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Breast cancer has an extremely high incidence in women, and its morbidity and mortality
rank first among female tumors. With the increasing development of molecular biology and
genomics, molecular targeted therapy has become one of the most active areas in breast
cancer treatment research and has also achieved remarkable achievements. However,
molecular targeted therapy is mainly aimed at HER2-positive breast cancer and has not
yet achieved satisfactory curative effect on HER2-negative breast cancer. This article
describes the potential targets that may be used for breast cancer treatment from the
aspects of PI3K/AKT signaling pathway, DDR, angiogenesis, the cell cycle, breast cancer
stem cells, etc., and explores possible inhibitors for the treatment of HER2-negative
breast cancer, such as PI3K inhibitors, AKT inhibitors and m-TOR inhibitors that inhibit the
PI3K/AKT signaling pathway, small molecule tyrosine kinase inhibitors that restrain
angiogenesis, CDK inhibitors, aurora kinase inhibitors and HDAC inhibitors that block
cell cycle, as well as the drugs targeting breast cancer stem cells which have been a hit,
aiming to provide a new idea and strategy for the treatment of HER2-negative
breast cancer.

Keywords: HER2-negative, breast cancer, targeted therapy, inhibitors, multiple targets
BACKGROUND

Breast cancer is the most common female malignant tumor worldwide, and it is also the main cause
of death of women from cancer. Its morbidity and mortality are still rising, and the trend is getting
younger (1), so the exploration of the occurrence, development and treatment of breast cancer has
long been a hot spot of global concern (2).

After gene and protein level detection, breast cancer is divided into five molecular subtypes
according to the characteristics of gene and protein expression: normal-like breast cancer, luminalA,
luminalB, HER2-enriched breast cancer (HER2-E) and basal-like breast cancer, namely triple
negative breast cancer (TNBC) (3). HER2 expressed in HER2-enriched and part of luminalB breast
cancer is the membrane receptor encoded by the proto-oncogene ERBB2, which is a member of
human epidermal growth factor receptor (EGFR/ERB) family of tyrosine kinase receptors (4).
HER2-negative breast cancer refers to normal-like breast cancer, luminalA, partial luminalB and
basal-like type. Currently, the treatment methods for breast cancer include surgery, radiotherapy,
chemotherapy, endocrine therapy and targeted therapy (5). LuminalA and luminalB respond well to
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hormone therapy, while HER2-E has been developed to target
HER2. Basal-like drugs are highly invasive and there is currently no
molecular-based targeted therapy (6). Inaddition, surgical resection
combined with chemotherapy is still the main method for the
treatment of breast cancer, but such treatment has serious side
effects and seriousphysical andmental impactonpatients.Targeted
therapy has the advantages of strong specificity, significant efficacy
and small side effects, and is an effective choice amongmany clinical
treatment plans (7). For patients withHER2-positive breast cancer,
several new targeted drugs have been specifically used for the
treatment in the past 10 years, including the application of
trastuzumab and pertuzumab, which have significantly improved
the survival rate of patients, indicating that targeted therapy is a
powerful means for the treatment of breast cancer (8). Table 1
shows the five molecular subtypes, gene expression profiles and
treatment strategies of breast cancer (6). It can be seen that HER2-
targeted drugs are only effective for a small number of breast cancer
patients and have no obvious effect on themajority of breast cancer
patients. Therefore, the application of targeted drugs is still limited
at present.

Most of the special expression molecules of different subtypes in
the table are used for breast cancer typing, such as the expression of
GENESandproteinsrelated toK67andHR,whileothermolecules that
are different from the expression of HER2-E can serve as potential
targets for the treatment of HER2-negative breast cancer (9–11). For
example, CK8/18 and GATA3, which can regulate the cell metastasis
process including ZEB2, are closely related to the proliferation and
metastasis of breast cancer and can be treated from the cell cycle and
EMT pathway (12, 13). EGFR and FGFR1 have a regulatory effect on
the generation of new blood vessels, andmany angiogenesis inhibitors
targeting these targets have been clinically used (14).

Exploring innovative target drugs other than HER2 and
specifically targeting breast cancer with negative HER2 expression
is the development trendof today’s breast cancer treatment and also
one of the most challenging issues in the treatment of breast cancer
(15). Therefore, we mainly provide an overview illustrating
potential targets or signaling pathways using to treat breast
cancer, so as to provide references for the clinical application of
targeted therapy for HER2-negative breast cancer.
PI3K/AKT SIGNALING PATHWAY

Phosphoinositide 3-kinase (PI3K)/protein kinase (AKT)/
mammalian target of rapamycin (mTOR) signaling pathway,
Frontiers in Oncology | www.frontiersin.org 2
referred to as PI3K/AKT pathway, is one of the most frequently
activated pathogenic signaling cascades in breast cancer (16).
Abnormal activation of this pathway is the most common
pathogenesis of breast cancer. It regulates survival,
proliferation, differentiation, apoptosis and other processes of
breast cancer cells, and performs a pivotal function in the
occurrence and development (17, 18). This makes PI3K/AKT
signaling pathway an important therapeutic target for research
and treatment of breast cancer (19). At present, a large number
of targeted drugs that act on various proteins of PI3K/AKT
pathway have been developed, providing a fresh direction for the
targeted therapy of HER2-negative breast cancer.
PI3K Inhibitors
PI3K is roughly divided into type I, type II and type III, and type
I is divided into type IA and IB. Among them, type I PI3K is the
most widely studied, and type IA has the highest correlation with
breast cancer behavior. It is the main PI3K family enzyme known
to drive breast cancer (20). Studies have confirmed that the
activating mutation of PIK3CA is a carcinogenic mechanism
related to the excessive activation of this pathway, and this gene
mutation is distributed in various breast cancer subtypes (21).
Therefore, inhibiting the excessive activation of PI3K pathway
makes the targeted therapy of HER2-negative breast
cancer possible.

At present, PI3K inhibitors are mainly divided into three
categories. The first category is pan-PI3K inhibitors, such as
buparlisib and pictilisib, which can act on all different PI3K I
subtypes in the mean time. Pan PI3K inhibitor is an ATP-
competitive inhibitor, which has a wide range of activities by
affecting a wide range of downstream targets. Meanwhile, its
toxicity increases accordingly, such as hyperglycemia, anemia,
neutropenia, elevated aminotransferase, rash and hepatotoxicity,
etc. (22). The second generation inhibitors are PI3K subtype
selective inhibitors, which only act on specific subtypes, and their
main adverse reactions are hypertension and diarrhea.
Compared with the first class of pan-PI3K inhibitors, they
have the advantages of stronger efficacy, less adverse reactions
and better patient tolerance (23, 24). The third-generation
inhibitor is a dual PI3K-mTOR inhibitor, such as NVP-
BBD130, NVP-BEZ-235, and PKI-587. These inhibitors
simultaneously target two targets in PI3K/AKT pathway,
enhancing better efficacy and reducing the possibility of
inducing drug resistance (25).
TABLE 1 | Five molecular subtypes and related characteristics of breast cancer.

Intrinsic
subtype

Gene expression profile Proportion Characteristic targets/markers expression Treatment strategies

Normal-like ER- and PR- and HER2- 5%-10% Negative for CK5 and EGFR Chemotherapy drugs
Luminal A ER+ and/or PR+ and HER2- 50%-60% CK8/18, genes associated with ER function like LIV1, FOXA1, XBP1,

GATA3
Hormonal therapy and
chemotherapy drugs

Luminal B ER+ and/or PR+ and
HER2-/HER2+

15%-20% v-MYB, LAPTMB4, NSEP1, cyclinE1, Ki67, FGFR1, FGFR2, PI3K Hormonal therapy and
chemotherapy drugs

HER2-E ER- and PR- and HER2+ 15%-20% HER2, TP53, HDPP HER2 directed therapies
Basal-like ER- and PR- and HER2- 8%-37% CK5, CK14, CK17, P-cadherin, caveolins 1, EGFR, MAPK, NF-kB,

Ki67, TP53, BRCA1
Chemotherapy drugs
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PI3K inhibitors can be applied to a variety of breast cancer
subtypes, especially breast cancer subtypes with PI3KCA
mutations. On May 24, 2019, alpelisib, a selective PI3Ka
inhibitor, was approved by the Food and Drug Administration
(FDA) for the treatment of advanced or metastatic breast cancer
patients with HR+/HER2- or PI3KCA mutations. However, the
occurrence of breast cancer rarely depends solely on the PI3K
signaling pathway, and PI3K inhibitors are often used in
combination with other treatments to increase the sensitivity
of breast cancer patients to drugs and reduce drug resistance. In
addition, Guney Eskiler et al. (26) found that PI3K inhibitors can
significantly inhibit the proliferation of triple-negative breast
cancer (TNBC), resulting in impaired mRNA and protein
expression of BRCA1 and RAD51 in cells, which in turn leads
to damage to homologous recombination, and brings as a result
to cell death by inducing DNA damage and promoting the
overexpression of the apoptosis gene Bax.

In addition, studies have confirmed that p110g, one of the
catalytic subunits of PI3K, plays an important role in
immunosuppressive function of M2-type macrophages in tumor
microenvironment, and by inhibiting M2-type macrophages, PI3Kg
inhibitors can restore drug resistance of breast cancer cells to
immunotherapy, such as PD-1 and CTLA-4. Therefore, the
development of PI3Kg inhibitors is expected to shift the
development strategy of PI3K inhibitors from the concept of
“targeted therapy” to “immunotherapy”, indicating that it has a
wide application in the combined immunosuppression treatment of
breast cancer (27, 28).

AKT Inhibitors
AKT is located at the core of the PI3K/AKT pathway, regulated
by various upstream signaling proteins, and then plays a role in
gene transcription, protein synthesis, cell survival and
proliferation through a variety of downstream pathways (29).
AKT has three subtypes, AKT1, AKT2 and AKT3. They are all
composed of pleckstrin homology domain (PHD), kinase
domain (KD), and hydrophobic C-terminal regulatory motif
(HM) (30). Among them, the activation of AKT1 can inhibit
apoptosis in breast cancer cells and increase its survival rate.
Therefore, inhibiting AKT in breast cancer can achieve
therapeutic effects (31).

PIK3CA activation, PTEN loss mutations, and AKT1-E17K
mutations are common in breast cancer, and mutations in these
genes can cause AKT to be dysregulated (20, 32). The complete
activation of AKT needs to be transferred to the plasma
membrane. PHD can interact with PIP3 produced by the
upstream kinase PIK3CA, and then AKT is recruited to the
plasma membrane to play a role (33).

At present, AKT inhibitors can be divided into three main
categories according to the differences in binding sites and modes
of action: (1) Allosteric inhibitors, such as MK2206. Studies have
shown that MK-2206 acts on most PIK3CAmutant cell lines and
PTEN loss cell lines (34) and can inhibit AKT phosphorylation
in platelets (35). In this regard, Yi Yu et al. have shown that ARQ
092 and ARQ 751 can inhibit the activation of AKT by actively
forming and destroying the ion-membrane metastasis pathway
and have a better curative effect on breast cancer cells with
Frontiers in Oncology | www.frontiersin.org 3
AKT1-E17K mutations (36). (2) PIP analogs, such as Perifosine.
PIP analogs can bind to PHD, and the conjugates can’t activate
AKT, and can promote breast cancer cell apoptosis. In addition,
in ER-breast cancer cells, the recruitment of AKT requires the
mechanism of calcium-dependent calmodulin (CaM) to occur,
so CaM inhibitors can promote the apoptosis of ER-breast
cancer cells (31). (3) ATP competitive inhibitors, such as
ipatasertib. Ipatasertib is a highly selective ATP competitive
inhibitor and the only AKT inhibitor for TNBC under clinical
research (37). The high sensitivity of breast cancer cells to
ipatasertib is often related to the loss of PTEN and PIK3CA
mutation, which has a bright prospect in the clinical treatment of
TNBC (38).

MTOR Inhibitors
mTOR is a crucial kinase downstream of the PI3K/AKT
pathway. It is composed of mTOR complex 1 (mTORC1) and
mTOR complex 2 (mTORC2). It mainly regulates the growth,
division and angiogenesis of breast cancer cells, and participates
in the metastasis and invasion of breast cancer cells. mTORC1 is
located downstream of AKT and promotes the formation of
blood vessels by enhancing the transcription of proto-oncogenes
to drive the formation of breast cancer. mTORC2 is located
upstream of AKT and regulates the phosphorylation of AKT and
cytoskeleton proteins to regulate the growth and migration
(39, 40).

The first generation of mTOR inhibitors only targets
mTORC1, such as everolimus, which can bind to the
intracellular receptor FK506-binding protein 12 to inhibit the
activity of mTOR kinase and the production of mTORC1
complex, thereby it can inhibit angiogenesis and achieve the
purpose of treating breast cancer (41). However, the first
generation of mTOR inhibitors has no inhibitory effect on
mTORC2, which will cause negative feedback activation of
AKT and its downstream pathways by RAS-MAPK, S6K1/IGF-
1R/PI3K and other pathways, thereby affecting drug efficacy (42).
At the same time, there may be non-infectious pneumonia,
infection, mouth ulcers, kidney failure and other side effects.
The second-generation mTOR inhibitors, such as AZD2014 and
MLN0128, have greater therapeutic advantages than single-
target inhibitors. This ATP analog inhibits the catalytic activity
of mTORC1 and mTORC2 by binding to the kinase domain of
mTOR. So it can reduce side effects and maximize the benefits of
patients (43).

Figure 1 summarizes targets of PI3K/AKT pathway and
related inhibitors with potential to treat HER2-negative
breast cancer.
DNA DAMAGE RESPONSE INHIBITORS

DNA damage response (DDR) detecting and repairing damaged
genes through a variety of ways is a vital protective mechanism to
maintain genome stability and prevent breast cancer. DNA
single-strand break (SSB) is mainly repaired by three ways:
base excision repair (BER), nucleotide excision repair (NER),
and mismatch-repair (MMR), and the more serious DNA
March 2022 | Volume 12 | Article 828438
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double-strand break (DSB) is repaired through two additional
pathways: homogeneous recombination (HR) and non-
homologous end joining (NHEJ) (44).

HR is an error-free repair process, depending on the
availability of homologous DNA templates and mainly playing
a role in the G2/M phase of the cell cycle. Although NHEJ is
more error-prone compared to HR, it is considered to be the
main way of DSB repair and works in all phases of the cell
cycle (45).

Mutations in the DDR gene occur in all kinds of breast cancer.
Deletion or mutation of BRCA1/2 is present in 10% of patients
(46). DNA dependent protein kinase catalytic subunit (DNA-
PKcs), a member of the phosphatidyl inositol-3-kinase-like
kinase (PIKK) family that is involved in NHEJ and maintains
the structural stability of telomeres, is down-regulated in 57% of
early breast cancer cases (47). In TNBC, BRCA, non‐BRCA
HR, and non‐HR DDR genes have mutations (48), and quite
a few proteins involved in DDR including PARP-1 are
overexpressed (49).
Frontiers in Oncology | www.frontiersin.org 4
A large number of studies have represented that DDR
targeted drugs have the potential to treat breast cancer. As
shown in Figure 2, an overview of the DNA damage response
and repair pathways is detailed below.

PARP Inhibitors
Poly-ADP ribose polymerase (PARP) is located in the nucleus
and is a class of enzymes closely related to DDR. It mainly
performs a role function in gene transcription, cell differentiation
and death (50). In breast cancer cells, inhibiting the function of
PARP can interfere with the normal repair of DNA and induce
the accumulation of DNA damage, which can be converted into
double-strand breaks through replication fork folding, leading to
breast cancer cell apoptosis (51). PARP can be cleaved by a
variety of caspases, which is regarded as an important indicator
of cell apoptosis. Therefore, PARP inhibitors (PARPi) have a
satisfactory therapeutic prospect in the treatment of breast
cancer. For example, olaparib, niraparib, fluazolepali and
pamiparib, currently on the market, has shown good efficacy.
FIGURE 2 | DNA damage response and repair pathways.
FIGURE 1 | PI3K/AKT pathway targets and inhibitors.
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Relevant studies have shown that PARP inhibitors can
increase the sensitivity of BCRA1/2 mutant cells (52). BRCA1/
2 is an important tumor suppressor gene, with which women
take a lifetime risk of breast cancer as high as 85% (53).
Accordingly, early studies mainly use PARP inhibitors for
breast cancer patients with BCRA1/2 mutations. Olaparib is
the first PARP inhibitor approved for the treatment of BRCA-
mutated breast cancer. Relevant data in clinical trials shows that
olaparib can significantly improve the efficacy of BRCA-mutated
and HER2-negative breast cancer patients, and it has fewer side
effects and higher safety (54).

PARPi exerts anti-tumor effect by affecting DNA damage
repair. It can not only inhibit the catalytic activity of PARP
enzyme, but also capture PARP at the site of DNA damage and
competitively bind with PARP enzyme. Consequently, it makes
PARP1/2 stay in DNA break location, which can prevent DNA
repair and promote the conversion of single-strand breaks into
double-strand breaks as well. This PARP trapping effect may be
more cytotoxic than loss of catalytic activity (55).

Otherwise, iron apoptosis, a type of iron-dependent
programmed necrosis, has now been widely recognized as a
key factor affecting the occurrence and progression of various
cancers (56). Current studies have shown that PARP inhibitors
partially achieve the purpose of treatment through ferroptosis.
PARPi down-regulates the expression of the cystine transporter
SLC7A11 in a p53-dependent manner, thereby causing a
decrease in glutathione biosynthesis, promoting lipid
peroxidation and leading to ferroptosis (57). As a result, the
combined use of ferroptosis inducers (FINs) and PARP
inhibitors can enhance the therapeutic effect of breast
cancer patients.

Other DDR Inhibitors
In addition to the above-mentioned PARP inhibitors, currently
many drugs that act on other targets of DDR have entered
clinical or preclinical trials for the treatment of breast cancer.
These inhibitors are often combined with other treatments,
especially chemotherapeutic drugs that destroy DNA of breast
cancer cells, which can increase the sensitivity of breast cancer
cells to drugs, thereby enhancing the efficacy. Table 2 lists other
DDR inhibitors that have the potential to treat breast cancer.

ATM/ATR and MRN complexes play a central role in DDR
and cell cycle checkpoints, and these molecules are potential
targets for enhancing the sensitivity of breast cancer cells. In
recent preclinical experiments, NU6027, a new ATR inhibitor
has been shown to effectively inhibit cellular ATR activity (58).
NU6027 increases the sensitivity of breast cancer cells to the
chemotherapeutic drugs cisplatin and hydroxyurea mainly by
attenuating G2/M phase block and reducing HR, which is of
great significance for the application of this target inhibitor in the
treatment of breast cancer.

Checkpoint kinase (CHK) is a protein kinase involved in cell
cycle control. There are currently two subtypes, CHK1 and
CHK2. CHK1 is a key regulator of cell cycle and cell survival,
regulating S phase, G2/M transition and M phase in normal cell
cycle, and participating in initiating DNA checkpoint in DDR to
Frontiers in Oncology | www.frontiersin.org 5
block cell cycle progression. CHK2 is also activated in response
to DNA damage and participates in cell cycle arrest. The protein
encoded by this gene is a cell cycle checkpoint regulator and a
putative tumor suppressor. Studies on CHK1/CHK2 and CDC25
inhibitors are extensive. UCN-01, the first CHK1/CHK2
inhibitor to enter clinical trials, has been shown to have serious
side effects, such as symptomatic hypotension and neutropenia,
failing to achieve good therapeutic effects (59). AZD7762, a
single-target CHK1 inhibitor, can effectively inhibit the
proliferation of breast cancer by interrupting HR (60).
Prexasertib is a second-generation CHK1 inhibitor, which can
play two roles of promoting the post-transformation of BRCA1
and RAD51 proteins and the regulation of transcriptional
mediators and inducing HR defects. It is used in combination
with PARPi for the treatment of TNBC (61), and the inhibitor
has entered early clinical trials (62). CDC25 is a key factor in the
activation of cycline-dependent kinases, including CDC25A,
CDC25B and CDC25C, which can specifically dephosphorylate
the phosphate group on the tyrosine/threonine residues of
CDKs, and it is crucial for cell cycle and DDR regulation.
CDC25A main ly p lays a ro le in ce l l G1/S phase
transformation, and CDC25B is activated in S phase, which
then activates CDK1/cyclin B in cytoplasm, followed by
CDC25C activation. This protein is overexpressed in breast
cancer and is also considered as a promising new target for
breast cancer treatment. However, the current clinical data are
limited, and further studies are needed (63).

DNA-PK can connect broken DNA ends and call in other
cytokines for repair, being the core target of the NHEJ repair
pathway. So far, the most effective inhibition site of DNA-PK is
the ATP binding site in the small-molecule targeted kinase
domain. Based on this, many small-molecule DNA-PK
inhibitors have been designed, such as LY294002, NU7026 and
LY294002 (64). However, currently known compounds that
specifically inhibit DNA-PK have many limitations in terms of
pharmacokinetics, and subsequent studies can improve the
efficacy of inhibitors through drug modification and other
methods. Ku-0060648, an ATP competition inhibitor
inhibiting both DNA-PK and PI3K, restrains breast cancer cell
proliferation and enhances the sensitivity of breast cancer cells to
chemotherapy drugs doxorubicin and Etoposide (65).

As for HR, there are few inhibitors that directly target HR
proteins, but cytokines that indirectly regulate HR, such as
RAD51 inhibitors, may also be candidate targets for breast
cancer treatment. In the progress of DDR, the non-receptor
tyrosine kinase c-Abl activates ATM and phosphorylates RAD51
(66). Oncogenic fusion tyrosine kinases, such as BCR-ABL, TEL-
ABL, TEL-JAK2, TEL-PDGFbR, and NPM-AlK are highly
expressed in breast cancer cells and promote phosphorylation
and expression of RAD51 (67). Therefore, oncogenic fusion
tyrosine kinases inhibitors or RAD51 phosphorylation
inhibitors can inhibit DDR of breast cancer cells and can be
used in combination with chemotherapy drugs to enhance the
sensitivity of breast cancer cells. Studies have shown that targeted
small-molecule IBR2 can interfere with RAD51, accelerate the
degradation of RAD51 protein, thus damage HR, induce
March 2022 | Volume 12 | Article 828438

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


An et al. HER2-Negative Breast Cancer Treatment
apoptosis of breast cancer cells, and provide a new treatment of
HER2-negative breast cancer (68).
ANGIOGENESIS INHIBITORS

Neovascularization is the basis of growth and metastasis of breast
cancer, and targeted inhibition of angiogenesis can effectively
inhibit the growth of breast cancer. Among various factors which
have the regulatory function of newborn angiogenesis, vascular
endothelial growth factor (VEGF), one of the most effective
factors, can bind to VEGF receptor (VEGFR), like VEGFR-1
and VEGFR-2, stimulating the proliferation and migration of
endothelial cells through specific signaling transduction
pa t hway s , t h e r e b y p romo t i n g th e f o rma t i on o f
neovascularization (69, 70). Among them, VEGFR-2 regulates
the differentiation, migration and proliferation of endothelial
cells, while VEGFR-1 regulates the maintenance of blood vessels
in the late developmental stage (71). In addition, a naturally
occurring soluble form of VEGFR-1 (SVEGFR-1) is an
important inhibiting factor of angiogenesis mediated by VEGF,
which can inhibit proliferation of endothelial cells due to VEGF
(72). Therefore, VEGF and VEGFR and their associated
downstream signaling pathways may serve as targets for
HER2-negative breast cancer drugs.

At present, many angiogenic inhibitors targeting VEGF/
VEGFR have been marketed and played clinical roles, such as
bevacizumab, which has achieved satisfactory results in
combination with taxanes (73). However, studies have shown
that there is a significant correlation between VEGF and HER2
expression (74), and such targeted drugs are not suitable for
patients with HER2-negative breast cancer. Considering this
issue, the development of angiogenesis inhibitors for HER2-
negative breast cancer has become a hot spot of new drug
research and development, and many related drugs have
entered the stage of clinical research.

Tyrosine Kinase Inhibitors
Tyrosine kinase inhibitors (TKIs) act on vascular endothelial
growth factor receptor (VEGFR), platelet-derived growth factor
receptor (PDGFR), stem cell factor receptor, colony-stimulating
factor-1 receptor and fms-like tyrosine kinase-3 (75–79), inhibit
angiogenesis from multiple targets and effectively inhibit the
growth of tumor.

Although TKIs are only applied to a small number of solid
tumors at present and have not shown satisfactory efficacy in the
Frontiers in Oncology | www.frontiersin.org 6
application of breast cancer, existing studies have shown that
VEGF and PDGFR are significantly correlated with the prognosis
of breast cancer (80, 81), and TKIs have great potential in the
treatment of breast cancer.

In preclinical studies, Sorafenib and Sunitinib, two drugs of
TKIs acting on various targets and inhibiting multiple pathways,
failed to achieve good therapeutic effect in the treatment of breast
cancer by using single drug, while the combination of drugs led
to serious adverse reactions (82). In addition, due to the “off-
target” effect, traditional vascular targeting drugs can induce
vasculogenic mimicry (VM), which induces endothelial cells to
form vascular-like channels responsible for the supply of blood,
nutrients, and oxygen, resulting in drug resistance (83–85). In
the context of poor efficacy of most TKIs, apatinib, a kind of TKIs
that only highly binds VEGFR-2 target, has shown good efficacy
and tolerability in patients with advanced TNBC (86), which can
be further used in combination with other chemotherapy drugs
to verify the feasibility of TKIs in the treatment of HER2-
negative breast cancer.

Antiangiogenic Effects of Other Drugs
Endocrine therapy for breast cancer is mostly used in ER positive
patients, and tamoxifen is the most commonly used anti-
estrogen therapy. Existing data indicate that a variety of
estrogen hormones, such as estradiol and progesterone,
increase the expression level of VEGF in breast cancer (87, 88),
while tamoxifen can inhibit the secretion of VEGF (89) and
reduce the density of vascular endothelial cells in breast cancer
by more than 50%, the mechanism of which is related to the
regulation of the expression ratio of VEGF and sVEGFR-1 (90).

In addition, there is a crossover between the downstream
signaling pathway of ER and VEGF signaling pathway in breast
cancer (91), which provides a theoretical basis for clinical
endocrine therapy combined with other angiogenesis inhibitors.

Endostatin
Endostatin (ES) is a kind of angiogenesis inhibitor extracted
from the culture medium of EOMA cells, and the cells are
derived from mice with hemangioendothelioma. ES has the
strongest and broadest curative effect in suppressing tumors.
Endostar, a modified recombinant human endostatin, was first
developed as an anti-tumor agent in 2003 and is currently being
fully studied in combination with chemotherapy for advanced
breast cancer. Studies have shown that Endostar can decrease the
expression of MMP-2 and MMP-9 in TNBC cells, inhibit
the phosphorylation of ERK1/2, and significantly prevent the
proliferation and migration of breast cancer cells (92). For
TABLE 2 | Other DDR inhibitors that have the potential to treat breast cancer.

Pathway Target(s) Name(s) Potential Targets Function Study Reference

Sensors and mediators ATR NU6027 ↓G2/M phase block and ↓HR In vitro (44)
Cell cycle checkpoints CHK1 AZD7762 ↓HR In vitro and in vivo (46)

Prexasertib ↓HR In vitro and in vivo (47)
NHEJ DNA-PK LY294002 NU7026 LY294002 ↓ATP and ↓DBS repair In vitro and in vivo (50)
NHEJ and PI3K/AKT DNA-PK and PI3K KU-0060648 ↓ATP and ↓proliferation In vitro and in vivo (51)
HR RAD51 IBR2 ↑RAD51 degradation and ↑apoptosis In vitro and in vivo (52)
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patients with HER2-negative breast cancer, especially patients
with TNBC, Endostar combined with chemotherapy drugs can
be actively used for treatment.
CELL CYCLE INHIBITORS

Cell cycle is the basic process of cell life activities and is regulated by
multiple signaling pathways such as PI3K/AKT signaling and
MAPK signaling. Disturbance of cell cycle is the most significant
mechanism of breast cancer. And researching on new drugs that
inhibit the cell cycle can provide new ideas and methods for breast
cancer treatment.

Figure 3 is an overview of cell cycle signaling pathways
and inhibitors.

CDK Inhibitors
Cyclin dependent kinase (CDK), a key kinase involved in regulating
the cell cycle, can be combined with cyclin to form an active
heterodimer, which plays an essential role in the initiation of cell
cycle and the regulation of transformation in every period. At
present, more than 20 different kinds of CDKs have been reported.
Among them, CDK1, CDK2, CDK4 and CDK6 participate in cell
cycle regulation. In breast cancer cells, cyclin is overexpressed or
overactivated, CDKI activity is inhibited, and the continuous
activation of upstream fission signalings leads to the deregulation
ofCDKactivity,whichdirectly or indirectly causesuncontrolled cell
proliferation and genome instability, resulting in the occurrence
and development of breast cancer (93). Since CDK activity is
necessary for the growth of breast cancer cells, CDK has been
considered a good target for breast cancer drugs for a long time.
Currently, dozens of CDK inhibitors are undergoing clinical or
preclinical research (94). According to their different mechanisms
of action, these inhibitors can be divided into ATP competitive and
non-competitive inhibitors (95).

ATP-competitive CDK inhibitors play an inhibitory effect by
mimicking the ATP structure and binding to CDK protein (96),
Frontiers in Oncology | www.frontiersin.org 7
and the development of these CDK inhibitors is progressing
relatively smoothly. The first-generation inhibitors, such as
flavopiridol, roscovitine, UNC-01, etc., due to the lack of
selectivity for different types of CDK and serious side effects in
the clinical, their development was stopped (97, 98). On the
contrary, the second generation of CDK inhibitors show better
anti-tumor activity and selectivity, especially those targeting
CDK4/6, like palbociclib, ribociclib, abemaciclib, etc., which
can inhibit RB phosphorylation and block the cell cycle in G1
phase, preventing the proliferation of breast cancer (99, 100).
Clinical trials have shown that it has good efficacy in the
treatment of metastatic breast cancer with HR+ and HER2-
when combined with endocrine therapy (101).

CDK4/6 inhibitors are currently widely used in the treatment
of breast cancer but only used in patients with ERa-positive
breast cancer because of their frequent overexpression of cyclin
D. At the same time, most HER2-negative breast cancers have
RB1 mutations and/or loss, limiting the use of CDK4/6 inhibitors
(102). Fortunately, the expression of androgen receptor (AR) is
positively correlated with RB, which promotes cyclin D
activation (103, 104), suggesting that CDK4/6 inhibitors have
great potential in the treatment of HER2-negative breast cancer
with AR-positive. In fact, related studies have combined CDK4/6
inhibitor abemaciclib with seviteronel, which targets androgen
biosynthesis and AR activity, and showed synergistic effects in
AR-positive TNBC models (105). Therefore, cell cycle inhibitors
can be used in combination with AR targeted drugs to treat AR-
positive TNBC.

The development of non-ATP-competitive CDK inhibitors
has been relatively slow. Such inhibitors mainly include peptides
and synthetic small molecules, which mimic the endogenous
CDK inhibitors, such as p21, p27, p25, etc., to exert their
inhibitory effects (106, 107). Various novel methods for
interference with CDK and the cyclin complex have emerged,
such as preventing substrate recognition, targeting essential
protein-protein interactions, targeting residues necessary for
conformational changes, etc. (108, 109), and thus substrate
FIGURE 3 | Cell cycle signaling pathways and inhibitors.
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competition inhibitors and heterogeneous inhibitors are
developed (95). Substrate competition inhibitors mainly
prevent the binding of CDK and cyclin, thereby inhibiting
CDK activity. At present, such inhibitors have been expanded
to develop better drug-like inhibitors of CDK2 polypeptide
analogs (110). The heterogeneous inhibitor usually binds to the
vicinity of the ATP binding site, which interferes with the
conformational transition of the enzyme and has good
selectivity (111). Heterogeneous inhibitors have been
successfully applied in the research and development of ABL/
P38 and MEK1 inhibitors. It is a promising strategy for the
development of CDK inhibitors and has great potential in the
treatment of breast cancer (112).

Aurora Kinase Inhibitors
Aurora kinase is a kind of mitotic kinase, mainly including
aurora A, aurora B and aurora C. The gene of aurora A is located
in the active amplification segment of the chromosome, which is
amplified and overexpressed in breast cancer cells (113). Studies
have found that aurora A can interact with tumor suppressor
gene p53 (114) and also bind and phosphorylate SRCA1,
resulting in BRCA1 dysfunction (115), which is closely related
to the occurrence and development of breast cancer. Loss or
inhibition of aurora A will lead to the appearance of unipolar or
multistage spindle and the failure of centrosome separation,
inhibiting growth and proliferation of cells (116, 117). The
main functions of aurora B are to promote chromatin
condensation and to monitor cell cycle checkpoints, having a
regulating effect in various stages of cell mitosis (118). Currently,
as a potential target for breast cancer, the aurora kinase has
attracted extensive attention. An increasing number of aurora
kinase inhibitors have been developed, and some of them have
entered the stage of clinical trials.

ZM-447439 and hesperidin are both aurora B kinase
inhibitors. The former can increase the number of apoptotic
cells and the formation of polyploidy which depends on p53
(119), while the latter inhibits the phosphorylation of histone H3,
causes chromosome separation and abnormal cytokinesis, and
leads to polyploidy, which has great potential in inhibiting tumor
cell metastasis, angiogenesis and chemotherapy (120). At
present, a lot of novel aurora kinase inhibitors only have effects
on aurora A, such as MLN-8237, which has been found to
promote the apoptosis and autophagy of breast cancer cells by
regulating the p38 MAPK/Akt/mTOR pathway and has entered
the second phase of clinical trials. It has shown great potential in
the treatment of HER2-negative breast cancer (121).

Because the aurora kinase is highly expressed in breast cancer
cells and less active in normal or resting cells, aurora kinase
inhibitors are highly selective for breast cancer cells. However,
the current research on the targeting of aurora kinase inhibitors
is almost all about the competitive inhibition of ATP binding
sites, resulting in poor selectivity of inhibitors and susceptibility
to drug resistance. Therefore, the development of other targets
such as ATP non-competitive aurora kinase inhibitors or
substrate competitive inhibitors may help overcome the
current difficulties encountered in aurora kinase inhibitors, and
Frontiers in Oncology | www.frontiersin.org 8
further contribute to the application of such inhibitors in the
treatment of breast cancer.

Histone Deacetylase Inhibitors
Histone deacetylase (HDAC) can affect the structural modification
of chromosome and gene transcription and expression, playing a
pivotal role in the acetylation of non-histones and histones (122).
HDAC1 is one of the members of all histone deacetylases most
closely related to breast cancer and plays a crucial part in the
occurrence and metastasis of breast cancer (123). The high
expression of HDAC1 in breast cancer cells leads to high
deacetylation of core histones and chromosome condensation,
inhibiting the transcription of related genes and inducing the
occurrence of breast cancer (124). Additionally, it can also
regulate the apoptosis of breast cancer cells through a variety of
ways (125) and inhibiting the activity of HDAC can effectively
restrain the proliferation of breast cancer cells.

Since the first potent HDAC inhibitors emerged, there have
been five HDAC inhibitors approved for use as oncology
chemotherapy agents, and many others are in clinical or
preclinical trials (126). Among them, SAHA appeared earlier
and has been widely studied. It can regulate the function of the
promoter of p21WAF1/CIP1- a cell cycle suppressor protein,
obviously induce its expression, and block the cell cycle in the S
phase to play an anti-tumor effect (127). Recent research has
shown that the sensitivity of TNBC to HDAC inhibitors can be
enhanced when used in combination with leukemia inhibitory
factor receptor (LIFRa) inhibitors, and such inhibitors have a
bright prospect in the combination therapy of HER2-negative
breast cancer (128).
AR INHIBITORS

An important feature of breast cancer is hormone dependence,
especially sex hormones. Androgen receptor (AR), like ER and
PR, is a member of the superfamily of nuclear receptors, which
mainly exists in the target nucleus and belongs to steroid
receptors. It is highly expressed in breast cancer and has long
been an important indicator of breast cancer diagnosis (129).
The expression of AR is closely related to various subtypes of
breast cancer. Choi et al. showed that the expression of AR was
positively correlated with histological grade and negatively
correlated with OS and disease-free survival (DFS), indicating
that AR is an indicator of poor prognosis (130). In recent years,
many studies have confirmed that AR plays an important role in
the occurrence and development of breast cancer, but this role is
not directly induced by AR independent signaling pathway, but
closely related to multiple pathways, such as HER-2, wnt, ERa
and MAPK (131, 132). Studying AR signaling pathway can not
only reflect the severity of the disease, but also provide ideas for
the treatment of breast cancer (129).

AR Targeted Inhibitors
Currently on the market, AR targeted inhibitors are mainly
bicaluramide and azaluramide, both of which are non-steroidal
March 2022 | Volume 12 | Article 828438
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AR inhibitors. They are mainly used for the treatment of
prostate, but many recent studies have shown that they also
play an important role in the treatment of breast cancer.

Enzarumide is a powerful inducer of cytochrome P4503A4,
which can not only improve the metabolism of aromatase
inhibitors, but also reduce the nuclear localization of AR.
Schwartzberg et al. combined the AR inhibitor Enzaruamide with
endocrine therapy to treat breast cancerand found that ithadagood
effect (133). Bicaluamide can effectively control androgen level by
combining with AR, thus promoting breast cancer cell death (132).

Since AR is expressed in all subtypes of breast cancer,
especially TNBC, which lacks a clear target, AR is expected to
become a potential target for breast cancer treatment.

Androgen Synthesis Inhibitors
CYPC17 is an important androgen synthase, and abiraterone is a
CYPC17 inhibitor, which can effectively control the synthesis of
androgen and estrogen, thus reducing the resistance to hormone
therapy for breast cancer (134). Although abiraterone is
currently clinically used in the treatment of prostate cancer,
with the in-depth study of AR expression in breast cancer, it has
a theoretical prospect of application in the treatment of breast
cancer. It is hoped that further studies will be conducted to
confirm its effect on HER2-negative breast cancer.
TARGETING STRATEGIES FOR BCSCS

Breast cancer stem cells (BCSCs) are very few stem cell
subgroups with ability of self-renewal and multidirectional
differentiation in breast cancer cells and play an important role
the recurrence, metastasis and drug resistance of breast cancer
(135, 136). Relevant studies have shown that BCSCs can activate
the STAT3 signaling pathway or the Notch-1-PTEN-ERK1/2
signaling pathway under the stimulation of certain transcription
factors and inflammatory factors to promote breast cancer
recurrence (137, 138). At the same time, BCSCs can prompt
epithelial-mesenchymal transformation (EMT) of breast cancer
cells through TGF-b signaling transduction (139), thus inducing
the invasion and migration of breast cancer and reducing the
survival rate of patients. Therefore, it is of great clinical
significance to further understand CSCs and develop relevant
targeted drugs for the treatment of breast cancer.

Conventional radiotherapy or chemotherapy can only target
BCSCs with active proliferation and has no killing effect on
BCSCs that are in the resting state, while residual BCSCs often
cause breast cancer recurrence and metastasis when activated by
appropriate signalings, and targeted elimination of BCSCs may
be an effective strategy to improve the prognosis of breast cancer
patients (140). Presently, targeting strategies for BCSCs mainly
include cell targeted therapy, gene targeted therapy and nano-
delivery targeted therapy, etc.

Cell Targeted Therapy
Mesenchymal stem cells (MSCs) have become a promising
therapeutic agent for targeting BCSCs in the cell targeted
Frontiers in Oncology | www.frontiersin.org 9
therapy of breast cancer (141). MSCs have the characteristics
of multi-differentiation potential, low immunogenicity, and
homing to tumor tissues. They can be targeted to migrate to
breast cancer sites under action of multiple factors and are an
important part of breast cancer microenvironment (142, 143).
Mandal et al. showed that MSCs can inhibit the proliferation of
BCSCs, prevent the formation of EMT and reduce angiogenesis
(144), which has a good inhibitory effect on the proliferation and
metastasis of breast cancer. In addition, due to the low
immunogenicity and the inherent tumor-homing ability, MSCs
can be used to load novel nano-chemotherapy drugs to achieve
the purpose of targeted delivery to breast cancer cells, providing a
new solution for HER2-negative breast cancer targeted
drugs (145).

In addition to MSCs, long non-coding RNA (lncRNA) and
microRNA (miRNA) can also regulate the proliferation of CSCs,
which has important value in the treatment of HER2-negative
breast cancer (146, 147). Studies have shown that lncRNA
CCAT2 is overexpressed in TNBC and BCSCs. It promotes the
occurrence and development of breast cancer by up-regulating
the expression of OCT4-PG1 and activating the Notch signaling
pathway (148). In metastatic breast cancer tissues, it has been
found that the expression level of miR-200c is decreased miR-
300c is increased, which may be a sign of enrichment of BCSCs in
patients (149). Therefore, targeting lncRNA or miRNA may
contribute to developing new treatments for BCSCs.

Nano-Delivery Targeted Therapy
Recently, it has been discovered that molecular-oriented
nanotechnology can be applied to the development of BCSCs
targeted drugs, which can effectively control drug delivery and
release. Not only can it improve the absorption of drugs by CSCs,
but also increase the retention and release of drugs in breast
cancer cells. The mechanism is to down-regulate the expression
of Sox2 and ABCG2, reduce the ratio of BCSCs, and enhance
drug retention and sustained release. In addition, using it in
combination with taxanes can increase the sensitivity of breast
cancer cells to drugs (150).

The application of RNAnanotechnology to deliver anti-miRNA
has become a new technology for TNBC therapy. These therapeutic
RNA nanoparticles bind to the CD133 receptor to inhibit the
expression of miR21 and up-regulate the expression of
downstream tumor suppressor genes PTEN and PDCD4, which
can significantly inhibit the proliferation of TNBC cells (151).

The development of nanotechnology provides a new and
effective method to deliver drugs for the treatment of breast
cancer. Drug efficacy can be enhanced and side effects can be
reduced by combining with existing breast cancer treatments,
which is indispensable for the treatment and prognosis of
breast cancer.
CONCLUSION

Breast cancer is the most frequently diagnosed cancer and the
main cause of death from cancer in women. With the
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development of molecular biology and genomics, molecular
targeted therapy has become one of the most active areas in
the treatment research of breast cancer, and it has also achieved
remarkable achievements. At present, targeted therapy has
become a brand new biological treatment method in addition
to the four traditional treatment modes of surgery, radiotherapy,
chemotherapy and endocrine therapy.

However, today’s targeted therapy drugs mainly target HER2-
positive breast cancer. The advent of trastuzumab, pertuzumab,
lapatinib and other drugs has significantly improved the
prognosis of patients with HER2-positive breast cancer (152).
The drugs approved for the treatment of HER2-negative breast
cancer and related information are listed in Table 3. It can be
seen that targeted drugs for HER2-negative breast cancer,
especially TNBC, are relatively less selective, and there are still
many problems waiting to be solved. For example, the efficacy of
single-agent therapy is not satisfactory, the price is expensive,
which increases the economic burden of patients, and the target
selectivity is so low that it is prone to high toxicity (153).
Therefore, it is necessary to continuously develop and research
more accurate and efficient new drugs that can also reverse
drug resistance.

The most widely used targeted drugs for HER2-negative
breast cancer are DDR inhibitors, especially PARP inhibitors,
which have shown good efficacy in treatment of TNBC (54). In
addition, as most chemotherapy drugs work by destroying DNA
of breast cancer cells, DDR inhibitors can not only inhibit breast
cancer cells, but also improve their sensitivity to such
chemotherapy drugs. The combination of the two drugs can
achieve twice the result with half the effort.

Inhibitors targeting the PI3K/AKT pathway, angiogenesis and
blocking of the cell cycle are already under development. Studies
have shown that the therapeutic effect of inhibitors targeting the
PI3K/AKT pathway is more obvious in patients with high levels
of phosphorylated AKT, loss of PTEN protein and mutations of
PTEN or PIK3CA genes. Unfortunately, these inhibitors are
Frontiers in Oncology | www.frontiersin.org 10
obstructed by the high incidence of adverse reactions such as
diarrhea, neutropenia, and pneumonia (38). Currently,
angiogenesis inhibitors are mainly used in patients with HER2-
positive breast cancer, and their efficacy in patients with HER2-
negative breast cancer should be further studied. CDK 4/6
inhibitors have brought new hope for breast cancer treatment.
Multiple studies have confirmed that this inhibitor combined
with endocrine therapy can significantly improve the survival of
patients with HR-positive and HER2-negative advanced breast
cancer (154–156). Nevertheless, many current studies attach
importance to improving the resistance of breast cancer cells to
CDK 4/6 inhibitors. It is hoped that these inhibitors can be
further used in the treatment of breast cancer (157, 158).

Due to the high selectivity and low toxicity of stem cells, the
therapy targeting stem cells has become a hot topic in recent
years. MSCs, lncRNA and miRNA in HER2-negative breast
cancer treatment have important application value (159), in
addition, the new technology such as nanometers provides a
new drug delivery system, which can improve drug efficacy and
reduce drug side effects at the same time.

Factly, all drugs for the treatment of HER2-negative breast
cancer do not only act on a single pathway, but rather, a single
drug can regulate multiple pathways (160), such as the recently
widely studied effects of statins on breast cancer.

Statins are HMG-CoA reductase inhibitors, which are often
used to reduce cholesterol levels and prevent coronary heart
disease in clinical practice (161). In recent years, it has been
found that statins have significant efficacy in the treatment of
tumors, especially for ER-positive breast cancer (162, 163). A
large number of statins, such as simvastatin, lovastatin and
fluvastatin, can inhibit the proliferation and migration of
breast cancer. The mechanisms related to their therapeutic
effects include inhibition of PI3K/Akt and PPTG1 signaling
pathways, activation of LKB1-AMPK-P38MAPK-p53-survivin
cascade resulting in cell death, and increased caspase-3-mediated
vimentin hydrolysis leading to the death of breast cancer cells
TABLE 3 | Approved for nearly a decade to treat HER2-negative breast cancer.

Pathway Name(s) Target(s) Time Indication ADR

PI3K Alpelisib PI3Ka 2019 HR+/HER2- advanced or metastatic
breast cancer with PIK3CA mutations

Hyperglycemia, pneumonia, rash, diarrhea, embryo-infantile toxicity,
and other toxicity, etc.

mTOR Everolimus FKBP12 2012 HR+/HER2-advanced breast cancer in
combination with Aremassin

Pharyngitis, lack of appetite, diarrhea, fatigue, rash, infection and oral
ulcers, etc.

DDR Talaziparib PARP 2018 HER2-/gBRCAm+ locally advanced or
metastatic breast cancer

Fatigue, anemia, nausea, neutropenia, headache, vomiting, hair loss,
diarrhea, loss of appetite and embryo-fetal toxicity, etc.

DDR Olaparib PARP-1 and
PARP-2

2018 BRCA+/HER2- metastatic breast cancer Anemia, nausea, fatigue, vomiting, taste disorders, dyspepsia,
headache, loss of appetite, arthralgia, myalgia, rash and abdominal
pain, etc.

The cell
cycle

Palbociclib CDK4/6 2015 HR+/HER2- advanced or metastatic
breast cancer

Neutropenia, leukopenia, fatigue, anemia, upper respiratory tract
infection, nausea, diarrhea, anorexia, vomiting, fatigue, etc.

The cell
cycle

Ribociclib CDK4/6 2017 Initial endocrine therapy in HR+/HER2-
advanced or metastatic breast cancer

Leukopenia, nausea, fatigue, diarrhea, hair loss, vomiting,
constipation, headache, etc.

The cell
cycle

Abemaciclib CDK4/6 2018 HR+/HER2- advanced or metastatic
breast cancer

Diarrhea, neutropenia, nausea, infection, fatigue, anemia, leukopenia,
loss of appetite, vomiting, headache, etc.

TROP-2 Sacituzumab
govitecan-hziy

Topoisomerase 2020 Metastatic TNBC that has been treated
with at least two therapies

Tired, hair loss, constipation, rash, decreased appetite, stomachache,
neutropenia, severe diarrhea, anaphylaxis, nausea, vomiting, etc.

Hormone
therapy

Enzalutamid Androgen 2012 Advanced TNBC Fatigue, external edema, myomyalgia, headache, muscle weakness,
vertigo, insomnia, anxiety and hypertension
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(164–167), indicating that it achieves the purpose of breast
cancer treatment by regulating multiple signaling pathways.

With the rapid development of modern technology and
biomedicine, the treatment concept of breast cancer is
constantly updated. In recent years, breast cancer is considered
as a systemic disease, and neoadjuvant chemotherapy has also
been included as an important part of the treatment of HER2-
negative breast cancer (168). At the same time, the treatment and
drugs for HER2-negative breast cancer are also undergoing
comprehensive innovation, with more influencing factors being
included in the development of new drugs (160, 169). In
addition, more studies are promoting the clinical treatment
towards the direction of “precision”.

Precision medicine is based on personal genomic information,
combined with proteome, metabolome and other relevant internal
environment information, to tailor the best treatment plan for
patients, in order to maximize the therapeutic effect and minimize
side effects. The study of gene expression profiles of various
subtypes of breast cancer and the expression of specific target
molecules, as well as the discovery of specific targeted therapeutic
measures, can further realize the goal of “personalized medicine”.

In HER2-negative breast cancer treatment, more studies on
the combination of targeted therapies with other therapies need
to be carried out, in order to further study the effectiveness, safety
and economics of the combined application of targeted drugs
Frontiers in Oncology | www.frontiersin.org 11
and chemotherapy drugs, so as to maximize the efficacy of
targeted breast cancer therapy, which may become a new
direction for the treatment of breast cancer patients in the future.
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