With respect to SRS,
no complex demodulation schemes are required in CARS. However, the presence of a
strong non-resonant background due to the four-wave mixing that does not carry any
chemical information can distort and overwhelm the resonant signal [20].

With the advantages of dramatically enhanced Raman signal and little autofluo-
rescence interference, CARS and SRS microscopy are emerging techniques for real-time
analysis and video-rate imaging of cells and tissues in a living system, with high speed
and 3D spatial resolution [21]. Nonetheless, both techniques are limited to the complex
set-up of two synchronized trains of laser pulses. CARS and SRS are also limited by the
small spectral range due to the narrow bandwidths between lasers. Therefore, so far in
most cases, these were demonstrated for chemical signatures with high concentrations
and strong Raman signals, for example, the CH2 stretching vibrations that are typically
found in lipids in cells [22]. In addition, CARS suffers from the complicated interpretation
of Raman bands due to changed band frequencies [20]. SRS, on the other hand, shows
a comparable spectrum like spontaneous Raman. Its signal also shows an intensity that
is linearly proportional to the concentration of the targeted molecules and is free of non-
resonant background. With the intensity of the signal proportional to the concentration of
the metabolites of interest, semi-quantitative molecular profiling of single cells and tissues
is possible [23–27]. SRS would be a complementary tool to spontaneous Raman scattering
and simultaneously using the two can be beneficial (Table 1) [28]. The investigation of a
biological system can begin with spontaneous Raman scattering (acquisition time from sec-
onds to minutes) covering the entire spectral window of molecular vibrations and looking
for a defined marker of interest. It could then be followed with SRS focusing on a prede-
fined spectral window and offering high-speed benefit (acquisition time microseconds) for
imaging and collection of a huge amount of spectral data.

Table 1. Comparison of spontaneous Raman spectroscopy and spectroscopic SRS microscopy, which are complementary to
each other and can be used simultaneously.

Spontaneous Raman Spectroscopic SRS

Advantages

• Relatively cost-effective and easy operation
• Whole spectral range with high spectral

resolution

• Enhanced signal
• Free from fluorescence and

non-resonant backgroung
• Comparable spectrum with

spontaneous Raman

Disadvantages
• Intrinsically weak signal
• Fluorescence interference

• Complex and expensive set-up
• Narrow spectral range with low

spectral resolution

Suitability Investigative spectral study Targeted high-speed imaging

Speed per spectra 100 millisecond 20 microsecond

Time required for a 200×200 image ~1 hour ~1 second

Spectral width Whole spectral range up to 4000 cm-1 200 cm-1

Target Whole spectrum Mostly CH stretching [15,16], recently
also fingerprint [17]

Spectral resolution ~1 cm-1 10 cm-1
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3. Raman Spectroscopy as a Label-Free Tool for Cancer Metabolism Investigation

Metabolic reprogramming is now a widely accepted hallmark of cancer [3]. Moni-
toring metabolites and understanding the reprogramming pathways are crucial to fully
understand cellular metabolism in cancer development and to provide new therapeutic tar-
gets. Raman spectroscopy and Raman imaging benefit cancer research and understanding
of metabolic regulation in cancers, because it offers single-cell resolution or spatial informa-
tion about biochemical composition of nucleic acids, proteins, lipids, and other metabolites.
The defined subcellular locations cannot be provided by conventional analytical methods
that rely on bulk or fractionated analyses of extracted components, e.g., mass spectrometry,
nuclear magnetic resonance spectroscopy, and high-performance liquid chromatography.
As a label-free technique, Raman spectroscopy also outperforms many fluorescence-based
approaches that involve exogenous probes and can interfere with intrinsic biological processes.

3.1. Investigation of Lipid Metabolism in Cancer Cells

Lipid reprogramming is one of the key features of cancer’s metabolic adaptation [29].
Alterations in lipid metabolism were observed in many different cancer types [30–33],
and have important therapeutic inferences, as they affect the survival, dynamics, and
response of cancer cells. Raman microscopy is one of the most powerful techniques for
analyzing the properties of lipids in cancer cells, offering lipid compositional information
as well as spatial information within cellular compartments. As the lipidic CH stretching
vibrations are the strongest among all Raman vibrations generated in the high-frequency
region of 2800–3200 cm-1, lipid metabolism is possibly the most investigated subject by
Raman spectroscopy.

To satisfy proliferation demand, cancer cells exhibit a higher content of cellular lipid
content than normal cells. Lipids are particularly in demand as nutrient sources for en-
ergy supply, building blocks for membrane biogenesis, and as lipid-derived signaling
molecules [34]. A number of studies found an altered lipid metabolism related to the pro-
gression of cancer by Raman spectroscopy [23,35–38]. Abramczyk et al. found an increasing
content of lipid droplets in mildly malignant (MCF7) and malignant (MDA-MB-231) breast
cancer cells, as compared to the non-malignant (MCF10A) cells [36]. They also demon-
strated altered lipid metabolism in adipocytes of the breast tissue from breast epithelial
cells. Nieva et al. used Raman micro-spectroscopy to characterize lipid metabolism of
breast cancer cells with different degrees of malignancy [39]. By analyzing characteristic
Raman bands related to lipid content at 3014, 2935, 2890, and 2845 cm−1, they hypothesized
that the lipid content of breast cancer cells might be a useful indirect measure of a variety
of functions coupled to breast cancer progression. A study by Tirinato et al. demonstrated
the capability of functional characterization of lipid droplets in cancer stem cells (CSCs)
by Raman spectroscopy, and confirmed lipid droplets as a distinctive mark of CSCs in
colorectal cancer [40]. Similarly, lipid upregulation and reprogramming was observed by
Raman spectroscopy in cells of prostate cancer [23], lung cancer [41], and melanoma [42,43].

Subcellular composition and distribution of lipids were the center of the subject by
both CARS and SRS microscopy, due to strong contrast in the CH vibrations. The high-
speed capacity of CRS realizes rapid biochemical–optical lipid imaging, which is compara-
ble to the traditional optical methods. In 2003, Nan et al. first used CARS microscopy to
image neutral lipid droplets (LDs) in live fibroblast cells [44]. In 2008, Freudiger et al. used
SRS microscopy to visualize lipid distribution with depth information [45]. They monitored
lipids along varying depths of mouse skin, as well as DMSO penetrating into the skin.
Since then, CRS microscopy was used extensively in lipid imaging with structural diversity
tightly associated with their biological functions [43,46–55].

Hyperspectral CRS microscopy was applied to study changes in lipid composition
(e.g., saturated vs. unsaturated) of cancer cells and tissues, which plays an important role in
cancer metabolism and development. For example, increased saturation in phospholipids
markedly alters signal transduction, protects cancer cells from oxidative damage, and po-
tentially inhibits chemotherapeutic drug uptake [56]. Wang et al. visualized a substantial
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amount of saturated lipids accumulated in liver cancer tissues, compared with the adjacent
noncancerous tissues [49]. Li et al. reported significantly increased levels of unsaturated
lipids in ovarian CSCs, as compared to non-CSCs (Figure 3) [48]. Subsequent experiments
showed that inhibition of lipid desaturases effectively eliminated CSCs, suppressed sphere
formation, and blocked tumor initiation capacity in vivo. With spontaneous Raman spec-
troscopy, followed by SRS microscopy and transcriptomics analysis, Du et al. investigated
and imaged lipids droplets in patient-derived melanoma cells during differentiation [43].
They identified fatty acid synthesis pathway as a druggable susceptibility and a lipid
mono-unsaturation within de-differentiated mesenchymal cells, with innate resistance to
BRAF inhibition.

Figure 3. Increased lipid unsaturation level in ovarian cancer cells represented by intensity ratio between 2900 and 3002 cm-1.
(A) Representative hyperspectral SRS images of flow-sorted ALDH−/CD133− and ALDH+/CD133+ COV362 cells. Images
at 2900 and 3002 cm-1, and the intensity ratio image between 3002 and 2900 cm−1 are shown. Scale bars: 10 µm. (B) Average
SRS spectra from the lipid droplets in ALDH−/CD133− (n = 3) and ALDH+/CD133+ cells (n = 8). Shaded area indicates
the standard deviation of SRS spectral measurement from different cells. Reprinted and adapted with permission from
reference [48].

3.2. Investigation of Cellular Metabolism beyond Lipids

The applicability of Raman-based techniques is not limited to lipid in the high-
frequency CH region. The fingerprint region between 300 and 1800 cm-1 contains a collec-
tion of biological information of a cell. Investigative research focusing on the fingerprint
region can either aim for a particular biomarker or use the whole region with chemometric
techniques, to deconstruct Raman bands into biological information. Figure 4 shows an
example of spontaneous Raman imaging of a HeLa cell, using the fingerprint region as
well as the high-wavenumber region of Raman spectra.

The study of proteins can be conducted by investigating Raman bands of Amide vi-
brational modes, including Amide I that ranges from 1600–1670 cm-1, Amide II that ranges
from 1480–1580 cm-1, and Amide III that ranges from 1230–1300 cm-1. A study of two breast
cancer and one normal breast cell lines (MDA-MB-436, MCF-7, and MCF-10A) illustrated
decreased protein content in cancerous cell line [57]. A linear discriminant analysis (LDA)
model on the entire spectral range predicted the three cell lines with 100% sensitivity and
91% specificity. Abramczyk et al. demonstrated a Raman biomarker of protein phosphory-
lation using the ratio between two Raman peaks at 1586 and 829 cm-1, representing tyrosine
phosphorylation [58]. They subsequently found overexpressed phosphorylation in the
human breast, small intestine, and brain tissues, and in the glioblastoma U-87 MG cell line
using this Raman biomarker. Using a multivariate curve resolution (MCR) to deconstruct
the whole Raman spectra, Marro et al. demonstrated different intensities of proteins, lipids,
and mitochondria Raman bands in primary breast cancer cell lines and their metastatic
variants in bone [59]. Kopec et al. imaged and located glycogen, glycosaminoglycan,
chondroitin sulfate, heparan sulfate proteoglycan, and distinguished each chemical species
in normal and cancer tissues [60]. As a result, the study concluded that the metabolism
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of proteins, lipids, and glycans was markedly deregulated in breast (adenocarcinoma)
and brain (medulloblastoma) tumors. Using a principal component–linear discriminant
analysis (PC–LDA) to deconstruct the Raman spectra of primary normal breast cells, and
immortalized, transformed, non-invasive, and invasive breast cancer cells, Chaturvedi et al.
identified distinct clustering of cell types with a high degree of sensitivity [61]. A study by
Lemoine included 547 in situ Raman spectra from 65 patients undergoing glioma resection
and systematic literature analysis of Raman study of glioma [62]. They subsequently used
band fitting for extraction of Raman features and identified oncogenic processes involved
with increased nucleic acid content, overexpression of type IV collagen, and a shift in the
primary metabolic engine.

Figure 4. Raman images of a HeLa cell based on fingerprint Raman spectra, reconstructed from intensities at 781 (nucleic
acids), 855 (tyrosine), 1665 (protein), and 2845 cm−1 (lipids). The Raman images show the distributions of these biomolecules
with various intensities at the subcellular level.

Coherent Raman imaging of proteins besides lipids is also a common practice in both
SRS and CARS microscopy. Imaging the CH moiety at the high-frequency region provides
information of both proteins and lipids, as it is rich in both proteins and lipids. Therefore,
protein images can be obtained indirectly by subtracting the lipid moiety contribution
from CH-derived images [52,55,63–65]. In addition, protein molecules can be imaged at
1655 cm–1 at the Amide I peak [64]. The Xie group demonstrated that DNA distribution
could also be retrieved from the strong background of proteins and lipids at the CH region
through linear decomposition of the SRS images [65].

Molecular vibrations in the fingerprint region other than the Amide I group show
markedly reduced intensities, compared to the high-frequency CH stretching region, which
is less studied in CRS microscopy [55]. At the fingerprint region, Sunney Xie’s group
demonstrated the first SRS imaging of DNA at the fingerprint region in living cells [64],
by using Raman bands at 785 and 1090 cm-1. Recently, advancement in instrumentation and
data science enabled SRS metabolic imaging of cancer cells in the fingerprint region with
enhanced sensitivity. Cheng’s group reported SRS imaging of retinoids with significantly
boosted molecular sensitivity to 34 micromolar, via visible preresonance SRS (VP–SRS)
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microscopy [66]. By shifting the excitation laser wavelength to visible range, approaching
the absorption of intrinsic chromophores, the study demonstrated heterogeneous distribu-
tion of retinoid storage inside various cancer cells and chemoresistant ovarian cancer cells.
Combining advanced instrumentation using a polygon-based ultrafast delay scanner and
advanced data science approach of a spatial–spectral residual learning network, the group
further demonstrated 100 times improvement of signals in fingerprint SRS imaging. They
illustrated distribution of proteins, cholesterols, and lipids, in live pancreatic cancer cells,
as well as in a whole mouse brain [17].

3.3. Cellular Responses to Anti-Cancer Drugs and Radiotherapy

The uptake, metabolism, and distribution of a drug candidate in targeted cancer cells
or tissues are pivotal during drug discovery and development. Raman spectroscopy and
CRS microscopy were used to exploit metabolic transformation in cancer cells as a drug
target. Jamieson et al. investigated responses of PC3 prostate cancer cells to a series of lipid-
targeting drugs [67]. Compared to the non-cancerous cells, the beta-blocker propranolol
selectively chose the cancer cells in their Raman lipid profiles, showing an unexpected
anti-cancer potential. The cellular lipid content in response to the drug was also studied by
CARS microscopy [68]. By imaging the subcellular lipid distribution in hormone-treated
breast and prostate cancer cells, the researchers found an increased number and size of
intracellular lipid droplets and a higher degree of saturation in treated T47D and LNCaP
cells than untreated cells.

In addition to lipids, comprehensive metabolic adaptations of cancer cells in re-
sponse to anti-cancer drugs could be investigated by studying the entire Raman spectral
region [69–74]. El-Mashtoly et al. applied Raman spectral imaging to study the effect of the
epidermal growth factor receptor (EGFR) inhibitor panitumumab on cell lines expressing
wild-type Kirsten-Ras (K-Ras) and oncogenic K-Ras mutations [70]. Larion et al. inves-
tigated the drug response of FK866, an inhibitor of NAD+ salvage pathway, with both
a fibrosarcoma cell line and mouse models [71]. The anti-cancer drug doxorubicin was
studied by Farhane et al. [72] and Zhang et al. [73] to characterize its interaction with
cancer cells. Note that Raman-based techniques could be used in combination with other
techniques to be capable of conducting rapid drug screening and discovery. Wen et al.
combined results from Raman spectroscopy with mass spectrometry, which is the gold
standard in metabolomics, and characterized breast cancer responders and nonresponders
to small molecule inhibitors [69].

Intracellular drug distribution and metabolism are traditionally visualized by
fluorescent-labeled drug molecules. Despite the molecular specificity, fluorescent labels
are often much larger than the drug molecules themselves and could largely alter the drug
pharmacokinetic activities. Raman imaging offers new possibilities for label-free drug
imaging with subcellular spatial resolution. Aljakouch et al. reported the intracellular
spatial distribution and metabolism of neratinib, a tyrosine kinase inhibitor with antitumor
property, in different cancer cells, using label-free Raman imaging [75]. Using the intrinsic
CN bond in neratinib, which generates a Raman band at 2208 cm-1 in the silent region,
the authors generated label-free images of neratinib distribution in cancer cells (Figure 5).
A study by El-Mashtoly et al. used Raman microscopy to show the spatial distribution of
the molecular-targeted drug erlotinib within the cell and that erlotinib was metabolized
within cells to its demethylated derivative [76]. Recently, the advance of SRS microscopy
enabled ultra-rapid images of cells and subcellular distribution of drugs. Fu et al. reported
SRS visualization and quantification of two tyrosine kinase inhibitor drugs (imatinib and
nilotinib), as well as the process of drug uptake into lysosomes [77]. Visualization of other
drugs including ponatinib and retinol was also reported by SRS microscopy [15,78].
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Figure 5. Raman imaging of SK-BR-3 cells treated with 5 µM neratinib for 8 h. Raman images
reconstructed from the CH deformation (A) and CN stretching (B) intensities. (C) Overlay of Panels
A and B. (E–G) Cross-section of Raman images of the same cell measured along the x–z axis. Scanning
positions are indicated by the white line in Panel A. (D,H) HCA results based on the Raman data
shown in Panels A and E. Reprinted with permission from reference [75].

Besides chemotherapy, radiotherapy is the mainstay of the treatment for a range of
types of cancer. Monitoring radiation-induced cellular response of cancer at both cell
and tissue levels was studied by Raman spectroscopy [79–83]. Roman et al. reported
a change in the lipid composition and concentration in prostate cancer cells after X-ray
radiation [80]. Similarly, metabolic alterations of cancer cells after radiation were also seen
in nasopharyngeal cancer [79], non-small lung cancer [83], and glioblastoma [82]. A study
by Milligan et al. found different biochemical responses between radio-resistant and
radio-sensitive cell types in lung (H460), breast (MCF7), and prostate (LNCaP) cells [81].
The main differences were found in glycogen, phosphatidylcholine, glucose, arginine, and
asparagine based on restricted non-negative matrix factorization approach.

3.4. Potential Applications in Clinical Cancer Diagnosis

Noninvasive or minimally invasive in vivo tools that can provide rapid tissue assess-
ment have potential application in clinical diagnosis of cancer. With many advantageous
features of Raman spectroscopic methods (non-destructive, capable of deep penetration
and high resolution, and chemical specificity), here, we discuss their potential in tissue
imaging and potential clinical diagnosis. We also direct readers to a few more reviews on
applications of Raman spectroscopy in cancer diagnosis [84–86].

A recent work by Contorno et al. compiled data from 41 papers aiming at characteriz-
ing breast cancer by using various modalities of Raman spectroscopy [87]. They identified
aromatic amino acids as the most prominent biomarker for identifying cancerous breast
tissues from their healthy counterparts. Cancer cells and tissues exhibited markedly higher
expression of aromatic amino acids, specifically tryptophan, phenylalanine, and tyrosine.
A study by Haka et al. acquired Raman spectra from ex vivo samples of human breast tissue
(normal, fibrocystic change, fibroadenoma, and infiltrating carcinoma) from 58 patients [88].
The study reported an increase in collagen in all abnormal breast tissues and less fat content
in the samples diagnosed as fibroadenoma than those diagnosed as infiltrating carcinoma.
By using the different fit coefficients for fat and collagen, the authors demonstrated a
Raman diagnostic algorithm illustrating 94% sensitivity, 96% specificity, and 86% overall
accuracy for detecting infiltrating carcinoma. A range of other studies also demonstrated
the potential of Raman spectroscopy in diagnosing breast cancer in human and mouse
breast tissues [89–96]. By exploiting the fingerprint region of the Raman spectrum and
various machine learning techniques, Raman spectroscopy showed diagnostic potential
for distinguishing cancerous tissues from normal tissues in brain cancer [56,97–100], skin
cancer [42,101–105], gastrointestinal cancer [106–109], and lung cancer [110,111].

The ability of CRS for generating rapid chemical images makes it ideal for tissue and
whole organ imaging and subsequently localizing the tumor margins. Ji et al. reported the
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use of SRS imaging for differentiating healthy human and mouse brain tissues from tumor-
infiltrated brain tissues [53]. They demonstrated that these label-free histopathological
images provided very similar results to those obtained by conventional hematoxylin & eosin
(H&E) staining, providing intrinsic chemical information without the need of routine tissue
processing. The authors further applied SRS microscopy to obtain in vivo mouse brain
images during tumor resection surgery, to reveal tumor margins that were undetectable
under standard operative conditions. Through SRS microscopy, Freudiger et al. generated
multi-color images of lipids, proteins, and hemoglobin in fresh-frozen tissue sections from
mice models of invasive glioma, breast cancer metastases, stroke, and demyelination.
A good correlation between SRS and H&E microscopy was also shown. These findings
suggest that SRS microscopy can generate high-quality histological images for clinical
diagnosis without the need for tissue fixation, sectioning, or staining. Noteworthy, with
the recent advances of CARS and SRS endoscopy [112–114], further improvements to
these Raman-based systems would open up exciting possibilities for in vivo, label-free,
and non-invasive histopathological imaging and clinical diagnostics in the near future.

4. You Are What You Eat—Stable Isotope Probing (SIP)

The introduction of stable isotope probing to Raman spectroscopy was first demonstrated
in bacteria [115], which was later referred as Raman–SIP technology [116]. Huang et al.
showed that the incorporation of ‘heavy’ 13C stable isotope into cells causes significant
shifts of some Raman bands in single cell Raman spectra (SCRS) [115]. Later it was found
that other stable isotopes D (2H) and 15N also generated Raman shifts in SCRS at different
positions [117]. Following those discoveries, Raman–SIP are found applicable to many
biological models including cancer cells, revealing the metabolic activity of cancer.

Stable isotope labeling by amino acids in cell culture (SILAC) has become increasingly
popular for accurate protein quantitation, by using isotopically labeled amino acids that
are later metabolically incorporated into cells [118]. In cancer research, SILAC was also
recognized as an important tool for metabolic profiling of cancer cells, with respect to
their environments [119,120]. Techniques like SILAC are stable isotope probing (SIP)
methods that involve exposing cells to isotopically labeled substrates that are consequently
assimilated into cells that are actively involved in specific metabolic processes. Molecular
analysis of the labeled biomarkers thereby reveals functional information about the cell
responsible for the metabolism of a particular substrate.

SIP to study cell metabolism, in general, shows great advantages over other specific
probes that have larger molecular weights, and can disturb the intrinsic metabolic activity
of cells. Using isotopes that mimic their naturally abundant counterparts does not alter
the natural substrate pool. Among all SIP techniques, Raman spectroscopy has its unique
strengths. While modalities like isotope ratio mass spectrometry and NMR spectroscopy
require at least 300,000 cells, Raman spectroscopy or secondary ion mass spectrometry
(SIMS) coupled with SIP enables an analysis of cell functions at a single-cell level [121].
However, SIMS is limited by its destructive nature and expensive equipment. Raman
spectroscopy exceeds other techniques in its non-destructive, sensitive, and relatively cheap
nature. While a Raman spectrum already conveys intrinsic and phenotypic information,
more insight into cell functions can be obtained by combining Raman micro-spectroscopy
with SIP, using D (2H), 13C, and 15N-containing substrates to replace their primordial
isotopes (12C, 14N, and 1H) [116]. Among those stable isotopes, D (2H) and 13C are mostly
commonly used due to the stronger C–H bond strength. Heteroatomic X–H bonds such
as O–H, N–H, and S–H can be exchanged from nonenzymatic reactions, while C–H bond
formation depends solely on enzyme-catalyzed chemical reactions that occurred within
the metabolic pathways [122]. This provides unique advantages of D (2H) and 13C for
probing the biological metabolism. Providing a wide variety of possible isotopic substrates,
Raman–SIP probe the metabolism of most biomolecular constituents of a cell, including
proteins, lipids, carbohydrates, and nucleic acids, revealing both molecule-specific and
general metabolisms, as well as drug–cancer interactions (Figure 6).
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Figure 6. Raman–SIP strategies to study cellular metabolism. Heavy water (D2O) is involved in NADPH regeneration,
which is able to indicate the general anabolism activity in cells. Stable isotope labeled sugars, amino acids, nucleic acids,
lipid precursors, and drugs can be used to probe the dynamics of metabolic flux and interactions of drugs and cancer cells.

Although Raman–SIP is now a mature tool to study cell ecology and biology, its ap-
plication in cancer research is new. Most applications demonstrate the capability of the
technique rather than answer specific questions. One of this review’s purposes is to intro-
duce Raman–SIP to a broader community and share our perspectives on its potential for
studying cancer metabolism.

4.1. Principles of Raman–SIP

As Raman spectroscopy considers changes in vibrational modes of molecules, a me-
chanical model can be used to consider a molecular vibration as a spring model. A classical
‘two-balls-on-a-spring’ approach provides an equivalence of a diatomic molecule with two
atoms with masses m1 and m2 connected by a chemical bond. The vibrational frequency υ
of such a molecule is described as:

υ =
1

2πc

√
k
µ

where c is the speed of light, k is the force constant of the spring (diatomic bond), and µ is
the reduced mass given by:

µ =
m1m2

m1 + m2

. Therefore, the vibrational frequency υ is inversely proportional to the square root of the
reduced mass µ. When an atom is replaced by its heavier isotope, µ increases, therefore,
υ decreases. Taking C–D replacement of C–H as an example, if the 1H atom is replaced
by the 2D atom, µ almost doubles and the ratio of the new υ to the old υ is 1.36. There-
fore, C–D vibrations usually appear in the silent zone of a Raman spectrum at around
2100–2200 cm−1, red-shifted from the C–H vibrations at 2800–3000 cm−1. Thus, a strategy
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to quantify D incorporation is to calculate the percentage of the integrated C–D band area
to the sum of the areas of the C–D and C–H bands:

Dincorp =
AreaC–D

AreaC–D + AreaC–H

. Redshifts of Raman bands can also be observed when replacing 12C, 14N, 18O, or 32S with
their heavier analogs. Compared with the C–D shifts, the extent of the redshift is consider-
ably less dramatic in the 13C and 15N substitutions, due to the comparably low changes
in µ. By feeding cells with isotope-labeled substrates, the active cells metabolize these
substrates and the isotopic-dependent shifts in Raman spectra can be used as indicators of
isotopic incorporation, thereby ‘you are what you eat’.

4.2. Raman–SIP Monitors Intracellular Metabolic Activities

Raman spectroscopy combined with isotopically labeled molecules is used to study
the specific metabolic features of cell constituents such as lipids, proteins, and nucleic
acids (Figure 6). Table 2 summarizes a collection of studies using Raman–SIP approaches
to study cell metabolism and behaviors, together with their choices of probes, targeted
molecules, and platform of research.

Table 2. Studies using Raman–SIP to probe metabolism in mammalian cells. “Spont.” refers to spontaneous Raman.

Case Studies Spont. CRS Isotope Substrate Target Platform

Matthäus, C. et al.
(2012) [123]

√
D d31-palmitic acid

d33-oleic acid Lipids THP-1 monocytes

Stiebing, C. et al.
(2014) [124]

√
D

d8-arachidonic acidd
31-palmitic acidd

6-cholesterol-2,2,3,4,4,6
Lipids Human macrophages

Stiebing, C. et al.
(2017) [125]

√ √
D d31-palmitic acid Lipids Human macrophages

Majzner, K. et al.
(2018) [126]

√
D d8-arachidonic acid Lipids Endothelial cell line (HMEC-1)

Li, J. & Cheng,
J.-X. (2015) [127]

√ √
D

d7-glucosed
5-glutamined

31-palmitic acid-d31
Lipids

PANC1, A549, MIA PaCa2,
MCF7, LNCaP, PC3, HPDE6 and

RWPE1 cell lines

García, A. et al.
(2015) [128]

√ √
D d38-cholesterol Lipids Y1 cell line

Weeks, T. J. et al.
(2011) [129]

√
D d2-oleic Acid-9,10 Lipids Human monocytes

Du, J. et al. (2020)
[43]

√ √
D

d7-glucose
31-palmitic acidd

35-stearic acid
d33-oleic acid>

Lipids Patient-derived melanoma cell
lines

Dodo, K. et al.
(2021) [130]

√
D d-γ-Linolenic acid

γ-Linolenic acid
metabolism and

cytotoxicity
WI-38 cell line and VA-13 tumor

cell line

Matthäus, C. et al.
(2008) [131]

√
D

1,2-Distearoyl-d70-sn-
glycero3-phosphocholine

(DSPC-d70)

Liposomal Drug
Carrier Systems MCF-7 cell line

Van Manen, H.-J.
et al. (2008) [132]

√
D

d5-phenylalanine
d4-tyrosine

d3-methoine
Proteins HeLa cell line

Wei, L. et al.
(2013) [133]

√ √
D d10-leucine

Newly
synthesized

proteins

Live HeLa cell line
Human embryonic kidney

HEK293T cell line
Neuron-like neuroblastoma

mouse N2A cell line

Wei, L. et al.
(2015) [134]

√ √
D deuterated amino acids Proteins HeLa cell line

Shen, Y. et al.
(2014) [135]

√ √ 13C 13C-phenylalanine Protein
degradation

HeLa, HEK293T and PC12 cell
lines
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Table 2. Cont.

Case Studies Spont. CRS Isotope Substrate Target Platform

Miao, K. & Wei, L.
(2020) [136]

√
D d5-glutamine Proteins HeLa cell line

Zhang, L. et al.
(2019) [137]

√ √
D d12-glucose Glucose

metabolism
PC3, HeLa, MCF7, RWPE-1 and
U87MG cell linesMouse model

Lee, D. et al.
(2020) [138]

√ √
D d7-glucose

Glucose
metabolism;

glycogen
synthesis

U87 and HeLa cell lines

Hu, F. et al. (2015)
[139]

√ √
D 3-O -propargyl-D-glucose Glucose

metabolism
HeLa cell line

U-87 MG tumor xenograft tissue

Long, R. et al.
(2018) [140]

√ √
D/13C

13C-3-O-propargyl-D-
glucose

Glucose
metabolism

U87 MG, PC-3, COS-7 and
RWPE-1 cell lines

Chen, Z. et al.
(2014) [141]

√ √ 13C 13C isotopologues of EdU DNA HeLa cell lines

Zhang, L. & Min,
W. (2017) [142]

√ √
D d-amino acidsd31-palmitate

acidd7-glucose
Lipids and

proteins MCF-7 cell lines

Shi, L. et al. (2018)
[143]

√ √
D D2O Lipids, proteins

and DNA

HeLa, COS-7, and U-87 MG cell
lines

Zebrafish embryos
Mouse model

Hekmatara, M. et
al. (2021) [144]

√
D D2O Lipids, proteins

and DNA MCF-7 cell line

There is increasing evidence of upregulated demand for fatty acids in cancer cells, com-
pared to their non-malignant counterparts [30]. Lipid uptake, distribution, and metabolism
was extensively studied using Raman–SIP approach with labeled fatty acids in vari-
ous types of cells [123–129]. D-labeled free fatty acids such as d31-palmitic acid, d33-
oleic acid, and d8-palmitic acid were used to image lipid metabolism in human macro-
phages [123–125]. Intracellular cholesterol storage can also be observed in cells by using
d38-cholesterol [128]. Heterogeneous distributions of neutral lipid species were found,
where some lipid droplets accumulated preferentially unesterified cholesterol, whereas
others stored cholesteryl esters.

De novo lipogenesis in cells can also be studied using deuterated carbon sources such
as deuterated glucose or glutamine. Li and Cheng were the first to visualize the direct de
novo lipid synthesis that originated from deuterated glucose through SRS imaging [127]
(Figure 7A and 7B). They observed that glucose was largely utilized for lipid synthesis
in pancreatic cancer cells, which occurred at a much lower rate in immortalized normal
pancreatic epithelial cells. Similarly, de novo synthesis of fatty acids was also studied in
undifferentiated and differentiated melanoma cell lines using deuterated glucose with
spontaneous Raman spectroscopy and SRS [43]. In combination with transcriptomics anal-
ysis, the authors identified the fatty acid synthesis pathway as a druggable susceptibility
for differentiated melanocytic cells.

Tumor-selective cytotoxicity of particular fatty acids was also studied. Dodo et al.
synthesized several deuterated γ-linolenic acids and evaluated their metabolism and
cytotoxicity towards normal human fibroblast WI-38 cells and VA-13 tumor cells [130].
Through Raman imaging of intracellular lipid droplets, they suggested the tumor-selective
cytotoxicity of γ-linolenic acids from itself, as opposed to its oxidized metabolites.
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Figure 7. SRS imaging of cancer cells from deuterated glucose (A,B). Glucose-d7-incubated pancreatic cancer PANC1 cells
were treated without or with 10% FBS for 3 days. SRS imaging at C–D and C–H vibration were taken and the ratio of
C–D/C–H was used to analyze the level of de novo lipogenesis and increased lipogenesis. Reprinted and adapted with
permission from reference [127]. (C) SRS images of a glucose-d7-labelled mitotic HeLa cell before and after unmixing,
showing distribution of DNA, lipids, and proteins. Reprinted and adapted with permission from Reference [137].

Cancer cells exhibit significant metabolic alterations with respect to their primary
energy sources, including glucose. Deuterated glucose in Raman–SIP are shown to be valu-
able for the evaluation and exploration of glucose metabolism in cancer cells. Zhang et al.
generated a comprehensive study to visualize the metabolic dynamics of macromolecules,
such as DNA, protein, lipids, and glycogen, from glucose, in various cancer cell lines,
and a mouse model with glioblastoma xenograft [137] (Figure 7C). The pathway from
glucose to glycogen, which is important glucose storage in cancer cells, was also investi-
gated by subcellular visualization of deuterated glycogen from deuterated glucose [138].
Hu et al. developed a protocol for synthesizing deuterated glucose with an alkyne tag,
3-O-propargyl-D-glucose [139]. By using this tag that shows a distinctive Raman band
at 2129 cm-1, they quantified the glucose uptake and found different metabolic activi-
ties in different cancer cell types. Long et al. further developed this approach to add a
second 13C labeling to synthesize 13C-3-O-propargyl-D-glucose [140]. Thus, they demon-
strated two-color imaging of glucose uptake and incorporation activity in U-87 MG human
glioblastoma cells, PC-3 human prostate cancer cells, COS-7 monkey kidney cells, and
RWPE-1 human prostate normal cells, as well as in ex vivo mouse brain tissues.

Just as in SILAC, protein synthesis could be observed in Raman–SIP through the incor-
poration of isotopically labeled amino acids. Back in 2008, van Manen et al. demonstrated
the incorporation of deuterated phenylalanine, tyrosine, and methionine into proteins
in single HeLa cells, also observed by the C–D vibrations in the 2100–2300 cm-1 spectral
region [132]. It was shown that Raman images could be generated by illustrating newly
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synthesized proteins from deuterated amino acids, in a range of live mammalian cells with
high spatial–temporal resolution [133]. Using this approach, subcellular compartments
could be identified, revealing fast protein turnover in HeLa and HEK293T cells, and newly
grown neurites in differentiating neuron-like N2A cells. Metabolic changes of proteins and
lipids were also studied in cancer cells during epithelial–mesenchymal transition [142].
Compared with approaches like SILAC or fluorescence, this approach with Raman–SIP
could examine the proteome of a cell in a spatially resolved, non-destructive manner on
living single cells with only minor modifications [145]. This approach could also be used
to study protein degradation using 13C labelled amino acids [134,135].

Compared with lipid and protein metabolism, there are fewer studies utilizing Raman–
SIP approach to study DNA synthesis. Apart from newly synthesized DNA observed
from deuterated glucose metabolism, EdU as an analog of thymidine was exclusively
used as a DNA metabolic tag, which was incorporated into cellular biomass during cell
division [146]. Chen et al. synthesized various designs of 13C isotopologues of EdU and
demonstrated three-color chemical imaging of nascent DNA, RNA, and newly synthesized
fatty-acid in live HeLa cells.

4.3. Raman–SIP with D2O Measures General Metabolic Activity

Apart from specifically labeled precursors of cellular constituents, heavy water (D2O)
is suggested to be a unique and universal tool to monitor the synthesis of biomolecules on
a global scale. As an isotopologue of water, D2O can rapidly and freely equilibrate with the
total body water inside a cell, and D atoms can exchange with the H atoms to form a variety
of X–D bonds. Different from the often non-enzymatic reactions to form heteroatomic
X–D bonds, such as O–D, N–D, and S–D, the C–D bond formation depends solely on
enzyme-catalyzed chemical reactions, due to the stronger C–H bond strength [122]. In C–
H/C–D exchanges, D atoms from D2O are rapidly incorporated into metabolic precursors
of different classes of biomolecules such as deoxyribose, acetyl-CoA/NADPH, amino acids,
and phosphoenolpyruvate (PEP) (Figure 8). These precursors with D labeling are then
slowly incorporated into their final products, which are nucleic acids, lipids, proteins,
and carbohydrates. Therefore, D2O serves as an ideal agent to probe general metabolic
activities through the emergence of a variety of D-labelled macromolecules.

Figure 8. D2O as a unique and universal tracer for different biomolecules. ‘rds’ stands for rate-
determining step.
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Raman–SIP using D2O was demonstrated to measure the general metabolic activities
of single microbial cells, first reported by Berry et al. [117]. By incubating microbes with
D2O, physiologically active cells could be rapidly and sensitively identified with Raman,
by measuring the C–D peak at 2170–2300 cm−1. The metabolic activity could then be
semi-quantified and compared by measuring the degree of D incorporation. This approach
was extensively applied to study microbial activity and ecology [116,121,147–154]. Recently,
it also generated an impact in the area of metabolic studies of animal cells.

Shi et al. demonstrated SRS imaging based on D2O in various animal models, achiev-
ing dynamic visualization of proteins, lipids, and DNA [143]. Based on the fact that tumor
cells show inherently higher metabolic activities than normal cells, the study was able to
visualize the boundaries between tumors and the surrounding normal tissues. The distribu-
tion of intratumor heterogeneity was also observed, which is considered a driver of tumor
aggressiveness. In this study, the authors also suggested that D2O is a better probe than
deuterium-labeled carbon substrates. For visualizing lipogenic activities, D2O is better than
deuterated fatty acids, as well as deuterated glucose, which at high concentrations, could
potentially create hyperglycemia and might be less efficient in labeling newly synthesized
lipids. In addition, D2O is cost-effective, as compared to other Raman–SIP probes and is uni-
versal in probing a range of metabolic activities simultaneously. Most recently, Hekmatara
et al. applied Raman–SIP with D2O to study anticancer drug response of MCF-7 cells [144].
They discovered high subcellular activities of cancer cells after high-dosage rapamycin
exposure at the single-cell level, which was masked in a population-wise cytotoxicity test.

Although Raman–SIP application in cancer research using heavy water is just coming
of age, recent studies exhibit its great potential in metabolic studies, as it is non-invasive,
cost-effective, easily accessible, and universally applicable. It can be adapted to a broad
range of model systems and cancer research areas to study cancer development, tissue
homeostasis, tumor heterogeneity, cancer drug response, and pharmacokinetics. It would
be of particular value in diagnosis at surgery, categorizing cancers by their metabolic status,
evaluating new drugs, their uptake and metabolism, their antitumor effects, resistance
mechanisms, and responses. Characterizing the changes in stroma at the local and distant
sites and in premalignant disease, is likely to provide new insights into cancer development.

5. Conclusions and Outlook

Raman spectroscopy technologies, from comprehensive spectroscopy to advanced
imaging, offer exciting new possibilities in cancer research. In this review, we summarize
a wide range of applications using Raman and Raman–SIP techniques to investigate
metabolism in cancer cells and tissues. Offering intrinsic biochemical information and
subcellular spatial resolution, the Raman profile of a cancer cell or tissue is an excellent
metabolic indicator and an indicator of phenotypic heterogeneity. It can help uncover the
molecular basis of the disease and provide comprehensive, objective, and quantifiable
molecular information for diagnosis and treatment evaluation.

Looking into the future, the potential of Raman spectroscopy and imaging in cancer
research could be further exploited. Critical improvements and advances are still under
development. Raman databases of more metabolites, potentially comparable to a mass
spectrometry database, can cover identification of more metabolites. Advanced chemo-
metric algorithms and machine-learning methods can improve and accelerate current
spectral processing and data interpretation, especially in a large, high-dimensional clinical
dataset. Instrumentation engineering of advanced fiber optics, detectors, and handheld
spectrometer would render Raman tools accessible for clinical translation.
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36. Abramczyk, H.; Surmacki, J.; Kopeć, M.; Olejnik, A.K.; Lubecka-Pietruszewska, K.; Fabianowska-Majewska, K. The role of lipid
droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes
in cancerous human breast tissue. Analyst 2015, 140, 2224–2235. [CrossRef] [PubMed]

37. Surmacki, J.; Brozek-Pluska, B.; Kordek, R.; Abramczyk, H. The lipid-reactive oxygen species phenotype of breast cancer.
Raman spectroscopy and mapping, PCA and PLSDA for invasive ductal carcinoma and invasive lobular carcinoma. Molecular
tumorigenic mechanisms beyond Warburg effect. Analyst 2015, 140, 2121–2133. [CrossRef] [PubMed]

38. You, S.; Tu, H.; Zhao, Y.; Liu, Y.; Chaney, E.J.; Marjanovic, M.; Boppart, S.A. Raman Spectroscopic Analysis Reveals Abnormal
Fatty Acid Composition in Tumor Micro- and Macroenvironments in Human Breast and Rat Mammary Cancer. Sci. Rep. 2016, 6,
32922. [CrossRef] [PubMed]

39. Nieva, C.; Marro, M.; Santana-Codina, N.; Rao, S.; Petrov, D.; Sierra, A. The Lipid Phenotype of Breast Cancer Cells Characterized
by Raman Microspectroscopy: Towards a Stratification of Malignancy. PLoS ONE 2012, 7, e46456. [CrossRef] [PubMed]

40. Tirinato, L.; Liberale, C.; Di Franco, S.; Candeloro, P.; Benfante, A.; La Rocca, R.; Potze, L.; Marotta, R.; Ruffilli, R.; Rajamanickam,
V.P.; et al. Lipid Droplets: A New Player in Colorectal Cancer Stem Cells Unveiled by Spectroscopic Imaging. Stem Cells 2015, 33,
35–44. [CrossRef] [PubMed]

41. Le, T.T.; Huff, T.B.; Cheng, J.-X. Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis. BMC Cancer 2009,
9, 42. [CrossRef]

42. Gniadecka, M.; Philipsen, P.A.; Wessel, S.; Gniadecki, R.; Wulf, H.C.; Sigurdsson, S.; Nielsen, O.F.; Christensen, D.H.; Hercogova,
J.; Rossen, K.; et al. Melanoma Diagnosis by Raman Spectroscopy and Neural Networks: Structure Alterations in Proteins and
Lipids in Intact Cancer Tissue. J. Investig. Dermatol. 2004, 122, 443–449. [CrossRef] [PubMed]

43. Du, J.; Su, Y.; Qian, C.; Yuan, D.; Miao, K.; Lee, D.; Ng, A.H.C.; Wijker, R.S.; Ribas, A.; Levine, R.D.; et al. Raman-guided
subcellular pharmaco-metabolomics for metastatic melanoma cells. Nat. Commun. 2020, 11, 1–16. [CrossRef]

44. Nan, X.; Cheng, J.-X.; Xie, X.S. Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman
scattering microscopy. J. Lipid Res. 2003, 44, 2202–2208. [CrossRef] [PubMed]

45. Freudiger, C.W.; Min, W.; Saar, B.G.; Lu, S.; Holtom, G.R.; He, C.; Tsai, J.C.; Kang, J.X.; Xie, X.S. Label-Free Biomedical Imaging
with High Sensitivity by Stimulated Raman Scattering Microscopy. Science 2008, 322, 1857–1861. [CrossRef] [PubMed]

46. Slipchenko, M.N.; Le, T.T.; Chen, H.; Cheng, J.-X. High-Speed Vibrational Imaging and Spectral Analysis of Lipid Bodies by
Compound Raman Microscopy. J. Phys. Chem. B 2009, 113, 7681–7686. [CrossRef]

47. Mitra, R.; Chao, O.; Urasaki, Y.; Goodman, O.B.; Le, T.T. Detection of Lipid-Rich Prostate Circulating Tumour Cells with Coherent
Anti-Stokes Raman Scattering Microscopy. BMC Cancer 2012, 12, 540. [CrossRef]

48. Li, J.; Condello, S.; Thomes-Pepin, J.; Ma, X.; Xia, Y.; Hurley, T.D.; Matei, D.; Cheng, J.-X. Lipid Desaturation Is a Metabolic Marker
and Therapeutic Target of Ovarian Cancer Stem Cells. Cell Stem Cell 2017, 20, 303–314. [CrossRef]

49. Yan, S.; Cui, S.; Ke, K.; Zhao, B.; Liu, X.; Yue, S.; Wang, P. Hyperspectral Stimulated Raman Scattering Microscopy Unravels
Aberrant Accumulation of Saturated Fat in Human Liver Cancer. Anal. Chem. 2018, 90, 6362–6366. [CrossRef] [PubMed]

http://doi.org/10.1038/s41598-017-06936-z
http://www.ncbi.nlm.nih.gov/pubmed/28747639
http://doi.org/10.3390/bios8040106
http://doi.org/10.1038/s41467-020-20752-6
http://doi.org/10.1021/ar400331q
http://doi.org/10.1038/s41416-019-0451-4
http://doi.org/10.1016/j.tcb.2014.06.001
http://doi.org/10.1016/j.plipres.2013.08.005
http://doi.org/10.1158/1535-7163.MCT-10-0802
http://www.ncbi.nlm.nih.gov/pubmed/21282354
http://doi.org/10.1038/nrc2222
http://www.ncbi.nlm.nih.gov/pubmed/17882277
http://doi.org/10.15430/JCP.2016.21.4.209
http://doi.org/10.1016/j.aca.2015.12.038
http://doi.org/10.1039/C4AN01875C
http://www.ncbi.nlm.nih.gov/pubmed/25730442
http://doi.org/10.1039/C4AN01876A
http://www.ncbi.nlm.nih.gov/pubmed/25615557
http://doi.org/10.1038/srep32922
http://www.ncbi.nlm.nih.gov/pubmed/27596041
http://doi.org/10.1371/journal.pone.0046456
http://www.ncbi.nlm.nih.gov/pubmed/23082122
http://doi.org/10.1002/stem.1837
http://www.ncbi.nlm.nih.gov/pubmed/25186497
http://doi.org/10.1186/1471-2407-9-42
http://doi.org/10.1046/j.0022-202X.2004.22208.x
http://www.ncbi.nlm.nih.gov/pubmed/15009728
http://doi.org/10.1038/s41467-020-18376-x
http://doi.org/10.1194/jlr.D300022-JLR200
http://www.ncbi.nlm.nih.gov/pubmed/12923234
http://doi.org/10.1126/science.1165758
http://www.ncbi.nlm.nih.gov/pubmed/19095943
http://doi.org/10.1021/jp902231y
http://doi.org/10.1186/1471-2407-12-540
http://doi.org/10.1016/j.stem.2016.11.004
http://doi.org/10.1021/acs.analchem.8b01312
http://www.ncbi.nlm.nih.gov/pubmed/29757615


Cancers 2021, 13, 1718 20 of 24

50. Zhang, C.; Li, J.; Lan, L.; Cheng, J.-X. Quantification of Lipid Metabolism in Living Cells through the Dynamics of Lipid Droplets
Measured by Stimulated Raman Scattering Imaging. Anal. Chem. 2017, 89, 4502–4507. [CrossRef]

51. Huang, K.-C.; Li, J.; Zhang, C.; Tan, Y.; Cheng, J.-X. Multiplex Stimulated Raman Scattering Imaging Cytometry Reveals Lipid-Rich
Protrusions in Cancer Cells under Stress Condition. Science 2020, 23, 100953. [CrossRef]

52. Fu, D.; Holtom, G.; Freudiger, C.; Zhang, X.; Xie, X.S. Hyperspectral Imaging with Stimulated Raman Scattering by Chirped
Femtosecond Lasers. J. Phys. Chem. B 2013, 117, 4634–4640. [CrossRef] [PubMed]

53. Ji, M.; Orringer, D.A.; Freudiger, C.W.; Ramkissoon, S.; Liu, X.; Lau, D.; Golby, A.J.; Norton, I.; Hayashi, M.; Agar, N.Y.R.; et al.
Rapid, Label-Free Detection of Brain Tumors with Stimulated Raman Scattering Microscopy. Sci. Transl. Med. 2013, 5, 201ra119.
[CrossRef] [PubMed]

54. Folick, A.; Min, W.; Wang, M.C. Label-free imaging of lipid dynamics using Coherent Anti-stokes Raman Scattering (CARS) and
Stimulated Raman Scattering (SRS) microscopy. Curr. Opin. Genet. Dev. 2011, 21, 585–590. [CrossRef] [PubMed]

55. Yu, Y.; Ramachandran, P.V.; Wang, M.C. Shedding new light on lipid functions with CARS and SRS microscopy. Biochim. Biophys.
Acta BBA Mol. Cell Biol. Lipids 2014, 1841, 1120–1129. [CrossRef]
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95. Brozek-Pluska, B.; Kopeć, M.; Abramczyk, H. Development of a new diagnostic Raman method for monitoring epigenetic
modifications in the cancer cells of human breast tissue. Anal. Methods 2016, 8, 8542–8553. [CrossRef]

96. Chrabaszcz, K.; Kochan, K.; Fedorowicz, A.; Jasztal, A.; Buczek, E.; Leslie, L.S.; Bhargava, R.; Malek, K.; Chlopicki, S.; Marzec,
K.M. FT-IR- and Raman-based biochemical profiling of the early stage of pulmonary metastasis of breast cancer in mice. Analyst
2018, 143, 2042–2050. [CrossRef] [PubMed]
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