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Abstract 
DNA methylation plays a critical role in hematopoietic differentiation. Epimutation is a stochastic variation in DNA methylation that 
induces epigenetic heterogeneity. However, the effects of epimutations on normal hematopoiesis and hematopoietic diseases 
remain unclear. In this study, we developed a Julia package called EpiMut that enabled rapid and accurate quantification of 
epimutations. EpiMut was used to evaluate and provide an epimutation landscape in steady-state hematopoietic differentiation 
involving 13 types of blood cells ranging from hematopoietic stem/progenitor cells to mature cells. We showed that substantial 
genomic regions exhibited epigenetic variations rather than significant differences in DNA methylation levels between the myeloid 
and lymphoid lineages. Stepwise dynamics of epimutations were observed during the differentiation of each lineage. Importantly, 
we found that epimutation significantly enriched signals associated with lineage differentiation. Furthermore, epimutations in 
hematopoietic stem cells (HSCs) derived from various sources and acute myeloid leukemia were related to the function of HSCs 
and malignant cell disorders. Taken together, our study comprehensively documented an epimutation map and uncovered its 
important roles in human hematopoiesis, thereby offering insights into hematopoietic regulation.
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1.  INTRODUCTION
The hematopoietic system is a well-known model for study-

ing the regulatory network in cell fate decision and lineage dif-
ferentiation.1,2 In recent decades, DNA methylation has been 

investigated and proven to be closely involved in the mainte-
nance of hematopoietic stem cell (HSC) function and hemato-
poietic differentiation.3,4 For instance, myeloid cells undergo 
demethylation, whereas lymphoid cells establish a de novo 
methylation landscape,5 ensuring precise stepwise differenti-
ation through DNA methylation. Previous genome sequenc-
ing studies have revealed that enzymes, including writers and 
erasers of DNA methylation, have frequent mutations in blood 
malignancies. In particular, 5-Aza-2-deoxycytidine has been 
used to treat patients with myelodysplastic syndrome by inhib-
iting DNA methylation.6

Stochastic changes in DNA methylation, also known as 
epimutation, generate epigenetic heterogeneity. This turnover 
of cytosine modification is common and has been shown to 
occur at regulatory loci in a sequence-dependent manner.7 
Epimutation also acts as an important epigenetic molecular 
clock recording the lineage history of cells in the same phy-
logenetic tree. This characteristic of a clock is well illustrated 
by revealing the relationship of epigenetic information to the 
physiological ages of tissues.8 It has also been used to trace 
the lineage relationship in blast cells of patients with chronic 
lymphocytic leukemia.9 However, the epimutation landscape 
and its potential regulation in human hematopoiesis are 
unknown.

Several metrics have been proposed to evaluate epimuta-
tion, including the proportion of discordant reads (PDR),9 
methylation concurrence ratio (MCR),10 and quantitative 
fraction of discordant read pairs (qFDRP).11 PDR is used to 
evaluate locally disordered DNA methylation. MCR concep-
tualizes the degree of concurrence between active methylation 
and demethylation. However, MCR underestimates the real 
concurrence because bisulfite-seq fails to distinguish 5 hmC 
from 5 mC. qFDRP quantifies the disagreement between 
pairs of methylation states observed in the sequencing reads. 
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Nonetheless, current available tools for evaluating these 
metrics demonstrate common limitations. One major limita-
tion is that genomic variations, including insertion/deletion 
(indel) and single nucleotide polymorphism (SNP), are not 
considered, which may lead to errors in the estimation of 
epimutation. Another critical issue is that the calculation is 
time-consuming because the data volume of the DNA meth-
ylomes is large. Optimized utilities are required to overcome 
these limitations.

In this study, we developed an open-source tool called 
EpiMut to facilitate the rapid and accurate measurement of 
epimutation. Using EpiMut, we comprehensively established 
the epimutation landscape of human blood cells, including 
stem/progenitor cells and mature cells from multiple lineages. 
We also illustrated the unique patterns of epimutation in 
distinct HSCs and malignant cells from acute myeloid leu-
kemia (AML) patients. Our findings highlight the prevalent 
involvement of epimutations in hematopoiesis and provide 
new insights into hematopoietic regulation and malignancy 
pathogenesis.

2.  RESULTS

2.1.  EpiMut was developed to assess epimutation

The available tools used to evaluate epimutations are 
time-consuming because bisulfite sequencing data are typically 
large. To address this, we first developed a Julia package named 
EpiMut to facilitate a more rapid and accurate estimation 
of epimutations (Fig. 1A). EpiMut estimates 3 metrics: PDR, 
MCR, and qFDRP (Supplemental Figure 1A and B, http://links.
lww.com/BS/A104). Bisulfite treatment induces damage to 
DNA templates and generates genomic variations in sequenc-
ing libraries. SNPs are known to have a high frequency of C-T 

conversion, making the accurate evaluation of epimutation a 
challenge. To address this, we optimized a pipeline to retain 
sequencing reads containing indels rather than discarding 
them. This approach can rectify mismatches at CpG sites and 
rescue additional sequencing reads. In addition, we only esti-
mated the methylation of CpG sites without overlapping with 
known SNPs, thus avoiding interference from SNPs. Therefore, 
EpiMut rescued more sequencing reads and CpG sites to 
improve the accuracy of epimutation calculations (Fig. 1B–D 
and Supplemental Figure 1C–K, http://links.lww.com/BS/
A104). Furthermore, considering that epimutation estimation 
requires intensive computation, EpiMut offers the flexibility 
to calculate three distinct metrics to quantify the epimutation 
rate, leverage multiple cores, and utilize the Julia programming 
language to significantly enhance computational speed (Fig. 1E 
and Supplemental Figure 1D and H, http://links.lww.com/BS/
A104). Downstream analyses, including the determination 
of differential epimutation, gene ontology (GO) enrichment, 
and genomic region enrichment, were integrated into EpiMut 
(Fig. 1A). Therefore, we anticipate that EpiMut will pave the 
way for the investigation of epimutation heterogeneity owing 
to its fast analysis of large sequencing data and accurate estima-
tion of various epimutation metrics.

2.2.  Epimutation landscape in human blood cells

Next, we examined the epimutation landscape of normal 
human blood cells. We used EpiMut to quantify the PDR val-
ues of 7 groups of hematopoietic stem/progenitor cells and 6 
types of mature cells derived from normal human peripheral 
blood (PB). There was a notable increase in genome-wide epi-
mutation from stem/progenitor cells to mature cells (Fig. 2A, 
Supplemental Figure 2A, http://links.lww.com/BS/A104). When 
comparing epimutation in different genomic regions, CpG 

Figure 1. The development and evaluation of EpiMut. (A) The workflow of EpiMut for epimutation rate measurement. (B) Comparison of reads used in PDR 
analysis between EpiMut and WSH. (C) Comparison of covered CpG sites in PDR analysis between EpiMut and WSH. (D) Comparison of average PDR values 
calculated by EpiMut and WSH. (E) The running time of PDR calculation at different sequencing depths in EpiMut and WSH. *P < .05;  ***P < .001 (unpaired 
2-tailed Student t test). ns = not significant, PDR = proportion of discordant reads.

http://links.lww.com/BS/A104
http://links.lww.com/BS/A104
http://links.lww.com/BS/A104
http://links.lww.com/BS/A104
http://links.lww.com/BS/A104
http://links.lww.com/BS/A104
http://links.lww.com/BS/A104


www.blood-science.org  3 

 Chin Assoc of Blood Sci

islands (CGI) and promoters exhibited the lowest PDR values, 
whereas regulatory regions, such as transcription factor (TF) 
binding sites, presented the highest PDR values (Fig. 2B and 
Supplemental Figure 2B, http://links.lww.com/BS/A104). These 
dynamic patterns of epimutation were also verified when only 
lymphoid or myeloid cells were analyzed (Fig. 2C and D). In 
particular, analysis of the distribution of PDR on the transcrip-
tion start site (TSS) and their adjacent 2-kilobase (kb) regions 
revealed that mature cells exhibited a higher PDR than their 
progenitors within both lymphoid and myeloid lineages (Fig. 2E 
and F). This pattern of higher PDR in mature cells was observed 
despite the generally low PDR values across all cell types. This 
indicated that changes in epimutation correlated with hema-
topoietic differentiation, even within regions characterized by 
low epimutation levels. During hematopoietic differentiation, 
mature cells rapidly transform into a more disordered state. The 
elevated epimutation rates also accurately recorded cell differ-
entiation history as an epigenetic molecular clock. Remarkably, 
low epimutation in the CGI and promoter regions suggests 
that unmethylated or methylated states, rather than disordered 
methylation states, are required to regulate gene expression. In 
contrast, high epimutation in TF binding sites indicates a fre-
quent turnover of DNA methylation to dynamically regulate TF 
binding, representing the role of gene regulation by epimutation 
changes.

2.3.  Epimutation distinguishes myeloid and lymphoid 
progenitors

One major event in hematopoietic differentiation is the lin-
eage commitment of myeloid and lymphoid cells. To understand 
the relationship between epimutation and lineage commitment, 
differentially discordant regions (DDRs) of epimutation were 
identified between common myeloid progenitors (CMP) and 
common lymphoid progenitors (CLP). In total, 4186 DDRs 
were identified in the CMP and CLP groups. Specifically, 1866 
DDRs exhibited lower PDR values in CMP, whereas 2320 
DDRs showed lower PDR values in CLP (Fig. 3A). Notably, 
a few DDRs showed differential DNA methylation patterns 
between CMP and CLP (Supplemental Figure 3A, http://links.
lww.com/BS/A104). This suggests that epimutation may provide 
more information on lineage commitment because changes in 
DNA methylation between lineages are subtle.

To examine the potential functional role of epimutations, 
we identified DDR-associated genes. GO enrichment analysis 
showed that regions with lower PDR in the CMP were enriched 
for myeloid development. In contrast, adaptive immunity, 
innate immunity, and immune processes were enriched in the 
CLP group (Fig. 3B). We further examined the PDR values of 
stemness-, myeloid-, and lymphoid-associated genes in HSC, 
CMP, and CLP.12,13 We found that stemness-related genes had 

Figure 2. Overview of epimutation among human hematopoietic cell types. (A) Boxplots display the average PDR level of 13 hematopoietic cell types, targeting 
1000 cells within each library. The gray dashed line represents the mean PDR level of all cell types. (B) Violin plots showing the PDR values across all cell types 
for different genomic regions. (C–D) Heatmap illustrating absolute PDR level across genomic regions in (C) lymphoid and (D) myeloid cells. (E–F) The average PDR 
levels of (E) lymphoid cells and (F) myeloid cells around the TSS (±2 kb) of all RefSeq genes. CGI = CpG islands, CLP = common lymphoid progenitors, CMP = 
common myeloid progenitors, CTCF = CCCTC-binding factor, GMP = granulocyte/monocyte progenitors, HSC = hematopoietic stem cell, LINE = long inter-
spersed nuclear element, LTR = long terminal repeat, MEP = megakaryocyte/erythroid progenitor, MLP = multi-lymphoid progenitor, MPP = multipotent progeni-
tor, NK = natural killer, PDR = proportion of discordant reads, SINE = short interspersed nuclear element, TF = transcription factor, TSS = transcription start site. 
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lower PDR values in HSC, along with the lowest PDR values 
of myeloid-related genes in CMP and the lowest PDR values 
of lymphoid-related genes in CLP (Fig. 3C and Supplemental 
Figure 3C and D, http://links.lww.com/BS/A104). TF motif 
enrichment analysis showed that the TF binding sites of well-
known myeloid TFs, including EGR2, GATA1, and CEBPA, 
displayed significantly higher epimutation rates in CMP than 
in CLP.14 Meanwhile, regions exhibiting higher PDR values 
in lymphoid progenitors had pronounced enrichment of TF 
binding sites associated with lymphoid TFs, such as EOMES 
and EBF1 (Fig. 3D).15 These results suggest that functional ele-
ments are involved in the regulation of lineage commitment 

of blood cells. We also presented the PDR values of CLP-
specific and CMP-specific DDRs in MPPs. However, we did 
not observe any epimutation patterns clearly associated with 
lineage differentiation within MPPs, indicating that the epimu-
tation features of CMP and CLP gradually accumulate during 
the differentiation of MPPs into downstream progenitor cells.

2.4.  Accumulated epimutation during myeloid and 
lymphoid differentiation

To explore the effect of epimutation during lineage differ-
entiation, we compared epimutation between progenitors and 

Figure 3. Epimutation distinguishes myeloid and lymphoid progenitors. (A) Heatmap showing the row-scaled PDR of DDRs defined in CMP and CLP. (B) 
GO enrichment analysis of DDR-related genes between CLP and CMP. The x-axis represents the negative logarithm of the P values. (C) Heatmaps showing 
the row-scaled PDR values within the promoters of stemness, lymphoid-specific, and myeloid-specific genes across hematopoietic progenitor cells. (D) TF 
motif enrichment of DDRs between CLP and CMP. CLP = common lymphoid progenitor, CMP = common myeloid progenitor, DDRs = differentially discordant 
regions, GO = gene ontology, HSC = hematopoietic stem cell, MPP = multipotent progenitor, PDR = proportion of discordant read, TF = transcription factor.

http://links.lww.com/BS/A104


www.blood-science.org  5 

 Chin Assoc of Blood Sci

terminally differentiated cells within the myeloid and lymphoid 
lineages. From granulocyte/monocyte progenitors (GMP) to 
neutrophils and monocytes, PDR showed an increase in 3940 
and 3388 regions, while a decrease was observed in 1636 and 
1685 regions, respectively (Fig. 4A). There were similar PDR 
changes from lymphoid progenitors to natural killer (NK), B, 
CD4+, and CD8+ T cells (Fig. 4E). Notably, consistent with the 
limited overlap between DDRs and differentially methylated 
regions (DMRs) in lineage commitment, 90% of the DDRs 
identified between progenitors and mature cells did not overlap 
with DMRs (Supplemental Figure 4A–F, http://links.lww.com/
BS/A104).

Epimutation dynamics are also functionally relevant during 
lineage differentiation. GO enrichment analysis showed that 
genomic regions exhibited a lower PDR in neutrophils than 
in GMP enriched in neutrophil-related biological processes 
(Fig. 4B). Additionally, regions with a lower PDR in monocytes 
were enriched for inflammation and endocytosis (Fig. 4C). We 
also examined the PDR values of the cell type-specific gene sig-
natures, and the distribution supported a unique pattern of epi-
mutation in each cell population (Fig. 4D). For instance, PRTN3 
exhibited the lowest PDR values with high expression in GMP.16 
During lymphoid differentiation, promoters with lower PDR val-
ues were significantly enriched for defense mechanisms against 

Figure 4. Different epimutation between progenitors and terminally differentiated cells. (A) Illustration depicting the numbers of DDRs in pairwise comparisons 
between GMP and neutrophil/monocyte. (B–C) GO enrichment analysis of genes related to DDRs with lower PDR values in (B) neutrophils and (C) monocytes 
compared to GMPs. The x-axis represents the negative logarithm of the P values. (D) Boxplots showing PDR values of cell type-specific genes across GMP, 
neutrophil, and monocyte. *P < .05, **P < .01 (unpaired 2-tailed Student t test). (E) Illustration depicting the numbers of DDRs in pairwise comparisons between 
MLP and mature cells (NK, B, CD4+, and CD8+ T cells). (F) GO enrichment analysis of genes with lower PDR values in lymphoid mature cells (NK, B, CD4+, and 
CD8+ T cells) than MLP, respectively. The size of the dots represents the enrichment score, while the color indicates the negative logarithm of the P values. (G) 
TF motif enrichment of DDRs with higher PDR values in mature cells than progenitors. Both the colors and sizes of the dots indicate the motif enrichment scores. 
DDRs = differentially discordant regions, GMP = granulocyte/monocyte progenitor, GO = gene ontology, MLP = multi-lymphoid progenitor, NK = natural killer, 
PDR = proportion of discordant read, TF = transcription factor.
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viral infections, innate immune responses, and T cell activation 
(Fig. 4F). These results illustrate that differentiation-related 
genes require the transition of epimutation from a disordered to 
an ordered state, with low epimutation rates in their promoter 
regions. This may be an intermediate demethylation process for 
the activation of cell type-specific genes. However, the more dis-
ordered states of TF binding sites in mature cells were specifi-
cally linked to the regulation of cell differentiation (Fig. 4G and 
Supplemental Figure 4G and H, http://links.lww.com/BS/A104).

2.5.  Heterogeneity of epimutation in HSCs from distinct 
sources

To delineate the impact of epimutation on HSCs during 
development, we conducted a comparative analysis of epi-
mutation rates in HSCs derived from 4 different sources: the 
fetal liver (FL), cord blood (CB), bone marrow (BM), and PB. 
Notably, HSCs derived from the adult BM had the lowest 
PDR, which was inconsistent with the expectation of epimu-
tation accumulation during development (Fig. 5A). Although 
enhancers and TF binding sites showed the lowest PDR in PB, 
BM showed the lowest PDR in most genomic regions (Fig. 5B 
and C). Next, we identified source-specific DDRs in HSCs. In 
total, 1579, 389, 2239, and 8922 DDRs were identified, with 
the lowest PDR values in FL, CB, BM, and PB, respectively. 
GO enrichment analysis revealed that the regions with the 
lowest PDR values in the FL were related to embryonic devel-
opment. In particular, several key pathways essential for HSC 
function were enriched in the BM, including the RHO GTPase 
cycle signaling, AKT signaling, WNT signaling, BMP pathway, 
Runx1 pathway, and Notch signaling pathway.17–20 Regarding 
PB HSCs, these regions exhibited enrichment in HS-GAG deg-
radation and cell differentiation (Fig. 5D).21 Subsequently, the 
scores of HSC-related genes were computed using the PDR 
values of the gene promoters. BM had the lowest score across 
the quiescence, MYC targets, E2F targets, and stemness path-
ways (Fig. 5E). Representative genes (Fig. 5F and Supplemental 
Figure 5A–F, http://links.lww.com/BS/A104) and TFs (Fig. 5G) 
supported the source-specific distribution of epimutations in 
HSCs. These results suggest that the niche of BM HSCs plays 
an important role in maintaining HSC function, as represented 
by the distinct epimutation status.

2.6.  Abnormal epimutation in AML

The enzymes involved in DNA methylation are frequently 
mutated in malignancies. This directly indicates the involvement 
of DNA methylation in abnormal hematopoiesis. Therefore, 
we investigated the changes in epimutation in patients with 
mixed-lineage rearranged AML (MLL-r AML). We observed a 
notable elevation in PDR values in comparison to normal HSC 
(Fig. 6A, Supplemental Figure 6A, http://links.lww.com/BS/
A104). Moreover, the PDR values were higher across all genomic 
regions than in normal cells (Fig. 6B). These results suggest a 
higher level of epigenetic diversity in AML, indicating a more 
active cell cycle and proliferation of malignant cells. DDRs with 
lower PDR in AML were mainly enriched in the negative reg-
ulation of the immune response, cell proliferation, and activa-
tion of the Notch signaling pathway (Fig. 6C and Supplemental 
Figure 6B and C, http://links.lww.com/BS/A104). This result 
aligns with the immune dysfunction and blast-cell expansion in 
AML. In addition, the promoter regions corresponding to these 
known leukemia driver genes showed lower PDR levels in AML 
(Supplemental Figure 6D, http://links.lww.com/BS/A104), sug-
gesting that increased expression of these genes is potentially 
correlated with the pathogenesis of AML.

Furthermore, we identified 2 target genes, ARHGAP22 and 
PARD6A, annotated from DDRs with low PDR values in AML. 

These 2 candidates have been reported as promising therapeu-
tic targets in cancer.22,23 ARHGAP22 is implicated in tumor 
cell motility and plays a role in the survival-mediated effects 
of Akt signaling.24 In addition, PARD6A has been identified 
as an inducer of cell migration and invasion, contributing to 
the metastasis of ovarian cancer.23 In our study, lower epimu-
tation rates as well as higher expression of ARHGAP22 and 
PARD6A were found to be correlated with shorter survival in 
AML (Fig. 6D). These results indicate that epimutations could 
serve as an indicator for investigating the clinical outcomes of 
hematological malignancies.

3.  DISCUSSION
DNA methylation is essential for normal biological func-

tions.25 The stochastic fluctuations in DNA methylation lead to 
epigenetic heterogeneity. To address the limitations of current 
available software for epimutation analysis, we first developed 
EpiMut, a novel tool designed for the rapid and accurate quan-
tification of epimutations using DNA methylation sequencing 
data. In this study, we documented the epimutation landscape 
of blood cells and emphasized the potential regulatory role of 
epimutation in hematopoietic differentiation and malignancies.

During lineage commitment and differentiation, we identified 
a substantial number of genomic regions with differential epimu-
tations. CGI and promoter regions tended to have low epimuta-
tion rates, consistent with either high or low DNA methylation 
levels. We hypothesized that concordant DNA methylation in 
promoters enables efficient and stable transcription initiation 
or inhibition of hematopoietic developmental genes. Notably, 
TF binding sites had the highest epimutation rate. This indi-
cates high DNA methylation heterogeneity within the binding 
regions of TFs, which suggests that they could facilitate the swift 
alteration of DNA methylation patterns with minimal methyla-
tion modifications to rapidly respond to both intracellular and 
extracellular signals, thus specifically regulating hematopoietic 
differentiation-related genes. Additionally, DNA methylation 
modification could have an impact on protein–DNA interac-
tions and the binding specificity of TFs.26 Previous studies have 
shown that the binding of individual TFs is directly affected 
by DNA methylation.27 CpG methylation alters the binding 
sensitivity of TFs by modifying the local 3-dimensional of the 
DNA.28 DNA methylation changes the stability of nucleosomes, 
which affects the local chromatin structure and accessibility of 
TFs to genomic DNA.29 Therefore, the elevation of epimutation 
during lineage differentiation suggests intricate DNA methyla-
tion patterns are correlated to specific TF binding and special-
ized biological functions of the mature cells. To achieve a better 
mechanistic understanding of the effect of epimutation on TF 
binding sites, further analyses using motif databases and exper-
iments are needed.

Furthermore, DDRs are closely associated with pathways that 
regulate lineage-specific differentiation. Notably, these DDRs 
had few overlaps with the DMRs. Because DNA methylation 
levels are generally high in somatic cells, especially in cells with 
the same differentiation system, the identification of differential 
DNA methylation is limited. Instead, epimutation differences 
may provide an alternative angle for studying mechanisms in 
hematopoiesis as well as other systems.

Unexpectedly, adult BM-derived HSCs had the lowest epi-
mutation rates compared with HSCs from other developmen-
tal stages or tissues. One feature of epimutation is its ability 
to record the epigenetic history. Thus, the process of epimu-
tation during the cell cycle or differentiation was enhanced. 
This indicates that during the migration of HSCs from the 
FL to the BM at the embryonic stage, HSCs undergo a tran-
sition from a disordered to an ordered state. This transition 
may be dependent on the microenvironment. As HSCs circu-
late in the blood, including CB and PB, epimutation increases. 

http://links.lww.com/BS/A104
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Indeed, HSCs in BM have specific epimutation features that 
support their functions. Moreover, malignant cells in AML 
show distinct and aberrant epimutations related to the dys-
regulation of immune signaling. Aberrant epimutations in 
MLL-r AML may endow blast cells with enhanced population 
diversity, whereas stochastic methylation alterations augment 

epigenetic plasticity, thereby suggesting an effective strategy 
for evading attacks.

Collectively, our work highlights the involvement of epimu-
tation in hematopoietic regulation and malignancies, providing 
new insights into the epigenetic regulation of hematopoiesis. We 
anticipate that our newly developed tool, EpiMut, will pave the 

Figure 5. HSCs exhibit differential epimutation across 4 tissues. (A) Boxplots display the average PDR levels of HSCs from different tissues. The gray dashed 
line indicates the mean PDR level of all libraries. *P < .05; **P < .01; ***P < .001 (unpaired 2-tailed Student t test). (B) Boxplots display the PDR values across 
different tissues for different genomic regions. (C) Region set enrichment analysis for tissue-specific-lower DDRs (top) and tissue-specific-higher DDRs (bottom) 
of HSCs. The y-axis represents the negative logarithm of the P values, which is calculated by LOLA. The horizontal dashed line corresponds to a significance 
threshold of .05 for the P values. (D) Heatmap showing the row-scaled PDR values of tissue-specific lowest DDRs. The right column shows the GO enrichment 
of DDR-related genes. (E) Boxplots compare the PDR scores from each selected HALLMARK gene set across different tissues of HSCs. PDR scores are defined 
as the mean PDR levels of the promoters within the corresponding gene set. *P < .05, **P < .01, ***P < .001 (unpaired 2-tailed Student t test). (F) Heatmaps 
showing the scaled PDR values within the promoters of HSC maintenance and stemness markers across different tissues of HSCs. (G) TF motif enrichment of 
tissue-specific DDRs with highest PDR. The color indicates the motif enrichment scores. BM = bone marrow, CB = cord blood, CGI = CpG islands, CTCF = 
CCCTC-binding factor, DDRs = differentially discordant regions, FL = fetal liver, GO = gene ontology, HSC = hematopoietic stem cell, LINE = long interspersed 
nuclear element, LOLA = locus overlap analysis, LTR = long terminal repeat, ns = not significant, PB = peripheral blood, PDR = proportion of discordant read, 
SINE = short interspersed nuclear element, TF = transcription factor.
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way for the study of epimutation-based mechanisms, benefiting 
from its fast and accurate processing of large volumes of bisul-
fite sequencing data.

4.  MATERIALS AND METHODS

4.1.  Design of EpiMut

We used the packages named GenomicFeatures.jl, 
BioSequences.jl, and XAM.jl in Julia to develop EpiMut. First, 
the CpG methylation state was determined by comparing the 
sequencing reads with the reference genome. Indels (insertions 
or deletions) in the sequencing reads were removed or added 
based on the CIGAR values in the BAM. The SNP sites in the 
CpGs were removed to ensure accurate calculations. EpiMut 
can compute three key metrics of epimutation rates (PDR, 
MCR, and qFDRP) from BAM files aligned using tools such as 
BS-Seeker2. The PDR for CpGs was calculated as the number 
of discordant reads divided by the total number of reads. The 
MCR for a given CpG is equivalent to the ratio of concurrent 

methylation CpGs (unmethylated CpGs in partially methylated 
reads) to total CpGs. qFDRP was calculated using the fractions 
of sites that do not reflect the same methylation state in both 
reads of discordant read pairs divided by the total read pairs. 
After calculating the epimutation rates, EpiMut identified DDRs 
between the 2 groups using unpaired 2-tailed Student t tests, 
with P value adjusted using the Benjamini–Hochberg method. 
The visualization of PDRs was achieved by using the “cgmap-
tools tanghulu” command.30 GO analysis of DDR-associated 
genes was conducted using an R package of clusterProfiler,31 
and the locus overlap analysis (LOLA) R package32 was 
applied to the enrichment analysis of genomic regions. EpiMut 
software in Julia is publicly accessible at https://github.com/
zhangchunyong999/EpiMut.

4.2.  Evaluation of EpiMut

WSH was utilized to calculate PDR and qFDRP,11 whereas 
CAMDA was employed for the computation of MCR.10 And all 
these 3 metrics could be obtained by our newly developed tool, 

Figure 6. Epimutation associated with AML. (A) Boxplots display the average PDR levels of normal HSC (n = 3) and AML (n = 3). P values are shown above 
the box (unpaired 2-tailed Student t test). (B) Boxplots showing the PDR values for different genomic regions across normal HSC and AML. *P < .05, **P < 
.01, ***P < .001 (unpaired 2-tailed Student t test). (C) GO enrichment analysis of DDR-related genes between normal HSC and AML. The x-axis represents the 
negative logarithm of the P values. (D) Boxplots display the PDR levels within the promoters of ARHGAP22 and PARD6A across normal HSC and AML (left). 
Survival analysis was performed based on the expressions of ARHGAP22 and PARD6A in the TCGA-LAML patient cohort (right). *P < .05; **P < .01 (unpaired 
2-tailed Student t test). AML = acute myeloid leukemia, CGI = CpG islands, CTCF = CCCTC-binding factor, DDR = differentially discordant region, GO = gene 
ontology, HSC = hematopoietic stem cell, LINE = long interspersed nuclear element, LTR = long terminal repeat, PDR = proportion of discordant read, SINE = 
short interspersed nuclear element, TF = transcription factor. 

https://github.com/zhangchunyong999/EpiMut
https://github.com/zhangchunyong999/EpiMut


www.blood-science.org  9 

 Chin Assoc of Blood Sci

EpiMut. To compare the counts of reads used to calculate the 
epimutation rates between WSH11 and EpiMut, we took 3 rep-
licates and screened out all reads with CpGs using SAMtools33 
and XAM.jl. The read numbers calculated for epimutation 
rates were subsequently counted in WSH and EpiMut. Next, 
we applied WSH (compute_PDR.R and compute_qFDRP.R) 
and EpiMut (calculate PDR. jl and qFDRP. jl) to calculate the 
epimutation rates (PDR and qFDRP), respectively. MCR was 
calculated using CAMDA (CAMDA.py)10 and EpiMut (calcu-
lateMCR.jl). To evaluate running time, we sampled reads from 
an alignment file in BAM format using “samtools view -s.” To 
evaluate the running time, we took samples of reads from a 
BAM alignment file using “samtools view -s.” Three replicates 
were performed for evaluating read number size of the input 
BAM files. The BAM files were calculated using 20 threads 
both in WSH (compute_PDR.R) and EpiMut (calculate PDR. 
jl). Each thread is assigned a CPU core. We used 1 core to 
calculate the MCR in CAMDA and applied it to EpiMut for 
comparison. Subsequently, we compared the read numbers, 
CpG coverage, epimutation rates, and running times of WSH, 
CAMDA, and EpiMut using an unpaired 2-tailed Student t test.

4.3.  Epimutation rates for hematopoietic cells

Thirteen hematopoietic cell types from normal human PB 
were used for epimutation analysis based on whole-genome 
bisulfite sequencing datasets. Raw data were downloaded from 
the European Genome-phenome Archive with the accession 
number EGAS00001002070.5 DNA methylation sequencing 
data of AML were downloaded from the NCBI GEO database 
with the accession number GSE135869.34 Quality control was 
performed using TrimGalore (v0.4.5) (http://www.bioinfor-
matics.babraham.ac.uk/projects/trim_galore/). The clean reads 
were aligned to the hg38 RefSeq reference genome (University 
of California, Santa Cruz Genome Browser, UCSC Genome 
Browser) using scBS-map (v1.0.0).35 Subsequently, polymerase 
chain reaction (PCR) duplicates were removed using SAMtools 
(v0.1.9), and Chromosomes X, Y, and M were excluded to 
ensure accuracy and interpretability. Only the reads with more 
than four CpG sites were selected for further analysis. We used 
PDR values from our EpiMut software to assess the epimuta-
tion rates in hematopoietic cell analysis.

4.4.  Annotation of genomic regions

The genomic features used in our analysis included 
whole-genome 1 kb tiling, promoters, gene bodies, intergenic 
regions, CpG islands, repeat elements, and regulatory regions. 
Promoters were defined as regions upstream 1 kb to down-
stream 1 kb of the TSSs. Gene bodies were defined as the regions 
from the TSSs to the transcription end sites. Intergenic regions 
were defined as stretches of DNA located between genes. 
The CpG islands were downloaded from the UCSC Genome 
Table (hg38). Repeat elements including long terminal repeats 
(LTRs), short interspersed nuclear elements (SINEs), and 
long interspersed nuclear elements (LINEs) were downloaded 
from the hg38 Repeat Masker. Regulatory regions, such as 
enhancers, CCCTC-binding factor (CTCF) binding sites, and 
TF binding sites, were obtained from the regulatory features 
in the ensemble database. The epimutation rate of a region 
was calculated as the average epimutation rate of all CpG sites 
within that region; each region was required to cover at least 
5 CpG sites.

4.5.  Identification of DDRs and DMRs

To estimate the epimutation value, we divided the genome 
into consecutive 1000 bp tiles, and only tiles with more than 
5 CpG sites in the library were considered. The PDR of each 

tile was defined as the average PDR of all CpG sites within the 
tiles. We stipulated that each tile must exhibit coverage across 
at least 2 libraries in both groups to ensure meaningful statisti-
cal testing. Tiles with P < .05, unpaired 2-tailed Student t test, 
and PDR differences between the 2 groups >0.2 were defined as 
DDRs. For DMR analysis, the mean methylation levels of each 
1000 bp tile were calculated as the average methylation values 
of all CpG sites within the tile. We stipulated that each tile must 
exhibit coverage across at least 2 libraries in both groups to 
ensure meaningful statistical testing. Tiles with P values <.05, 
unpaired 2-tailed Student t test, and differences in methylation 
levels between the 2 groups >0.2 were defined as DMRs.

4.6.  Enrichment analysis

Genomic region enrichment was performed using LOLA 
software (v1.19.1)32 with custom genomic regions described 
in “Annotation of genomic regions” of Methods. For genomic 
functional analysis of DDRs, the “bedtools intersect” command 
was applied to annotate the DDRs region onto the promoter to 
obtain the DDR-related genes, and GO enrichment analysis was 
performed by an online website metascape (https://metascape.
org).36 “findMotifsGenome.pl” in HOMER37 (v4.11) was used 
to search for TFs binding to DDRs with the parameters “-size 
2000 -S 100.” Only motifs with P values ≤10−8 were retained.

4.7.  Survival analysis

Overall survival data analyses were performed using Kaplan–
Meier curves with the GEPIA2 webserver38 (http://gepia2.can-
cer-pku.cn) based on TCGA and GTEx databases. The LAML 
cohort was divided into high and low expression groups for 
each gene using the median value (50% cutoff).

4.8.  Statistics and data visualization

Student t test was used to test for significance between the 2 
groups, and P values were used for significance evaluation (*P < 
.05; **P < .01; ***P < .001; ns, not significant).
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