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ABSTRACT A fundamental assumption in the use and interpretation of microbial
subtyping results for public health investigations is that isolates that appear to be
related based on molecular subtyping data are expected to share commonalities
with respect to their origin, history, and distribution. Critically, there is currently no
approach for systematically assessing the underlying epidemiology of subtyping re-
sults. Our aim was to develop a method for directly quantifying the similarity be-
tween bacterial isolates using basic sampling metadata and to develop a framework
for computing the epidemiological concordance of microbial typing results. We have
developed an analytical model that summarizes the similarity of bacterial isolates us-
ing basic parameters typically provided in sampling records, using a novel frame-
work (EpiQuant) developed in the R environment for statistical computing. We have
applied the EpiQuant framework to a data set comprising 654 isolates of the enteric
pathogen Campylobacter jejuni from Canadian surveillance data in order to examine
the epidemiological concordance of clusters obtained by using two leading C. jejuni
subtyping methods. The EpiQuant framework can be used to directly quantify the
similarity of bacterial isolates based on basic sample metadata. These results can
then be used to assess the concordance between microbial epidemiological and
molecular data, facilitating the objective assessment of subtyping method perfor-
mance and paving the way for the improved application of molecular subtyping
data in investigations of infectious disease.
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The analysis of pathogens through the application of techniques adapted from
molecular biology has become an essential part of many modern epidemiological

investigations (i.e., “molecular epidemiology”) targeted at the prevention and control of
infectious diseases and improving our understanding of how infectious disease agents
circulate between/within natural reservoirs and affected populations (1, 2). Molecular
subtyping of bacteria allows differentiation between closely related isolates of the same
species and can be instrumental in determining if an isolate forms part of an epide-
miologically linked cluster. However, an ongoing challenge in molecular epidemiology
has been the effective interpretation of subtyping data. While subtyping results con-
nect isolates into groups related by molecular or phenotypic criteria (i.e., clusters), the
extent to which these clusters correspond to the underlying epidemiology of the
pathogen is not generally known.
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Assessment of the epidemiological relevance of isolates sharing a molecular subtype
has typically been carried out manually, based on the aims of the analysis. Clusters of
genetically or phenotypically related isolates are produced by using one or more
molecular subtyping methods, and relevant epidemiological attributes, such as mem-
bership in an outbreak group, are superimposed and subjected to interpretation on a
cluster-by-cluster basis, with additional context such as subtype reproducibility, sub-
type prevalence, and subtype variability in the organism also being considered (3–5).
While this general approach represents a pragmatic solution to the need for interpre-
tation criteria based on epidemiological relevance, it lacks the systematic rigor required
to comprehensively assess subtyping results and their concordance with underlying
characteristics related to the ecology and epidemiology of the bacterial isolates in
question. In light of the important role of molecular typing in public health investiga-
tions, it becomes necessary to develop analytical approaches to systematically assess
this relationship.

In this study, we present a model for computing the similarity between bacterial
isolates based on attributes commonly documented within isolate sampling records
(e.g., source, time, and geography of sampling) and the development of a framework
for assessing the concordance between the “epidemiologic signal” of bacterial isolates
and their subtyping data. We assess the utility of this framework on a data set of 654
isolates of the important zoonotic pathogen Campylobacter jejuni sampled from across
Canada and demonstrate how the model can be used to (i) quantify the epidemiolog-
ical similarity between C. jejuni isolates, (ii) assess the relative abilities of subtyping
methods to cluster isolates into cohesive epidemiologically linked groups, and (iii)
identify subtype clusters with significantly increased specificity for the underlying
epidemiology of bacterial isolates, facilitating targeted epidemiological investigations.

RESULTS
Development of a model for computing source similarities using C. jejuni

isolates from the Canadian Campylobacter Comparative Genomic Fingerprinting
Database. Sources for comparison were selected by using available sampling information
from the Canadian Campylobacter Comparative Genomic Fingerprinting Database
(C3GFdb), a repository containing curated metadata on over 22,000 Campylobacter isolates
for which the granularity has been kept largely consistent, simplifying the process of
identifying nonredundant sources (n � 40) to test our method for computing source
similarities.

Developing a rubric for comparing Campylobacter sampling sources from the
C3GFdb involved describing the epidemiological profile of each source using a series of
attributes constructed from a conceptual framework that outlined major environments
and interactions that we believe are important for the C. jejuni transmission chain (Fig.
1). Each source was then assessed independently against these attributes, and the
distance between any two sources was computed by comparing their respective
epidemiological profiles, with the pairwise source similarity being based on the number
of matching and partially matching epidemiological attributes as a proportion of the
total number of attributes examined (n � 25). An example of the rubric used to assess
the unique source identifiers against epidemiologically relevant attributes is shown in
Fig. 2.

Pairwise comparison of the epidemiological profiles derived for each source using
our rubric resulted in a matrix summarizing the overall “source distance” between all
sources used in this study. We constructed a neighbor-network split graph (Fig. 3)
based on the source distances in order to confirm whether the resulting source matrix
was congruent with our conceptual representation of Campylobacter transmission
networks. Clustering results from the split graph demonstrated significant agreement
with those proposed in our original conceptual framework. For example, entries related
to farm food animal sources—food animals (cluster A) and meat products and abattoir
samples (cluster B)— grouped in the same area of the network, and these entries
grouped separately from farm-based companion animals (cluster C) and a group
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comprised of domestic companion animals and wild animals straddling the urban-rural
environment (cluster D). A separate region of the network included groups directly
related to environmental and human inputs (clusters E and F). A group of farm
animal-related environmental sources (cluster G) was found to group midway between
the environmental-water-related sources in cluster E and farm animal sources in cluster
A, consistent with the dual nature of the source input. While major groupings were
readily identified by the split graph shown in Fig. 3, a considerable amount of
reticulation, or splits, was observed, and this is consistent with shared characteristics
between sources not derived from the same principal headings (i.e., “human,” “animal,”
or “environmental”) used to construct the rubric shown in Fig. 2.

To further examine the effect of shared epidemiological attributes on the overall
pairwise source comparison, we constructed a hierarchically clustered heat map illus-
trating the similarity between all pairwise sources (Fig. 4). This visualization yielded
several epidemiologically relevant groupings consistent with those observed in Fig. 3;
at the same time, areas of similarity away from the 45° (i.e., “self-versus-self”) axis in Fig.
4 reflect epidemiological relationships that lie outside the major groupings outlined in
the split graph analysis. An example of this can be seen within cluster F, which is
comprised of food animal sources from farm through to retail levels. A subgroup of
farm-based poultry sources (i.e., goose, duck, chicken, and turkey) within this cluster
displays high secondary similarity to other on-farm food animal sources (i.e., cow, pig,
goat, and sheep) and to poultry sources at the abattoir and retail levels. Results from
the source model can also be seen to delineate between similar sources that differ at
a small number of attributes based on differences in likely primary exposures to C.
jejuni. For example, of the three human sources in cluster C, the “Human_Urban” source
exhibits higher similarity to animals with urban exposure (e.g., companion animals,
raccoons, seagulls, and deer) and retail food sources, the “Human_Farm Workers”
source demonstrates higher similarity to on-farm food animals, and the “Human_
Abattoir Workers” source expresses strong similarity to abattoir- and retail-based animal
sources.

FIG 1 Conceptual framework outlining major environments and interactions in the C. jejuni transmission chain. The model incorporates all C. jejuni sampling
sources in the C3GFdb used in the analysis of source distances. Arrows indicate either unidirectional or bidirectional flow of C. jejuni throughout the
“farm-to-fork” continuum. Sources not located on one of the four “ecological islands” are considered transitory and have high exposure to multiple
environments.
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Combining components to compute epidemiological distance. An example of
the total epidemiological distance (Δ�) for all isolates in our data set (n � 654) was
derived from the application of our model for calculating Δ� (i.e., see equation 3, below)
using sample metadata and is presented in Fig. 5. In combining the source distances
described above with geographic positioning data (GPS) and collection dates using
weighting ratios of 50%, 30%, and 20% for the �, �, and � coefficients, respectively, a
pairwise matrix describing the total epidemiological distance of all isolates from our
data set of 654 C. jejuni isolates was created. The adjustable coefficients �, �, and � are
used for assigning weights to each component based on a priori epidemiological

FIG 2 Example of the “epidemiological rubric” used to assess source comparisons. The epidemiological profile for each of 40 unique sources from the C3GFdb
was determined independently based on a set of 25 epidemiological attributes derived from the conceptual framework presented in Fig. 1. The character state
of “1” is used to indicate a strong association, “*” is used to indicate a partial association, and “0” is used to indicate little or no association with the attribute
indicated in each column, where the status reflects the perceived strength of the relationship based on the user’s knowledge. The distance between any two
sources was computed by comparing their respective epidemiological profiles, with the pairwise source similarity based on the number of matching and
partially matching epidemiological attributes as a proportion of the total number of attributes examined (n � 25).

Computing Epidemiological Concordance of Typing Data Journal of Clinical Microbiology

May 2017 Volume 55 Issue 5 jcm.asm.org 1337

http://jcm.asm.org


considerations. For example, a bacterial species known to be highly source restricted
may then require a higher value for � to provide additional weight to the source
relative to the geospatial and temporal variables to account for the increased signifi-
cance when observing a difference in the source.

In general, the groups that resulted from clustering based on Δ� represented
cohesive epidemiological units comprised of bacterial isolates from similar source,
temporal, and geospatial cohorts.

For example, cluster 1 comprised 282 human clinical isolates of C. jejuni from
Ontario, Canada, with further subclustering based on distances between sampling
dates, ranging from January 2006 to November 2008. Within this cluster is a subset of
43 human clinical isolates collected during a 4-week period in the summer of 2007 (Fig.
5A, highlighted in blue). These isolates also include a set of 24 isolates that were
confirmed epidemiologically to belong to an outbreak cluster. As shown in Fig. 5B, the
outbreak isolates share identical temporal, location, and sampling source data and thus
cluster together with an average epidemiological similarity (1 � Δ�) value of 1. Isolates
collected within the same municipality and in a similar time frame that were not part
of the outbreak are shown to cluster separately, with epidemiological similarities
ranging from 0.87 to 0.99. Cluster 2 included isolates derived from raccoon sources in
Ontario across a narrow sampling time (October 2011 to July 2012). Cluster 3 com-
prised farm-based food animal isolates sampled from various locations across
Alberta, Canada, in 2004 to 2006. Cluster 5 contained isolates sampled from animal
sources at both the farm and retail levels, with subclusters being delimited by their
source and sampling locations (e.g., “Chicken@Retail” samples from British Colum-
bia, Canada, and “Cow@Farm” samples from Alberta, Canada) as well as the
sampling dates, which ranged from 2009 to 2012. Cluster 7 included isolates
sampled from environmental sources (e.g., “Water@Irrigation Ditch”), and this is
consistent with results from the pairwise source analysis (Fig. 2 and 3), which
suggests that environmental sources form a distinct group separate from animal
and human sources. Cluster 8 comprised most of the food animal-related isolates in
the data set: all isolates contained within this cluster were derived from retail or
farm animal sources and encompass a close geographic range in Ontario, Canada.

FIG 3 Neighbor network split graph based on C. jejuni source distances. The split network was calculated based on the model for source distances (Δs) in the
model. Clusters A to G are highlighted to show the clustering of highly similar sources into the same regions of the graph. Distances were calculated in R by
using the phangorn package, and a split graph was then plotted by using Splitstree software, using the equal-angle method.
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As was observed with the pairwise source similarity matrix (Fig. 4), a considerable
amount of secondary similarity can be seen off the 45° axis due to partial similarity
across some, but not all, components. For example, cluster 1 (human) and cluster 8
(food animal) share significant secondary similarity due to the shared geospatial and
temporal components of the isolate subsets.

Use of �� to assess the epidemiological concordance of subtyping methods.
We wished to investigate the use of the epidemiological similarity (i.e., 1 � Δ�) between
two isolates estimated by our framework as a means to quantify the epidemiological
concordance of subtyping methods. Using multilocus sequence typing (MLST) and
comparative genomic fingerprinting (CGF) data from our collection of 654 C. jejuni

FIG 4 All-versus-all heat map depicting pairwise similarities between C. jejuni sources included in this study (n � 40). Source similarities were given by the
formula 1 � Δs. Darker shading indicates stronger similarity between sources. Groups A to F represent memberships created at a clustering threshold of 50%
(red line at the left). Dotted black boxes are used as a visual aid in the analysis to highlight secondary similarities observed off the “self-versus-self” axis. The
heat map was created in R by using custom scripts and the heatmap.2 function from the Gplots package.
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isolates, we computed the epidemiological cluster cohesion (ECC) value, the average
pairwise epidemiological similarity for each subtyping cluster in the data set, and
compared the ECC values obtained with each method. Furthermore, as CGF has been
shown to have greater discriminatory power than MLST (6) and MLST data can be
analyzed at two levels of resolution, clonal complex (CC) and sequence type (ST), these
data were also used to investigate epidemiological concordance as a function of a
method’s discriminatory power (Table 1).

Compared to the average ECC values of isolates not belonging to clusters (0.471 �

0.165), we observed that each subtyping method assembled isolates into clusters with
high average ECC values (P � 0.001) and that higher-resolution methods resulted in
increased overall ECC values. The lower-resolution subtyping method (i.e., CC) assem-
bled isolates into larger clusters with a lower overall ECC value (0.486 � 0.183) than
those of higher-resolution methods (i.e., MLST and CGF), which generated several
smaller clusters from the CC assignments, and these had higher overall ECC values
(0.505 � 0.197 for ST and 0.543 � 0.223 for CGF; P � 0.001), which is consistent with
the increased epidemiological concordance of clusters obtained with the higher-
resolution methods. To illustrate this observation, isolates from the nine largest CCs in
our data set (n � 516) are presented in Fig. 6, with each subplot illustrating a single CC
and its splitting into several smaller ST and CGF subtyping clusters that tend to exhibit
higher ECC values than those of the original parent cluster.

Adjustment of �� parameters to identify subtyping clusters with differing
epidemiological characteristics. To demonstrate the flexibility of the EpiQuant model
for assessing the epidemiological cohesion of subtyping clusters based on the differ-
ential weighting of geospatial, temporal, and source parameters, we computed Δ� for
all isolates in the data set based on two additional sets of inputs for �, �, and �

coefficients. The first iteration favored relationships based on source relationships (e.g.,
80% source, 10% temporal, and 10% geospatial weightings), and the second iteration
emphasized temporal associations (e.g., 10% source, 80% temporal, and 10% geospatial
weightings). Combined with the original Δ� results shown in Fig. 5, we then applied
these data to compute the ECC values of CGF subtypes in our data set in an attempt
to identify clusters that were highly source or temporally specific.

Results from the ECC analysis of CGF subtyping data reveal differences in the
distributions of ECC values observed for CGF clusters based on the input coefficients
used (Fig. 7A). The ECC distributions show that favoring temporal interactions results in
a significantly lower average ECC value (0.458 � 0.173) than those calculated with a
greater emphasis on source relationships (0.640 � 0.124; P � 0.001) or when the
“balanced” coefficient set was used (0.564 � 0.141; P � 0.003). This observation is

FIG 5 Hierarchical clustering of C. jejuni isolates based on total epidemiological distance (Δ�) computed by using the
EpiQuant framework. (A) Clustering of the complete set of isolates used in this study (n � 654). Darker shading indicates
higher similarity between isolates based on the comparison of their sampling metadata (source, temporal, and geospatial)
and the Δ� calculation outlined in equation 3 using source, temporal, and geospatial coefficients of 0.5, 0.3, and 0.2,
respectively. A histogram displaying the frequency of pairwise Δ� values observed, ranging from 0 (completely similar) to
1 (completely dissimilar), is shown (top left). (B) Human clinical isolates collected in the same municipality within a 4-week
period, including those from a confirmed campylobacteriosis outbreak (also highlighted in blue in panel A), are shown
along with their basic metadata. The heat map was generated in R by using the heatmap.2 function from the Gplots
package. Clustering of the resulting distances was done by using the “single-linkage” algorithm, and clusters were
identified at the 50% threshold (dotted red line at the left).

TABLE 1 Typing statistics for methods calculated from the current data set of C. jejuni
isolates (n � 654)

Method No. of clusters SIDa

Adjusted Wallace value

CGF ST CC

CGF 183 0.982 0.671 0.880
ST 179 0.950 0.233 0.999
CC 66 0.887 0.126 0.412
aSID, Simpson’s index of diversity.
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consistent with the wide distribution of temporal signals in the data set (i.e., sampling
years from 2004 to 2012). No significant difference was observed between the overall
ECC values achieved when “source” versus balanced approaches were compared.

Outliers were identified with significant source and temporal associations based on
all three sets of coefficients. To confirm whether the ECC results were indeed reflecting
highly biased temporal or source associations, we examined the metadata for each of
these outlier subtypes (Table 2). For example, subtype “0082.001.001” was associated
with a single source type (Human_Urban), yielding a high ECC value when assessed by
favoring the source component despite a temporal range spanning 7 months. In
contrast, subtypes 0609.011.003 and 0891.001.001 were identified as being highly
specific temporally due to short sampling periods (8 and 17 days, respectively) and had
high ECC values when assessed by favoring the temporal component despite being
associated with multiple sources. Subtypes 0592.006.003 and 0926.002.004 were iden-
tified as being both highly temporal and source specific based on high ECC values
obtained under both sets of coefficients. The metadata for both of these clusters
revealed a single sampling source collected within a narrow window of time (e.g.,
Pig@Farm with a 14-day sampling period and Human_Urban with a 10-day time period,
respectively).

DISCUSSION

Molecular subtyping techniques have become an essential part of modern epide-
miological investigations of infectious disease. Subtyping data have been used to
identify outbreaks and their vehicles of transmission (7–13), to study the dynamics of

FIG 6 Comparison of ECC values for clusters generated via MLST CCs, MLST STs, and CGF for the isolates used in this study (n � 654). Individual facets of the
plot contain the isolates from each of nine dominant MLST clonal complexes in the data set (indicated at the top of each box). Green circles denote “parent
clusters” based on CCs; membership in subclusters is also shown. The relative membership size of each cluster is indicated by the radius of each circle on the
plot and given by the values on the x axis. The average ECC of each cluster is given by its position along the y axis. Subclusters containing only one member,
which were excluded from the ECC analysis, were excluded from the figure (ST, n � 101; CGF, n � 62). The plot was generated in R using the ggplot2 package.
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pathogen circulation throughout natural reservoirs (14–16), and to assess the popula-
tion structure of bacterial disease agents, identifying subgroups important to human
health (17–19). A consistent feature in the evolution of the field of molecular epide-
miology has been the continuing development and refinement of approaches for
molecular typing. In general, the drive for novel methods has been motivated by the
search for improvements in performance criteria such as discriminatory power and
deployability (6, 20, 21) and by the mitigation of problems that can arise when adapting
a given subtyping method to a particular pathogen of interest (22–24). Coupled with
continuing technical advances in molecular biology, the search for approaches useful
for distinguishing and classifying bacterial strains has led to the development of a large
number of subtyping methods now available (25, 26).

A significant challenge with the emergence and proliferation of new molecular

FIG 7 Epidemiological cluster cohesion analysis of CGF clusters using adjusted source, temporal, and geospatial coefficients. (Left) Box plots of the total
distribution of ECC values for CGF clusters containing �3 isolates when calculating the Δ� value using different sets of source/temporal/geospatial coefficients,
including 50:30:20 (i.e., balanced) (left), 80:10:10 (i.e., source emphasis) (middle), and 10:80:10 (i.e., temporal emphasis) (right) ratios. The box bounds the IQR
divided by the median, and whiskers extend to a maximum of 1.5 IQR above and below each box. Outliers were identified by using Tukey’s method and are
indicated as orange circles (source emphasis) or green triangles (temporal emphasis) above the plots. (Right) Distribution of ECC values for individual CGF
clusters. ECC values based on “balanced coefficients” (light gray diamonds), “source emphasis” (dark gray circles), and temporal emphasis (light gray triangles)
are shown. Black diamonds, orange circles, and green triangles represent outliers identified from the box plot analysis in panel A.

TABLE 2 Metadata summary of clusters identified as statistical outliers in the ECC box
plot analysis in Fig. 7

Subtype Outlier type(s) Source range(s)
Temporal range
(mo/day/yr)

0082.001.001 Source Human_Urban 01/29/2008–08/28/2008
0592.006.003 Source, temporal Pig@Farm 03/22/2005–04/05/2005
0609.011.003 Temporal Chicken@Retail, Cow@Farm 06/04/2007–06/12/2007
0891.001.001 Temporal Chicken@Retail, Human_Urban,

Pig@Retail
07/06/2007–07/23/2007

0926.002.004 Source, temporal Human_Urban 06/26/2008–07/07/2008
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typing methods has been the lack of systematic approaches for objectively assessing
and comparing methods. In 2006, Carriço et al. described a framework for quantitatively
assessing different typing systems using performance criteria such as discriminatory
power and partition congruence (27). We previously used this framework for comparing
the performance of CGF, a novel method for C. jejuni subtyping developed in our group,
to that of MLST, the leading method for C. jejuni subtyping (6), and for assessing both
methods against the phylogenetic signal in whole-genome sequence (WGS) data (28).
This approach has been useful for assessing the concordance of methods against one
another, which is particularly useful when comparing a novel method to a well-
established “gold standard.” Critically, although subtyping data are used in the context
of epidemiological investigations, the epidemiological concordance of subtyping re-
sults is an element that has escaped systematic examination.

The “Tenover criteria,” which were introduced over 2 decades ago, have provided
guidance on the interpretation of results generated by using pulsed-field gel electro-
phoresis (PFGE) (29). It is generally acknowledged that subtyping data must be inter-
preted in the proper epidemiological context (i.e., epidemiological relevance) while
taking into consideration additional factors such as the reproducibility of the method
with a particular organism, the genotypic variability of the organism being subtyped,
the prevalence of the pattern in question, and outbreak characteristics (3). To date,
many studies have been performed by comparing the results of molecular typing with
epidemiological metadata using manual methods: once genetic relationships between
isolates are determined via subtyping, epidemiological data are examined in an at-
tempt to assess whether subtyping clusters are consistent with the underlying epide-
miology (16, 18, 30, 31). More recently, visualizations based on mapping color-coded
epidemiological metadata onto dendrograms derived from subtyping data have been
used to facilitate this assessment (4). While such approaches have been extremely
successful for identifying subtyping clusters related to particular epidemiological con-
siderations, a major disadvantage is that they are qualitative and require significant
manual interpretation, making them impractical for the systematic examination of large
data sets.

In this investigation, we have focused on (i) establishing an approach for summa-
rizing the epidemiological signal in sampling metadata from C. jejuni isolates, (ii)
developing a method for computing the epidemiological similarity between pairs of C.
jejuni isolates, and (iii) developing a framework for evaluating the epidemiological
concordance of subtyping data to compare the performances of two leading methods
of C. jejuni subtyping. As a high-priority foodborne pathogen primarily associated with
sporadic illnesses and a number of possible sources, C. jejuni poses significant chal-
lenges to analyses based on descriptive epidemiological parameters alone (32). More-
over, although temporal and geospatial data figure prominently in epidemiological
investigations of C. jejuni, the sampling source is a parameter that has been shown to
contribute significantly to genotypic variation (33). As there is currently no means of
measuring the similarity of sampling sources, C. jejuni presents an excellent, if complex,
model organism with which to establish a model for source-source comparisons.

We first developed a conceptual framework incorporating major routes of transmis-
sion for the spread of C. jejuni throughout various sources and vectors in the farm-to-
fork continuum. This exercise enabled us to identify basic attributes to be used for
computing similarity estimates between nonidentical sampling sources using a uniform
set of epidemiologically relevant comparators; to our knowledge, this is an approach
that has no antecedent. Results from the split graph analysis show general agreement
with the conceptual framework and serve to demonstrate the epidemiological hierar-
chy achieved by the rubric despite these sources sharing many of the same attributes.
While our estimation of important attributes by no means encompasses the entirety of
Campylobacter epidemiology, an examination of pairwise similarity between sources
provided supporting evidence that we have managed to capture enough information
with our rubric to describe logical relationships between many Campylobacter sampling
sources while maintaining secondary associations where there is underlying epidemi-
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ological similarity between sources that are less likely to interact directly. As some of
the attributes used in this study have general applicability to other organisms, this
approach could be extended to other bacterial infectious disease agents. However, this
would require a careful examination of the transmission pathways between reservoirs
based on a review of the relevant literature and user knowledge.

A major aim of this study was the development of a method for computing an
estimate of the epidemiological similarity between bacterial isolates based on common
descriptive metadata contained within sampling records. A unique quantitative sum-
mary statistic (�) that comprised multiple layers of epidemiological data (e.g., source,
time, and geography of sampling) was used to estimate the epidemiological similarity
of isolates (1 � Δ�) in a manner that is consistent, systematic, and scalable to entire
databases. In this study, we have used this approach to systematically examine a data
set comprised of 654 C. jejuni isolates and show that this approach can be used to
derive pairwise epidemiological similarity estimates that are consistent with the un-
derlying sampling metadata, generating similarity values that approach unity on
isolates that share a source, location, and date of sampling, as in the case of isolates
from a confirmed outbreak of campylobacteriosis.

We have also used this metric to compute the ECC, a reflection of the average
epidemiological similarity of isolates sharing a molecular subtype.

Calculating the ECC provides an avenue for assessing the performance of a subtyp-
ing method based on epidemiological concordance that can be performed indepen-
dently of other typing methods; our proposed approach also allows the systematic
examination of the epidemiological relevance of individual clusters generated by any
molecular typing method.

A key driver in the development of novel molecular typing methods is higher
discriminatory power. By assigning isolates into smaller clusters, methods with higher
discriminatory power are expected to reduce the likelihood that nonepidemiologically
related isolates will share the same subtype, thus improving epidemiological concor-
dance. In previous work, we showed that CGF provides higher discriminatory power
than MLST while maintaining high concordance with group memberships established
by the MLST method (6, 34). By subjecting our data set of 654 C. jejuni isolates to both
MLST and CGF and comparing the ECC values of clusters generated by subtyping
methods with increasing resolution (i.e., CC � ST � CGF), we aimed to test the
hypothesis that strain typing methods with higher resolution would separate isolates of
C. jejuni into clusters demonstrating higher epidemiological concordance. Our results
indicate the ability of CGF and ST to resolve large clusters produced by using CCs into
smaller, more refined clusters with greater epidemiological concordance, as indicated
by a higher overall ECC value. It is important to note that although clusters with ECC
values approaching unity might appear to be optimal, they necessarily represent
groups of isolates with singular temporal, geospatial, and source signals. In the context
of infectious disease epidemiology, however, ECC values that deviate significantly from
unity are expected due to the transmission and survival of subtypes across a wide range
of sampling dates, locations, and sources.

An inherent strength of our model is the flexibility afforded in the inputs for �, �, and
�, which can be used to modify the contribution accorded to geospatial, temporal, and
source components, respectively. Adjusting the coefficients in the calculation of Δ� can
be used to limit the signal resulting from unreliable or incomplete data but should also
allow more targeted analyses, such as facilitating the identification of subtypes with
above-average source, temporal, or geospatial associations. In our original analysis, we
combined source, temporal, and geospatial distances using a 50:30:20 ratio, respec-
tively, in order to achieve results that reflected all three components of the model, with
nonequal weighting of the coefficients to reflect the importance of source for C. jejuni
epidemiology and to reflect the decreased granularity of geospatial data in our data set.
When the ECC was recalculated with heavily adjusted �, �, and � percentages favoring
source or temporal associations, the overall ECC value decreased when the temporal
signal was emphasized, consistent with the wide temporal range spanned by the
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isolates in the data set (2004 to 2012). An analysis of the outliers revealed certain CGF
subtypes that produced very high ECC values when considering the source or temporal
signal as the primary metric for evaluation. Thus, by modifying the contribution of the
various parameters in our model to Δ�, it is possible to adjust the resulting ECC
estimates. In a point source outbreak investigation, for example, it may be more
suitable to negate the source component of the model entirely, in favor of high
temporal and geospatial similarities; this would emphasize groups of isolates collected
together in the same place and time, potentially allowing the identification of nonhu-
man sources of exposure sampled during the time course of a confirmed outbreak. In
contrast, adjusting the coefficients to favor source or geospatial relationships could be
better suited to performing source attribution or for the identification of pathogens
endemic to particular geographic regions, respectively.

Recently, technologies for evaluating the WGSs of bacterial isolates have be-
come widely available, and it is likely that the increasing adoption of WGS will result
in the concomitant phasing out of molecular typing methods in the near future.
Analysis of WGS data offers unparalleled discriminatory power for comparing
bacterial isolates while also providing a wide range of analytical options (e.g.,
analysis of single nucleotide polymorphisms, gene-by-gene sequence-based typing,
and gene content analysis) that facilitate in silico comparisons with legacy data sets
(28, 35). Furthermore, WGS-based analysis has become sufficiently cost-effective to
allow an increasing number of public health laboratories to focus their efforts on
the generation of WGSs for isolates collected through routine surveillance (36),
resulting in an explosive growth in the number of isolates being analyzed and the
concomitant phasing out of molecular typing methods in the very near future. In
this context, the potential utility of the framework proposed here resides in the
scalability of a scriptable, systematic approach that allows efficient and automat-
able computation of epidemiological signals, epidemiological similarity, and epi-
demiological concordance across very large data sets and the flexibility to support
different epidemiological applications.

By facilitating the direct comparison of genomic information on bacterial isolates
with their underlying epidemiology, our framework provides an epidemiological basis
for systematically assessing and interpreting the results obtained from both molecular
and WGS-based analyses, which will help improve the optimization of novel genomic
approaches in the emerging field of genomic epidemiology.

Conclusions. In the rapidly evolving field of molecular epidemiology, improved
measures for assessing the genetic similarity of bacterial isolates need to be
balanced with equally improved measures for assessing strain epidemiology that
allow direct comparisons between the two. Here we have presented a simple model
for the quantitative assessment of similarities of human bacterial pathogens based
on a comparison of their descriptive sampling attributes. Using a test data set of
Canadian C. jejuni isolates spanning a wide range of sampling sources, times, and
locations, we have demonstrated that deriving interstrain relationships based on
basic epidemiological metadata results in highly structured groups of isolates that
conform to a natural, cogent organization. Moreover, by transforming a set of
descriptive qualifiers into a quantitative epidemiological summary, we show that
this metric can be used toward assessing the epidemiological relevance of subtyp-
ing methods as a means of systematically evaluating subtyping method perfor-
mance.

MATERIALS AND METHODS
Description of the EpiQuant model for computing ��. The geography of a sample from which a

bacterial isolate was recovered, the time or date of sampling, and the source of a sample (i.e., the specific
reservoir or vehicle) represent three common metadata descriptors that can be used for broadly
describing the ecological epidemiology (i.e., the “ecological address”) of a bacterial isolate. In our model,
the “epidemiological type” (�) of a bacterial isolate is described by its position in a three-dimensional
space defined by geospatial (g), temporal (t), and source (s) variables and is thus expressed by the vector

� � (g, t, s) (1)
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A calculation of the “epidemiological distance” between any two isolates can then be defined by a
combination of these three distances. A formula expressing the Euclidean distance between the
respective vectors is therefore represented by

�� � ��(�g)2 � �(�t)2 � �(�s)2 (2)

where Δg, Δt, and Δs represent the pairwise geospatial, temporal, and source distances between the
sampling parameters of two isolates and �, �, and � represent adjustable coefficients for assigning
relative contributions to each component based on a priori considerations of data granularity, reliability,
or importance. Substituting derivations for Δg, Δt, and Δs into equation 2 yields our final model for
summarizing the epidemiological distance between any two bacterial isolates:

�� � ��((log{distab})2) � ��log ���
i � 1

n

(xi 	 yi)
2��2

� ��1 	
1

n��i � 1

n

f(ui, 
i)��2

(3)

where distab is the physical distance, in kilometers, between sampling locations for each isolate; x and y
represent the sampling time of each pair of isolates, rounded to the nearest day; and f(vi, ui) is a function
for comparing sampling sources in a conceptual model describing the transmission of C. jejuni (Fig. 1)
using a set of epidemiological attributes and the scoring rubric used to compare them (Fig. 2). Finally,
the epidemiological similarity between two isolates is defined as 1 � the epidemiological distance (i.e.,
1 � Δ�). A detailed rationale and derivation of the various components in the complete model are
presented in Text S1 in the supplemental material.

Strain selection for assessing the EpiQuant model. The majority (n � 490) of Campylobacter jejuni
isolates included in this study were described previously (6, 34). These isolates were sampled from a wide
range of agricultural, environmental, retail, and human clinical sources by the FoodNet Canada enteric
disease surveillance network (formerly C-EnterNet) and analyzed by using CGF (6) and MLST (37).
Additional C. jejuni isolates were added to this study so as to cover a wider range of geospatial, temporal,
and source parameters. These included further isolates collected by FoodNet Canada (n � 42) as well as
those collected as part of various sampling initiatives from southern Alberta, British Columbia, Ontario,
Quebec, and New Brunswick, Canada (n � 122). All additional isolates were selected from the Canadian
Campylobacter Comparative Genomic Fingerprinting Database (C3GFdb) on the basis of their CGF
fingerprint and sampling metadata. The C3GFdb is a pan-Canadian collection of over 22,000 Campylo-
bacter isolates from human clinical, animal, and environmental sources analyzed by CGF.

DNA extraction and whole-genome sequencing. Whole-genome sequencing was performed on
the isolates used to supplement our original data set (n � 164) in order to derive in silico MLST profiles.
Isolates were recovered from archival glycerol stocks (60% glycerol in phosphate-buffered saline stored
at �80°C). Stocks were streaked for isolation onto modified cefoperazone charcoal deoxycholate agar
(mCCDA) (CM0739, with selective supplement SR0155E; Oxoid), and monocultures were incubated for 24
to 48 h in a tri-gas microaerobic environment (MAE) (10% CO2, 5% O2, 85% N2) at 42°C. Single colonies
were selected and spread onto blood agar plates (BBL blood agar base [catalog number 211037; BD], 5%
sheep blood) and incubated overnight in a MAE prior to harvesting of biomass. Genomic DNA extractions
were performed by using the Qiagen genomic tip 20G kit according to the manufacturer’s recommen-
dations. The quantity and integrity of genomic DNA were assessed by using the Quant-IT HS fluorometric
assay (catalog number Q-33120; Life Technologies) and gel electrophoresis on 0.8% agarose, respectively.

Paired-end tagged libraries were prepared at the National Microbiology Laboratory (Winnipeg,
Manitoba, Canada) and sequenced on the Illumina MiSeq platform using 150-bp reads. Approximately 30
isolates were pooled per run, yielding, on average, 80- to 100-fold coverage per isolate. Draft genome
assemblies were assembled de novo by using the St. Petersburg Academy genome assembler (SPAdes
version 3.5.0) (38) and selecting a k-mer length of 55, as this provided a consistent quality of assemblies
across the data set.

In silico typing of draft genome assemblies. In order to derive molecular typing results from the
WGS data, Microbial In silico Typing (MIST) software was used (39). Developed by our group, MIST is an
analytical typing engine that enables the user to simulate molecular subtyping results based on a series
of user-defined sequence homology searches against draft genome sequence assemblies. For the
generation of in silico MLST results, we subjected our collection of draft genome assemblies to sequence
queries using MLST allelic sequences available from the BIGSdb server, hosted at the Campylobacter
PubMLST website (http://pubmlst.org/campylobacter/) (40). CCs and STs were determined based on
assignments from PubMLST. A small number of isolates (n � 21) had novel alleles and were excluded
from ST-based analyses.

Application of the EpiQuant model framework to isolates of C. jejuni. All calculations used in the
analyses for this study were performed in the R environment for statistical computing (41) using a set of
custom scripts available for download (see http://www.github.com/hetmanb/EpiQuant_Typing_Analysis).
Pairwise distance matrices for Δg, Δt, and Δs were combined as described in equation 3 to yield a final
Δ� matrix for all isolates used in the study. To facilitate the exploration of the EpiQuant framework,
including various parameters used to calculate the Δ� statistic, an interactive Web application was
developed by using the R Shiny Web application framework (version 0.14.2.9000) for R (http://shiny.rstudio
.com/), available for download (see https://github.com/hetmanb/EpiQuant). A live demonstration of the
site is also available (see https://lfz.corefacility.ca/shiny/EpiQuant/).

A two-dimensional neighbor network was generated from a matrix of source distances using the
“neighborNet” function from the “phangorn” package (version 2.1.1) in R (42) and edited for visual clarity
by using the SplitsTree4 program (version 4.14.3) (43). Heat maps were generated in R by using the
heatmap.2 function from the Gplots package (version 3.0.1) (44) and applying single-linkage clustering.
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The geospatial component of the data set had partial data (i.e., defined at the level of province only) for
63 entries; we assessed these locations as a general provincial location based on Google Maps GPS data
(e.g., “Ontario, Canada”).

Assessing the epidemiological relevance of C. jejuni subtyping data. We defined the ECC of
subtyping clusters as the mean pairwise epidemiological similarity for all isolates within a subtype cluster.
The ECC statistic was used as a measure of the epidemiological concordance (i.e., the epidemiological
relevance) of subtyping clusters, with a high ECC representing clusters with increased epidemiological
specificity (i.e., sampled from similar times, locations, and sources) and a low ECC representing groups
of isolates sharing the same subtype despite various epidemiological profiles. Singleton clusters (e.g.,
clusters containing only one isolate) were not included in the ECC analysis but were used to compute the
background ECC signal of nonclustered isolates for use as a basis for comparison to the ECC values of
various subtyping clusters. Group comparisons for ECC values of isolates were performed in R (version
3.3.1) using an analysis of variance (“aov”) with follow-up Tukey honestly significant difference testing
(“TukeyHSD”), and all tests were performed at a level of significance of an � value of 0.05. To identify
outliers from a box plot analysis of CGF subtyping data, we performed a typical Tukey outlier analysis,
where subtype clusters with ECC � Q3 � (1.5 � IQR or ECC � Q1 � (1.5 � IQR) were determined to be
statistical outliers (where Q1 and Q3 are the first and third quartiles, respectively, and interquartile range
[IQR] � Q3 � Q1).

SUPPLEMENTAL MATERIAL
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JCM.01945-16.

SUPPLEMENTAL FILE 1, PDF file, 0.7 MB.

ACKNOWLEDGMENTS
We thank the Genomics Core Facility at the National Microbiology Laboratory,

Winnipeg, for assistance with sequencing of C. jejuni isolates. This work would not have
been possible without the collaboration of FoodNet Canada and its provincial public
health partners and the many contributors to the Canadian Campylobacter Compara-
tive Genomic Fingerprinting Database (C3GFdb).

Funding for this project was provided through the Government of Canada’s Geno-
mics Research and Development Initiative.

REFERENCES
1. Foxman B, Riley L. 2001. Molecular epidemiology: focus on infection. Am

J Epidemiol 153:1135–1141. https://doi.org/10.1093/aje/153.12.1135.
2. Tauxe RV. 2006. Molecular subtyping and the transformation of

public health. Foodborne Pathog Dis 3:4 – 8. https://doi.org/10.1089/
fpd.2006.3.4.

3. Barrett TJ, Gerner-Smidt P, Swaminathan B. 2006. Interpretation of
pulsed-field gel electrophoresis patterns in foodborne disease investi-
gations and surveillance. Foodborne Pathog Dis 3:20 –31. https://doi
.org/10.1089/fpd.2006.3.20.

4. Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M, Carriço JA.
2012. PHYLOViZ: phylogenetic inference and data visualization for se-
quence based typing methods. BMC Bioinformatics 13:87. https://doi
.org/10.1186/1471-2105-13-87.

5. Francisco AP, Bugalho M, Ramirez M, Carriço JA. 2009. Global optimal
eBURST analysis of multilocus typing data using a graphic matroid ap-
proach. BMC Bioinformatics 10:152. https://doi.org/10.1186/1471-2105-10
-152.

6. Taboada EN, Ross SL, Mutschall SK, MacKinnon JM, Roberts MJ, Bu-
chanan CJ, Kruczkiewicz P, Jokinen CC, Thomas JE, Nash JHE, Gannon
VPJ, Marshall B, Pollari F, Clarke CG. 2012. Development and validation
of a comparative genomic fingerprinting method for high-resolution
genotyping of Campylobacter jejuni. J Clin Microbiol 50:788 –797. https://
doi.org/10.1128/JCM.00669-11.

7. Bender J, Hedberg CW, Besser JM, Boxrud DJ, MacDonald KL, Osterholm
MT. 1997. Surveillance for Escherichia coli O157:H7 infections in Minne-
sota by molecular subtyping. N Engl J Med 337:388 –394. https://doi.org/
10.1056/NEJM199708073370604.

8. Johnson JM, Weagant SD, Jinneman KC, Bryant JL. 1995. Use of pulsed-
field gel electrophoresis for epidemiological study of Escherichia coli
O157:H7 during a food-borne outbreak. Appl Environ Microbiol 61:
2806 –2808.

9. MacDonald DM, Fyfe M, Paccagnella A, Trinidad A, Louie K, Patrick D.
2004. Escherichia coli O157:H7 outbreak linked to salami, British Colum-

bia, Canada, 1999. Epidemiol Infect 132:283–289. https://doi.org/10
.1017/S0950268803001651.

10. McCollum JT, Cronquist AB, Silk BJ, Jackson KA, O’Connor KA, Cosgrove
S, Gossack JP, Parachini SS, Jain NS, Ettestad P, Ibraheem M, Cantu V,
Joshi M, DuVernoy T, Fogg NW, Gorny JR, Mogen KM, Spires C, Teitell P,
Joseph LA, Tarr CL, Imanishi M, Neil KP, Tauxe RV, Mahon BE. 2013.
Multistate outbreak of listeriosis associated with cantaloupe. N Engl J
Med 369:944 –953. https://doi.org/10.1056/NEJMoa1215837.

11. Sails AD, Swaminathan B, Fields PI. 2003. Utility of multilocus sequence
typing as an epidemiological tool for investigation of outbreaks of
gastroenteritis caused by Campylobacter jejuni. J Clin Microbiol 41:
4733– 4739. https://doi.org/10.1128/JCM.41.10.4733-4739.2003.

12. Swaminathan B, Barrett TJ, Hunter SB, Tauxe RV. 2001. PulseNet: the mo-
lecular subtyping network for foodborne bacterial disease surveillance,
United States. Emerg Infect Dis 7:382–389. https://doi.org/10.3201/eid0703
.017303.

13. Mølbak K, Baggesen DL, Aarestrup FM, Ebbesen JM, Engberg J, Fryden-
dahl K, Gerner-Smidt P, Petersen AM, Wegener HC. 1999. An outbreak of
multidrug-resistant, quinolone-resistant Salmonella enterica serotype
Typhimurium DT104. N Engl J Med 341:1420 –1425. https://doi.org/10
.1056/NEJM199911043411902.

14. Mazars E, Lesjean S, Banuls A-L, Gilbert M, Vincent V, Gicquel B, Tibayrenc
M, Locht C, Supply P. 2001. High-resolution minisatellite-based typing as
a portable approach to global analysis of Mycobacterium tuberculosis
molecular epidemiology. Proc Natl Acad Sci U S A 98:1901–1906. https://
doi.org/10.1073/pnas.98.4.1901.

15. Gripp E, Hlahla D, Didelot X, Kops F, Maurischat S, Tedin K, Alter T,
Ellerbroek L, Schreiber K, Schomburg D, Janssen T, Bartholomäus P,
Hofreuter D, Woltemate S, Uhr M, Brenneke B, Grüning P, Gerlach G,
Wieler L, Suerbaum S, Josenhans C. 2011. Closely related Campylobacter
jejuni strains from different sources reveal a generalist rather than a
specialist lifestyle. BMC Genomics 12:584. https://doi.org/10.1186/1471
-2164-12-584.

Hetman et al. Journal of Clinical Microbiology

May 2017 Volume 55 Issue 5 jcm.asm.org 1348

https://doi.org/10.1128/JCM.01945-16
https://doi.org/10.1128/JCM.01945-16
https://doi.org/10.1093/aje/153.12.1135
https://doi.org/10.1089/fpd.2006.3.4
https://doi.org/10.1089/fpd.2006.3.4
https://doi.org/10.1089/fpd.2006.3.20
https://doi.org/10.1089/fpd.2006.3.20
https://doi.org/10.1186/1471-2105-13-87
https://doi.org/10.1186/1471-2105-13-87
https://doi.org/10.1186/1471-2105-10-152
https://doi.org/10.1186/1471-2105-10-152
https://doi.org/10.1128/JCM.00669-11
https://doi.org/10.1128/JCM.00669-11
https://doi.org/10.1056/NEJM199708073370604
https://doi.org/10.1056/NEJM199708073370604
https://doi.org/10.1017/S0950268803001651
https://doi.org/10.1017/S0950268803001651
https://doi.org/10.1056/NEJMoa1215837
https://doi.org/10.1128/JCM.41.10.4733-4739.2003
https://doi.org/10.3201/eid0703.017303
https://doi.org/10.3201/eid0703.017303
https://doi.org/10.1056/NEJM199911043411902
https://doi.org/10.1056/NEJM199911043411902
https://doi.org/10.1073/pnas.98.4.1901
https://doi.org/10.1073/pnas.98.4.1901
https://doi.org/10.1186/1471-2164-12-584
https://doi.org/10.1186/1471-2164-12-584
http://jcm.asm.org


16. Muellner P, Marshall JC, Spencer SEF, Noble AD, Shadbolt T, Collins-
Emerson JM, Midwinter AC, Carter PE, Pirie R, Wilson DJ, Campbell DM,
Stevenson MA, French NP. 2011. Utilizing a combination of molecular
and spatial tools to assess the effect of a public health intervention. Prev
Vet Med 102:242–253. https://doi.org/10.1016/j.prevetmed.2011.07.011.

17. Kramer JM, Frost JA, Bolton FJ, Wareing DR. 2000. Campylobacter con-
tamination of raw meat and poultry at retail sale: identification of
multiple types and comparison with isolates from human infection. J
Food Prot 63:1654 –1659. https://doi.org/10.4315/0362-028X-63.12.1654.

18. French N, Barrigas M, Brown P, Ribiero P, Williams N, Leatherbarrow H,
Birtles R, Bolton E, Fearnhead P, Fox A. 2005. Spatial epidemiology and
natural population structure of Campylobacter jejuni colonizing a farm-
land ecosystem. Environ Microbiol 7:1116 –1126. https://doi.org/10
.1111/j.1462-2920.2005.00782.x.

19. Dingle KE, Colles FM, Ure R, Wagenaar JA, Duim B, Bolton FJ, Fox AJ,
Wareing DRA, Maiden MCJ. 2002. Molecular characterization of Campy-
lobacter jejuni clones: a basis for epidemiologic investigation. Emerg
Infect Dis 8:949 –955. https://doi.org/10.3201/eid0809.02-0122.

20. Miller WG, On SLW, Wang G, Fontanoz S, Lastovica AJ, Mandrell RE. 2005.
Extended multilocus sequence typing system for Campylobacter coli. C.
lari, C. upsaliensis, and C. helveticus. J Clin Microbiol 43:2315–2329.
https://doi.org/10.1128/JCM.43.5.2315-2329.2005.

21. Murphy M, Corcoran D, Buckley JF, O’Mahony M, Whyte P, Fanning S.
2007. Development and application of multiple-locus variable number
of tandem repeat analysis (MLVA) to subtype a collection of Listeria
monocytogenes. Int J Food Microbiol 115:187–194. https://doi.org/10
.1016/j.ijfoodmicro.2006.10.022.

22. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM,
Wimalarathna H, Harrison OB, Sheppard SK, Cody AJ, Maiden MCJ. 2012.
Ribosomal multilocus sequence typing: universal characterization of
bacteria from domain to strain. Microbiology 158:1005–1015. https://doi
.org/10.1099/mic.0.055459-0.

23. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q,
Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG. 1998.
Multilocus sequence typing: a portable approach to the identification of
clones within populations of pathogenic microorganisms. Proc Natl
Acad Sci U S A 95:3140 –3145. https://doi.org/10.1073/pnas.95.6.3140.

24. Løbersli I, Haugum K, Lindstedt BA. 2012. Rapid and high resolution
genotyping of all Escherichia coli serotypes using 10 genomic repeat-
containing loci. J Microbiol Methods 88:134 –139. https://doi.org/10
.1016/j.mimet.2011.11.003.

25. Taboada EN, Clark CG, Sproston EL, Carrillo CD. 2013. Current methods
for molecular typing of Campylobacter species. J Microbiol Methods
95:24 –31. https://doi.org/10.1016/j.mimet.2013.07.007.

26. Sabat A, Budimir A, Nashev D, Sá-Leão R, van Dijl J, Laurent F, Grund-
mann H, Friedrich A, ESCMID Study Group of Epidemiological Markers.
2013. Overview of molecular typing methods for outbreak detection and
epidemiological surveillance. Euro Surveill 18(4):pii�20380. http://
www.eurosurveillance.org/ViewArticle.aspx?ArticleId�20380.

27. Carriço JA, Silva-Costa C, Melo-Cristino J, Pinto FR, De Lencastre H,
Almeida JS, Ramirez M. 2006. Illustration of a common framework for
relating multiple typing methods by application to macrolide-resistant
Streptococcus pyogenes. J Clin Microbiol 44:2524 –2532. https://doi.org/
10.1128/JCM.02536-05.

28. Carrillo CD, Kruczkiewicz P, Mutschall S, Tudor A, Clark C, Taboada EN.
2012. A framework for assessing the concordance of molecular typing
methods and the true strain phylogeny of Campylobacter jejuni and C.
coli using draft genome sequence data. Front Cell Infect Microbiol 2:57.
https://doi.org/10.3389/fcimb.2012.00057.

29. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH,

Swaminathan B. 1995. Interpreting chromosomal DNA restriction pat-
terns produced by pulsed-field gel electrophoresis: criteria for bacterial
strain typing. J Clin Microbiol 33:2233–2239.

30. Deckert AE, Taboada E, Mutschall S, Poljak Z, Reid-Smith RJ, Tamblyn S,
Morrell L, Seliske P, Jamieson FB, Irwin R, Dewey CE, Boerlin P, McEwen
SA. 2014. Molecular epidemiology of Campylobacter jejuni human and
chicken isolates from two health units. Foodborne Pathog Dis 11:
150 –155. https://doi.org/10.1089/fpd.2013.1610.

31. Sheppard SK, Dallas JF, MacRae M, McCarthy ND, Sproston EL, Gormley
FJ, Strachan NJC, Ogden ID, Maiden MCJ, Forbes KJ. 2009. Campylobacter
genotypes from food animals, environmental sources and clinical dis-
ease in Scotland 2005/6. Int J Food Microbiol 134:96 –103. https://doi
.org/10.1016/j.ijfoodmicro.2009.02.010.

32. Humphrey T, O’Brien S, Madsen M. 2007. Campylobacters as zoonotic
pathogens: a food production perspective. Int J Food Microbiol 117:
237–257. https://doi.org/10.1016/j.ijfoodmicro.2007.01.006.

33. Sheppard SK, Colles F, Richardson J, Cody AJ, Elson R, Lawson A, Brick G,
Meldrum R, Little CL, Owen RJ, Maiden MCJ, McCarthy ND. 2010. Host
association of Campylobacter genotypes transcends geographic varia-
tions. Appl Environ Microbiol 76:5269 –5277. https://doi.org/10.1128/
AEM.00124-10.

34. Clark CG, Taboada E, Grant CCR, Blakeston C, Pollari F, Marshall B, Rahn
K, MacKinnon J, Daignault D, Pillai D, Ng LK. 2012. Comparison of
molecular typing methods useful for detecting clusters of Campylobacter
jejuni and C. coli isolates through routine surveillance. J Clin Microbiol
50:798 – 809. https://doi.org/10.1128/JCM.05733-11.

35. Yoshida CE, Kruczkiewicz P, Laing CR, Lingohr EJ, Gannon VPJ, Nash JHE,
Taboada EN. 2016. The Salmonella in silico typing resource (SISTR): an
open Web-accessible tool for rapidly typing and subtyping draft Salmo-
nella genome assemblies. PLoS One 11:e0147101. https://doi.org/10
.1371/journal.pone.0147101.

36. Arnold C. 2016. Considerations in centralizing whole genome sequenc-
ing for microbiology in a public health setting. Expert Rev Mol Diagn
16:619 – 621. https://doi.org/10.1586/14737159.2016.1164039.

37. Dingle KE, Colles FM, Wareing DR, Ure R, Fox AJ, Bolton FE, Bootsma HJ,
Willems RJ, Urwin R, Maiden MC. 2001. Multilocus sequence typing
system for Campylobacter jejuni. J Clin Microbiol 39:14 –23. https://doi
.org/10.1128/JCM.39.1.14-23.2001.

38. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS,
Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV,
Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new
genome assembly algorithm and its applications to single-cell sequenc-
ing. J Comput Biol 19:455– 477. https://doi.org/10.1089/cmb.2012.0021.

39. Kruczkiewicz P, Mutschall S, Barker D, Thomas J, Domselaar Van G,
Gannon VPJ, Carrillo CD, Taboada EN. 2013. MIST: a tool for rapid in silico
generation of molecular data from bacterial genome sequences, p
316 –323. Abstr Int Conf Bioinforma Model Methods Algorithms.

40. Jolley KA, Maiden MCJ. 2010. BIGSdb: scalable analysis of bacterial
genome variation at the population level. BMC Bioinformatics 11:595.
https://doi.org/10.1186/1471-2105-11-595.

41. R Core Team. 2016. R: a language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria.

42. Schliep KP. 2011. Phangorn: phylogenetic analysis in R. Bioinformatics
27:592–593. https://doi.org/10.1093/bioinformatics/btq706.

43. Huson DH, Bryant D. 2006. Application of phylogenetic networks in
evolutionary studies. Mol Biol Evol 23:254 –267.

44. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T,
Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B. 2015.
Gplots: various R programming tools for plotting data, R package version
2170. https://cran.r-project.org/web/packages/gplots/index.html.

Computing Epidemiological Concordance of Typing Data Journal of Clinical Microbiology

May 2017 Volume 55 Issue 5 jcm.asm.org 1349

https://doi.org/10.1016/j.prevetmed.2011.07.011
https://doi.org/10.4315/0362-028X-63.12.1654
https://doi.org/10.1111/j.1462-2920.2005.00782.x
https://doi.org/10.1111/j.1462-2920.2005.00782.x
https://doi.org/10.3201/eid0809.02-0122
https://doi.org/10.1128/JCM.43.5.2315-2329.2005
https://doi.org/10.1016/j.ijfoodmicro.2006.10.022
https://doi.org/10.1016/j.ijfoodmicro.2006.10.022
https://doi.org/10.1099/mic.0.055459-0
https://doi.org/10.1099/mic.0.055459-0
https://doi.org/10.1073/pnas.95.6.3140
https://doi.org/10.1016/j.mimet.2011.11.003
https://doi.org/10.1016/j.mimet.2011.11.003
https://doi.org/10.1016/j.mimet.2013.07.007
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20380
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20380
https://doi.org/10.1128/JCM.02536-05
https://doi.org/10.1128/JCM.02536-05
https://doi.org/10.3389/fcimb.2012.00057
https://doi.org/10.1089/fpd.2013.1610
https://doi.org/10.1016/j.ijfoodmicro.2009.02.010
https://doi.org/10.1016/j.ijfoodmicro.2009.02.010
https://doi.org/10.1016/j.ijfoodmicro.2007.01.006
https://doi.org/10.1128/AEM.00124-10
https://doi.org/10.1128/AEM.00124-10
https://doi.org/10.1128/JCM.05733-11
https://doi.org/10.1371/journal.pone.0147101
https://doi.org/10.1371/journal.pone.0147101
https://doi.org/10.1586/14737159.2016.1164039
https://doi.org/10.1128/JCM.39.1.14-23.2001
https://doi.org/10.1128/JCM.39.1.14-23.2001
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1186/1471-2105-11-595
https://doi.org/10.1093/bioinformatics/btq706
https://cran.r-project.org/web/packages/gplots/index.html
http://jcm.asm.org

	RESULTS
	Development of a model for computing source similarities using C. jejuni isolates from the Canadian Campylobacter Comparative Genomic Fingerprinting Database. 
	Combining components to compute epidemiological distance. 
	Use of  to assess the epidemiological concordance of subtyping methods. 
	Adjustment of  parameters to identify subtyping clusters with differing epidemiological characteristics. 

	DISCUSSION
	Conclusions. 

	MATERIALS AND METHODS
	Description of the EpiQuant model for computing . 
	Strain selection for assessing the EpiQuant model. 
	DNA extraction and whole-genome sequencing. 
	In silico typing of draft genome assemblies. 
	Application of the EpiQuant model framework to isolates of C. jejuni. 
	Assessing the epidemiological relevance of C. jejuni subtyping data. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

