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2 Faculté de Médecine Pitié Salpêtrière, Université Pierre et Marie Curie, UMR 678 CNRS, 75013 Paris, France
3 Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Oxford OX3 9DU, UK
4 McConnell Bain Imaging Center, Montreal Neurological Institute, McGill University, Montréal, Canada H3A 2T5
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7 Unité d’Imagerie Fonctionnelle, Université de Montréal, Montréal, Canada H3C 3J7

Correspondence should be addressed to S. Jbabdi, saad@fmrib.ox.ac.uk

Received 1 May 2007; Accepted 21 September 2007

Recommended by Oury Monchi

Using geodesics for inferring white matter fibre tracts from diffusion-weighted MR data is an attractive method for at least two rea-
sons: (i) the method optimises a global criterion, and hence is less sensitive to local perturbations such as noise or partial volume
effects, and (ii) the method is fast, allowing to infer on a large number of connexions in a reasonable computational time. Here, we
propose an improved fast marching algorithm to infer on geodesic paths. Specifically, this procedure is designed to achieve accurate
front propagation in an anisotropic elliptic medium, such as DTI data. We evaluate the numerical performance of this approach
on simulated datasets, as well as its robustness to local perturbation induced by fiber crossing. On real data, we demonstrate the
feasibility of extracting geodesics to connect an extended set of brain regions.
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1. INTRODUCTION

For decades, dissection, lesion studies, or axonal transport of
tracers have been the only available techniques for studying
the brain’s anatomical connections. It is not surprising that
due to the invasiveness of these methods, most of the data
concerning the large-scale, white matter tracts of the brain
were collected on animals, for example, cats [1] or monkeys
[2], while structural data for the human brain were largely
missing [3]. Diffusion weighted MR imaging now offers a
propitious and unique framework to explore noninvasively
the organisation of white matter in the living human brain
[4, 5]. Despite the poor spatial resolution of this technique,
already diffusion data are beginning to inform us about hu-
man brain large-scale connections [6–8] and how they relate
to the functional role of cortical and subcortical networks
[9, 10].

Inferring on white matter architecture from diffusion
data relies on the properties of water diffusion in the tis-
sues. Water molecules diffuse more easily along the fibre

tracts than across them, and this anisotropy is captured by
the diffusion-weighted MR signal. Inferring on connexions
given this local feature is challenging, since the observa-
tions (diffusion properties) are indirectly related to the ac-
tual structure (axonal orientations, size, and packing). The
tractography algorithms use the information of direction-
ality contained in diffusion data to infer connectivity be-
tween brain regions. Usually, information about the orien-
tation of white matter fibres is estimated locally, via mod-
els (e.g., diffusion tensor imaging (DTI) [11], mixture mod-
els [12], or partial volume models [13, 14]) or in a model-
free manner (e.g., Q-ball imaging [15]). Fibre tracking con-
sists then in inferring connexions between distant brain re-
gions, given this local orientation. This can be done either in
a deterministic way, by trusting the local orientation infor-
mation and following these directions until reaching a target
region (i.e., streamline tractography [16–19]), or in a prob-
abilistic way, by building distributions of connexions, using
local probabilistic models for fibre orientation distributions
[13, 14, 20].
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In both cases, when tracking a fibre between two regions
of the brain, these algorithms start in one seed region, and try
to find the tracts, or distribution of tracts, that will end up in
the target region. In cases where the local orientation infor-
mation present in the diffusion data is consistent with the
presence of this pathway, then these tractography algorithms
manage in general to recover the connexion between the seed
and the target. However, it often happens that in some parts
of the trajectory, the local diffusion information no longer
supports the presence of the pathway. This can either be due
to a high level of noise compared to the actual signal, or to the
presence of a high number of crossing fibres heterogeneous
in their orientations. This issue is crucial in streamlining al-
gorithms, and is also met in probabilistic algorithms when a
single orientation per voxel is modelled [21]. The problem
with those algorithms is that when tracking from a seed, the
algorithm has no information about the region it will end up
in.

A possible solution to the problem of local perturba-
tions in the diffusion data may be provided by global trac-
tography, that is, optimising a global criterion while seeking
for connexions. A global tractography algorithm can poten-
tially overcome errors in estimating local structure, because
its goal is to connect two given regions. In other words, if we
tell the algorithm which connexion we are looking at, that is,
which pair of regions is to be connected, it is better at find-
ing it. Geodesic tractography (GT), first proposed by Parker
et al. [22], falls into this category. GT is based on the hypoth-
esis that brain fibers can be interpreted as minimal distance
paths (geodesics) for a metric derived from the water diffu-
sion profile. This distance criterion is global by definition.

The basic idea for constructing a geodesic in a metric
space is to build a distance field from a seed region, the very
same region one would use as a seed for streamline tractog-
raphy. This is done by solving the so-called Eikonal equation,
a partial differential equation (PDE) that describes the time
of arrival at each point of the space, as a function of the local
speed. In a constant speed field, this PDE can be easily inte-
grated, and the geodesics are simply straight lines. When the
speed varies across the space, the geodesics can curve, prefer-
ring high local speed locations to decrease the arrival time.
Finally, if the speed depends on the direction of travel (e.g.,
along versus across a fibre tract), then the PDE is said to be
anisotropic.

Solving the Eikonal equation in a heterogeneous and
highly anisotropic medium, as is the human brain, is a tech-
nically challenging problem [23]. This is especially true if one
uses single-pass algorithms, which is particularly important
when dealing with data containing hundreds of thousands of
voxels. There have been a few attempts at solving this prob-
lem in the context of diffusion-based tractography [22, 24–
27].

We describe a method for constructing geodesics in an
anisotropic medium, and apply it to the problem of DTI-
based tractography. This method relies on works in optimal
path planning [28] and, more recently, vessel extraction in
3D angiography images [29]. It has been shown to be very
accurate in anisotropic media [29], and requires less com-
putation than the exact method proposed in Sethian and

Vladimirsky [30] in a general framework for anisotropic op-
timal path planning. The main contribution of this work is
to show how this method applies to the case of an elliptic
medium, where the algorithm performs extremely well both
in terms of accuracy and efficiency, as shown in the simula-
tions. We also show the feasibility of applying such method to
the extraction of structural connectivity in an extended brain
network using diffusion data from a healthy subject.

2. METHODS

In this section, we will give some theoretical background on
geodesics and the Eikonal equation, and describe a single-
pass algorithm for building geodesics.

2.1. Geodesics and the Eikonal equation

A geodesic is a pathway minimising an integral of the form

J(γ) =
∫
F(s, γ, γ′)ds, (1)

where F(s, γ, γ′) =
√
γ′(s)TM(γ(s))γ′(s) describes an in-

finitesimal distance along a pathway γ, relative to a metric
tensor M.

Now, let u(x) be the arrival time function starting from
a location x0, that is, u(x) is equal to the minimum value of
the integral J(γ) along a geodesic connecting x0 to x. Then,
the arrival time function and the geodesics satisfy these two
fundamental equations:

∇uTM−1∇u = 1, (2a)

γ′ ∝ M−1∇u, (2b)

where ∇u is the spatial gradient of u. Equation (2a) is the
anisotropic version of the so-called Eikonal equation. In the
isotropic case, this equation is usually written |∇u| = 1/v,
where v is the local speed. Hence, this equation tells us two
things: (i) it is a generalisation of the speed equation, stat-
ing that the time of arrival is inversely proportional to the
speed, and (ii) changing the local metric tensor can be seen as
changing the local speed. Equation (2b) shows that the tan-
gent of the geodesic lines is parallel to the gradient of the time
of arrival function with respect to the inverse metric. This is
very important because it gives us a convenient way to recon-
struct geodesics from any point in space, given the solution
to the Eikonal equation. Figure 1 shows example geodesics
in an isotropic space composed of two subsets with different
local speeds.

Proof of equation (2). Recall that the function u(x) is the
minimum value of J along the geodesic from point x0 to an
arbitrary point x:

u(x) = min
γ

∫ x

x0

F(s, γ, γ′)ds. (3)

A general variation of (3) is given (see, e.g., [31]) as

δu = ∂F

∂γ′
δγ +

∫ x

x0

(
∂F

∂γ
− d

ds

∂F

∂γ′

)
ds. (4)
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Figure 1: Example geodesics in a double isotropic space. Black ar-
rows show the local orientations of the geodesics. The speed in the
dark grey region is twice as high as that in the light grey one. Notice
that in each separate space, the geodesics are straight lines. Also, no-
tice how one of the geodesics (bold dashed lines) travels backward
to the high speed part before getting back to the low speed one.

Since we have integrated along a geodesic, the second term
on the right-hand side of (4) equals zero (Euler condition).
We obtain

∇u = ∂u

∂γ
= ∂F

∂γ′
= Mγ′(

γ′TMγ′
)1/2 . (5)

Equation (2b) directly follows. Finally, and using the symme-
try of the metric tensor M, we get the Eikonal equation:

∇uTM−1∇u = γ′TMTM−1Mγ′

γ′TMγ′
= 1. (6)

Equations (2a) and (2b) summarise the two steps for
building geodesics: (i) solve the Eikonal equation for u, given
a metric tensor M and a starting point x0; (ii) construct
geodesics between any given point and the starting point x0

by following the gradient of uwith respect to the inverse met-
ric M−1.

2.2. Fast-marching algorithm

A few algorithms have been proposed in the literature for
computing the function u on a discrete grid. The most pop-
ular are Tsitsiklis’s method [28] and Sethian’s method [32],
which are based on the construction of the time of ar-
rival function u(x) using front propagation. These meth-
ods are also referred to as fast marching methods because
they construct the function u in a single-pass through the
grid nodes. Tsitsiklis’s method relies on (1) while Sethian’s
method uses the Eikonal equation (2a). Both methods are
suitable in the case of isotropic media, that is, where the
metric M is proportional to the identity matrix, but they
fail in anisotropic media [23]. An exact scheme to deal with
anisotropy has been proposed by Sethian and Vladimirsky
[30], but while remaining a single-pass algorithm, it still
requires a computational effort that is growing with the

amount of anisotropy. A variant of the initial fast-marching
algorithm of Tsitsiklis [28] has been proposed to deal with
anisotropic media [29], which is more computationally ef-
ficient than the exact scheme of Sethian [30]. Yet, it re-
lies on a generic optimisation procedure that was undoc-
umented for the special case of the elliptical media we
face with DTI tractography. We extended this method by
deriving a solution to the optimisation procedure in this
case.

The general idea of the fast-marching algorithm was bor-
rowed from the graph theory. It is a direct extension of Di-
jkstra’s algorithm for finding minimal paths in a graph [33].
The algorithm relies on a very simple observation: suppose
that the time of arrival is known inside a close set of grid
nodes (a set we will refer to as the known set). Then, the first
nodes that will be encountered by the propagating front are
the nodes on the edge of the known set (this narrow band
of grid nodes will be called the trial set). Secondly, the first
node that will be encountered by the propagating front is the
closest one to known (in terms of geodesic distance), and cru-
cially, there will be no other way to make this distance smaller
after propagating the front further. This means that the ar-
rival time at this voxel will not change, and can be frozen. In
other words, the value of the time of arrival u can be calcu-
lated, starting from x0, in a single-pass through the voxels,
only by considering, at each iteration, the neighbouring vox-
els of the propagating front. The other voxels (the far set)
are not examined. Figure 2(a) schematises this front propa-
gation scheme. The fast-marching algorithm is summarised
in the appendices.

The crucial step in this front propagation is the computa-
tion of the distance between the front and the neighbouring
voxels in the trial set. In our case, this distance is anisotropic,
and we cannot use the standard methods, because they rely
on the assumption that the gradients of u are parallel to its
geodesic lines (see [23] for further details). To account for
the anisotropy, we consider a set of simplexes (triangles) that
cover the whole neighbourhood around a voxel of the nar-
row band [29], and minimise the distance function between
the simplexes and that voxel (see Figures 2(b) and 2(c)). The
introduction of these simplexes allows to describe the trajec-
tories on a continuous rather than a discrete grid. The defi-
nition of a simplex neighbouring a point x is simply a set of
three points (x1, x2, x3) that are 26 neighbours of x, defining
a triangle that we denote x1x2x3. There are 48 such triangles
around x for the 26 connexities (Figure 2(c)). The procedure
for computing the anisotropic distance between the propa-
gating front and the voxels in the trial set is given in the ap-
pendices.

During the updating procedure, the time of arrival at a
voxel xm of the trial set is calculated from its neighbours
on a simplex using an approximation (strictly speaking, two
approximations!). Normally, if the geodesic passing by xm
comes from simplex x1x2x3, then the time of arrival is given
by

u
(

xm
)

min
g∈x1x2x3

{
u(g) +

∫ xm

g
F(s, γ, γ′)ds

}
. (7)
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Figure 2: (a) Grid representation of the different sets involved during the fast-marching algorithm. (b) Position of the optimal point on a
simplex such as to minimise the geodesic distance to x. (c) Geometry of the 48 simplexes surrounding a voxel (central grey dot). The little
red dots represent the centres of the 26 neighbouring voxels.

We use a parametric approximation to this formula, given by
the minimisation of the following function:

f (α) =
3∑
i=1

αiu
(

xi
)

︸ ︷︷ ︸
(I)

+

∥∥∥∥∥x−
3∑
i=1

αixi

∥∥∥∥∥
M︸ ︷︷ ︸

(II)

, (8)

where ‖·‖M is the quadratic norm with respect to the metric
M and α = (α1,α2,α3). Equation (8) follows the approxima-
tions of Tsitsiklis [28]. Term (I) approximates the distance
from the starting point x0 to the simplex centre of mass g as
a weighted sum of the distances to the nodes of the simplex.
Term (II) approximates the remaining distance by consider-
ing the local metric as being constant, equal to its value at
xm.

Minimising f in the simplex can be written as a con-
strained optimisation problem that can be solved explicitly,
since f and the simplex are convex. The analytical solution is
detailed in the appendices.

2.3. How to choose the metric?

In the GT framework, we make the hypothesis that white
matter fibres are geodesics with respect to a metric tensor.
But so far, we have not specified which metric tensor we
mean. In DTI, the inverse tensor (M = D−1) seems to be
the natural choice. Intuitively, water molecules diffusion is
faster along the tract than across them. When inverting the
diffusion tensor, the highest eigenvalues become the lowest,
and the shortest distance is parallel to the fibres. One can also
notice that the inverse tensor defines a metric in a Rieman-
nian space that induces a Laplace-Beltrami operator (gener-
alisation of the Laplace operator) which is encountered in the
diffusion equation [25, 34].

However, the inverse tensor is not suitable in all circum-
stances. Consider the situation described in Figure 3 were a
circular tract of radius r connects points A and B, with diffu-

A B

C

Figure 3: Comparison between a straight line and a geodesic.

sion tensors tangent to the tract having the same shape. Sup-
pose the rest of the space is isotropic, with the same mean
diffusion as along the tract. If one considers the inverse ten-
sor metric M = D−1, the distance between A and B through
the circular path is

∫
C

√
dxTD−1dx = πr√

λ1
, (9)

where λ1 is the largest eigenvalue of the tensors along the cir-
cular pathway. On the other hand, the straight line distance
between A and B is equal to 2

√
3r/
√

trace(D). Hence, a nec-
essary condition for the circular tract to be a geodesic is that
its length is smaller than a straight line, that is,

πr√
λ1
≤ 2

√
3r√

trace(D)
, (10)

which leads to λ1 ≥ π2trace(D)/12, that is, a condition on the
tensor shape to be peaky enough. Of course, one can imagine
that even if this condition is satisfied, a geodesic path might
certainly lie somewhere in between a straight line and the
circular line, as shown in Figure 4. Which metric to choose
is hence still debatable. Nonetheless, in our simulations and
real data applications, we will use the inverse diffusion tensor
as a metric for defining geodesics.



S. Jbabdi et al. 5

(a) (b) (c)

(d) (e) (f)

Figure 4: (a) Simulated circular tensor field. (b)–(f) Increasing the anisotropy of the circular tensor makes the geodesic path (red line) closer
to a circle.

3. APPLICATIONS

3.1. Simulations

We have evaluated the GT method on simulated data. The
purpose of these simulations is twofold. First, they show how
the anisotropic fast-marching algorithm performs on ellip-
tic media, in both homogeneous field (where the analytical
solution is available) and a heterogeneous field. Second, they
allow to compare GT with streamlining in cases where the
data present local perturbations (crossing fibres).

In a homogeneous medium, where the data support the
same diffusion tensor D in every voxel, the analytic solution
to the Eikonal equation is given by

u(x) =
√(

x − x0
)T

D−1
(

x − x0
)
. (11)

It is easy to check that in this case, u(x0) = 0 and∇uTD∇u =
1. We generated a tensor where the two smaller eigenvalues
are equal, and gradually increased the anisotropy. Figure 5
shows the level curves of the analytic versus the numerical
solution to the Eikonal equation. The two solutions are very
close even for a large anisotropy, corresponding to a ratio
of 50 between the largest and the lowest tensor eigenvalues.
Table 1 summarises the mean and standard deviations of the
relative error for different values of the anisotropy, which is
expressed both in terms of the ratio between the largest and
the lowest tensor eigenvalue, or in terms of the more widely
used fractional anisotropy (FA, see, e.g., [35]).

In a heterogeneous medium, such an analytical solution
does not exist. However, we can verify that the Eikonal equa-
tion is satisfied, that is,∇uTD∇u is equal to one. We used the

Table 1: Summary of the simulation results with an increasing ra-
tio between the largest and the lowest tensor eigenvalue (the cor-
responding FA value is shown on the second row). Top: mean
and standard deviations of the relative error between numerical
and analytic solutions for the Eikonal equation in a homogeneous
medium. Bottom: mean and standard deviations of the value of
∇uTD∇u in a circular tensor field.

ratio 1 2 5 10 50

FA 0 0.17 0.59 0.79 0.96

mean (%) 0.79 0.93 1.25 1.54 2.16

SD (%) 0.62 0.86 1.53 2.16 3.71

ratio 5 10 20 50 100

FA 0.59 0.79 0.90 0.96 0.98

mean 0.995 0.993 0.989 0.997 1.059

SD 0.068 0.086 0.112 0.213 0.634

same circular tensor field as shown in Figure 4. In Table 1,
we show the mean and standard deviations of ∇uTD∇u
for different anisotropies. Notice that these are close to
one, but with a higher deviation from one with increasing
anisotropy.

Finally, we show results of GT in the case of local per-
turbations. We generated a tensor field simulating a crossing
fibre situation. The zone where the two fibres cross has a dif-
fusion tensor that is the average of the two crossing fibres’
tensors. We increased the crossing fibre area and compared
the behaviour of GT to streamlining tractography (Figure 6).
As expected, because the streamlining simply follows the di-
rection of highest diffusion given by the tensor, the fibre
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5: Contour plots of the numerical solution (top) and the analytic solution (bottom) to the Eikonal equation in a homogeneous
medium. Anisotropy levels are increasing from left (isotropic) to right (ratio of 50 between the extreme tensor eigenvalues).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6: Comparison between streamline (top) and geodesic (bottom) tractography in the presence of a crossing fibre bundle, the width
of which increases from zero (left) to twice the width of the principal bundle (right). Note how streamlining gets deviated from the straight
line because of partial volume effect.

trajectory was deviated. In the case of GT, there was little,
if any, deviation from the straight line.

3.2. Real data

Acquisition

Data from a single healthy subject were acquired at Ser-
vice de Neuroradiologie (CHNO des Quinze-Vingts, Paris).
Six gradient weighted and one T2-weighted images were ac-
quired on a 1.5 Tesla MR Scanner (GE Signa) using the fol-
lowing scan parameters: 128 × 128 image matrix, 2.03 mm
in-plane pixel size; 3.5 mm slice thickness; b = 1000;
(TR; TE) = (5000; 91.8) milliseconds; Number of averages =
8. Thirty-six contiguous slices covering the whole brain were
acquired. The total scanning time was approximately 14 min-
utes.

Regions of interest

Five hundred and sixty-seven (N = 567) regions covering
the whole cortex were manually selected in the DTI space.
Each region was represented by a single voxel. The anatom-
ical localization of these regions is shown in Figure 7. We
performed a front propagation from each region, which pro-
vided the distance functions (ui)

N
i=1. Then back propagation

allowed us to construct the N(N − 1)/2 = 160, 461 geodesics
connecting the whole set of voxel pairs. We computed a
heuristic connectivity index consisting of the mean diffusiv-
ity along each geodesic, multiplied by the mean FA along the
pathways.

In order to better visualize this anatomical connectiv-
ity index in a matrix form, the set of brain regions were
grouped with respect to their localization. The regions
were divided into five groups, including the frontal lobe
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Frontal
Limbic
Occipital

Parietal
Temporal

Figure 7: Localisation of the regions of interest on the cortex. 3D
fronto-sagittal view.

(left: 99 voxels, right: 101 voxels), the limbic cortex (left: 31,
right: 30), the occipital lobe (left: 56; right: 54), the pari-
etal lobe (left: 64; right: 62), and the temporal lobe (left:
34; right: 36). This classification was based on an auto-
matic labelling of the voxels locations given by the Talairach
Daemon (http://ric.uthscsa.edu/projects/tdc), after register-
ing the DTI data into the MNI standard space, and sub-
sequent correction from MNI to Talairach space (see, e.g.,
[36]). Figure 8 shows the distribution of the connectivity in-
dex, in the matrix form, between any two regions, arranged
by group and by hemisphere.

The matrix shown in Figure 8 reveals an organization of
the connectivity index that follows the anatomical organi-
zation of the brain regions regarding their locations. Since
the connectivity index encompasses the anisotropy factor, its
value highly depends on which regions we are connecting,
which means which global pathways the geodesics are close
to.

First, the diagonal blocks of the matrix show clearly a
lower level of connectivity than the extradiagonal blocks.
This seems to indicate that the connectivity index penalises
short fibers, and inversely favors long fibers, especially inter-
hemispheric fibers. Secondly, the blocks that show the high-
est connectivity index are the blocks that connect the right
and left occipital lobes.

This result is not surprising since the fiber tracts that con-
nect right and left occipital lobes follow a trajectory through
the splenium of the corpus callosum (forceps major), which
is a highly anisotropic area.

Geodesics

We further investigated which of the constructed geodesics
may represent actual fiber trajectories. To approach this
question, we thresholded the connectivity matrix in order to
emphasize the geodesics with the largest connectivity indices.
Specifically, we considered the 10% geodesics with the high-
est connectivity indices for each interhemispheric block con-
necting symmetrical groups, taken independently. Figure 9
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Figure 8: Anatomical connectivity matrix rearranged into anatom-
ical groups: F (frontal lobe), L (limbic), O (Occipital), P (parietal),
T (temporal). In each group, the left and right hemispheres are also
separated.

L R

(a)

L R

(b)

Figure 9: (a) 10% most probable intrahemispheric geodesics
shown in the left hemisphere. Blue paths connect the occipital lobe
to the temporal lobe. Purple paths connect the frontal to the oc-
cipital lobe. Green paths connect the frontal lobe to the temporal
lobe. (b) 10% most probable interhemispheric geodesics connecting
symmetrical regions. Green: frontal lobe, red: limbic lobe, brown:
occipital lobe, blue: parietal lobe, yellow: temporal lobe.

represents each group of geodesics in different colors. The
most probable geodesics paths follow the principal long as-
sociation fasciculi. The frontal lobe is connected to the oc-
cipital lobe via the fronto-occipital fasciculus. The temporal
lobe is connected to the occipital via the inferior longitudinal
fasciculus, and to the frontal lobe via the uncinate fascicu-
lus. All major long association tracts are represented by these
geodesics.

http://ric.uthscsa.edu/projects/tdc
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L R

(a)

L R

(b)

Figure 10: (a) Results of the streamline tractography algorithm ap-
plied to the set of brain voxels. Four streams per voxel are computed.
The stopping criteria are 60◦ for the maximal angle step, and 0.1
for the minimal anisotropy value. (b) Geodesics computed by the
GT method. For each brain voxel of the set, four geodesics with the
highest probability index are shown.

Geodesics versus streamlining

Finally, in order to compare the results of our method to a
conventional fiber tracking method, we performed a stream-
line tractography from theN seed voxels, with four tracts per
voxel. As a stopping criterion, we chose a maximum step an-
gle of 60◦, and an anisotropy threshold of 0.1 [19]. To com-
pare the results to GT, we selected the four geodesics, hav-
ing the highest probability index, for each voxel in the set of
seed voxels. This way, we have the same number of tracts us-
ing both methods (4×N tracts). Figure 10 shows the results
of these two procedures. The streamline method produces
many incomplete tracts, especially association tracts, while
the proposed GT method succeeded in reconstructing the
major association and commissural tracts, including the un-
cinate, the inferior fronto-temporal, and the callosal fibers.
Note that the fronto-occipital tract is not present at this level
of threshold (we only considered four geodesics per voxel).

4. DISCUSSION

Global optimisation is a valuable strategy in the context of
path planning. When one has the information of where to
start and where to go, this information is used to over-
come local poor optimality. In the context of white matter
diffusion-based tractography, where we often have strong hy-
potheses about the localisation of the regions in the brain,
global optimisation can overcome some serious weaknesses
of the process. Mainly, uncertainty about local fibre orienta-
tion, reflecting partial volume effects caused by crossing fi-
bres, or local low signal to noise, can be handled efficiently
using GT.

We have presented here a method to perform such
global-based path planning in an anisotropic medium. The
method is very robust to high anisotropy, and provides an
extremely accurate numerical solution to the Eikonal equa-
tion.

On real-data experiments, the reconstructed geodesics
that have a high connectivity index correspond to known
fiber tract fasciculi connecting the cortex. These fasciculi can
all be retrieved by other tractography methods that use DTI
data, providing priors on their location using one or more
regions of interest [37, 38], especially intermediate regions
located in white matter. GT automatically depicted these fas-
ciculi with no prior.

However, the U-shaped fibers, that is, the short associa-
tion tracts, are not favored by our connectivity index. This
can be easily seen by looking at the diagonal blocks of the
matrix in Figure 8. The long association tracts, as well as the
commissural fibers, are more present with a higher connec-
tivity index.

GT also allows one to construct interhemispheric tracts
between each pair of regions located in different hemi-
spheres. These tracts include homotopic and heterotopic
connexions, that is, tracts connecting, respectively, sym-
metrical and asymmetrical regions lying in different hemi-
spheres. It is worth noting that standard tractography
methods usually fail to recover most callosal connexions,
apart from the medial ones. This is a good illustration
of the problem of crossing fibres, as those connexions
cross the superior longitudinal fasciculus. However, re-
cent probabilistic tractography with more complex local
models has successfully traced those types of connexions
[14, 20, 21].

There is an intuitive relationship between geodesic, for
the inverse tensor metric, and probabilistic tractographies.
Probabilistic tractography consists of constructing a distri-
bution of connexions, by sampling tracts using local orien-
tation distributions. In the basic case where this local proba-
bility model for fibre orientations is defined using the tensor
model (i.e., a Gaussian local model with a covariance ma-
trix proportional to the diffusion tensor D), the probability
of a tract following an orientation given by dx at a location x
writes

p(x + dx | x) = N (x, D), (12)
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then, for some pathway γ connecting x0 to x1, and for some
discretisation of this pathway, the probability of moving
along γ is the product of the infinitesimal step probabilities:

p
(

x0 −→ x1
) =

n∏
k=1

p
(

x0 + kdx | x0 + (k − 1
)
dx)

∝
n∏
k=1

exp
{
− 1

2
dxTD−1dx

}

= exp

{
− 1

2

n∑
k=1

dxTD−1dx

}

−→ exp
{
− 1

2

∫
γ
dxTD−1dx

}

≤ exp
{
− 1

2

(∫
γ

√
dxTD−1dx

)2}
.

(13)

Maximising this probability could then be related to min-
imising the geodesic distance, relative to the inverse tensor
metric. While the probabilistic method gives a distribution
of connexions, GT gives the mode of this distribution, that
is, the path with highest probability. Note also that the prob-
abilistic model given by (12) can be improved to fit the data
more accurately (e.g., multiple tensors, etc.), which can be
seen as a change in the metric tensor in GT.

Using GT, it is possible to study the organisation of large
brain networks in terms of their anatomical connexions.
Such networks have been studied in terms of structural in-
variants in a graph theoretical framework by several authors
[39–41]. These works have been conducted for studying the
structural organisation of the cat or primate brain, as well as
for the human functional brain organisation, but have never
been applied to large human anatomical networks, because
no method has been proposed to construct such networks.
GT could provide this structural information, via a graph
that has been thresholded or not, since the connectivity index
in itself contains information about the connectional struc-
ture.

There are two major issues when using geodesics for the
tractography. First, choosing a metric for which geodesics
represent fibre pathway trajectories is not straightforward.
The correct metric might show more anisotropy than the dif-
fusion tensor, as discussed earlier. Also, the choice of the met-
ric might depend on the white matter fibres under investiga-
tion. The second issue is that, for any pair of regions in the
brain, there exists a geodesic between those regions. How-
ever, this is not true for white matter fibres. One then has
to decide when a geodesic is a fibre trajectory, for example,
by defining indices and performing statistical thresholding
under some null hypothesis. This problem of thresholding
tractography results is not specific to GT, but is met by any
other tractography method. It is though a bigger problem in
the case of GT because every pair of regions is potentially
connected. Another problem with GT is that, in the pres-
ence of two separate connexions between two regions, we are
only able to detect one of them (the shortest one in terms of
geodesic distance).

One way to validate GT results would be by compari-
son with another measure of connectivity. For example, mea-
sures of functional connectivity using functional magnetic
resonance imaging (fMRI) by means of correlations [42] or
partial correlations [43] are thought to be closely linked to
the anatomical structure sustaining the brain regions, seen
as graph nodes. The GT technique provides a unique tool
for performing a comparison between anatomical and func-
tional connectivity, since it can apply to large networks, and
provide a measure of anatomical connectivity between each
pair of nodes of the brain network. It can readily be used to
compare the architectures of brain networks that have been
studied in humans from the functional perspective (e.g., Sal-
vador et al. [44] used partial correlations of fMRI data on
a set of 100 regions), or using voxel-based morphometry to
correlate cortical thickness between different cortical areas
(e.g., He et al. [45] used this technique to study 100 cor-
tical areas in humans). Such investigations have consider-
able possible applications, both cognitive and clinical. On the
one hand, this method could serve as a basis for comparing
anatomical and functional connectivities, as said earlier, and
could help to understand how the brain works as an evolv-
ing network. On the other hand, the structure of restricted
networks has already helped to distinguish between healthy
subjects and patients, for example, Alzheimer disease in the
case of functional connectivity [46], and Schizophrenia in the
case of white matter morphology [47]. The GT method could
serve for the characterisation of the structural organisation
of those brain networks in terms of their connectional fin-
gerprints.

APPENDICES

A. ALGORITHMS

Algorithm 1. Fast marching algorithm

Definitions 1. Let Known be the set of points whose u-value
has been computed and will not change. Let Trial be the
set of voxels that are being examined (26-neighbourhood of
Known), and let Far be the set of voxels that have not been
examined yet. Finally, if S is a set of voxels, let #S denote the
number of voxels that belong to S.

(i) Initialization:

(a) move x0 to Known and set u(x0) = 0,

(b) move to Far every x such that x �=x0 and set
u(x) = ∞,

(c) update u in the neighbourhood of x0 using
Algorithm 2,

(ii) While #Trial�=0:

(a) search for the voxel xm in Trial with the smallest
value of u,

(b) move xm to Known,

(c) update u in the neighbourhood of xm using
Algorithm 2.
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Algorithm 2. Updating procedure for the distance function u
at voxel xm:

(i) for all x in the 26-neighborhood of xm and x �∈
Known,

(a) if x ∈ Far, move x to Trial,
(b) for all x1x2x3 surrounding x,

(1) compute u∗(x) = min 0≤αi≤1;
∑
αi=1 f (α),

(2) u(x) := min {u∗(x),u(x)}.

B. EXPLICIT SOLUTION FOR
THE UPDATING PROCEDURE

Here we provide an explicit solution for the minimisation
problem formulated in (8). Recall that the problem was to
find the minimum, inside a simplex, for the following ex-
pression:

min
α

f (α) =
3∑
i=1

αiu
(

xi
)

+

∥∥∥∥∥x −
3∑
i=1

αixi

∥∥∥∥∥
M

α ∈ Δ = {(α1, α2, α3
) ∈ [0, 1]3/α1 + α2 + α3 = 1

}
.

(B.1)

In order to simplify the notations, and considering that α3 =
1− α1 − α2, we will use the following:

k1:2 = u
(

x1:2
)− u(x3

)
, k3 = u

(
x3
)
,

y1:2 = x3 − x1:2, y3 = x3 − x,

ri j = yTi My j .

(B.2)

The function u depends simply on α1 and α2:

f (α) = ϕ
(
α1,α2

) = α1k1 + α2k2 + k3 +
∥∥α1y1 + α2y2 + y3

∥∥
M.

(B.3)

ϕ is differentiable and convex, it is then minimal when Δϕ =
0. When constraining the minimum to lie inside the simplex
Δ, the solution is either that for which the gradient is zero,
if it lies inside Δ, or it is on the edges of Δ if the gradient is
zero outside the simplex. In the latter case, the minimisation
problem is 1D, and the solution simplifies greatly.

First, let us write the unconstrained solution: ∇ϕ = 0
implies(

k1r12 − k2r11
)

︸ ︷︷ ︸
A1

·α1 +
(
k1r22 − k2r12

)
︸ ︷︷ ︸

A2

·α2 +
(
k1r23 − k1r13

)
︸ ︷︷ ︸

B

= 0.
(B.4)

This equation means that the minimum of ϕ lies on the
straight line defined by the equation A1x + A2y + B = 0.
This simplifies the problem, as the problem is again 1D if we

replace ϕ(α1,α2) by the function f̃ (α) which expression de-
pends on the values of Ai and B.

(i) If A1 = A2 = 0,

α1 = r12r23 − r13r22

r11r22 − r2
12

,

α2 = r13r12 − r23r11

r11r22 − r2
12

.
(B.5)

(ii) If Aj �=0,

αi = argmin
α

{
α
(
ki − Ai

Aj
kj

)
− kj B

Aj
+ u3

+
∥∥∥∥αxi − Ai

Aj
x j − B

Aj
x j + x3

∥∥∥∥
M

}

αj = −Ai
Aj
αi − B

Aj
.

(B.6)

In the last case, the problem reduces to minimising a 1D

function of the form f̃ (α) = αk + u + ‖αz1 + z2‖M, in which
case the solution writes

α = −
(
r12 + k

√|R|/(r11 − k2)
)

r11
, (B.7)

where ri j = zTi Mz j and |R| = r11r22 − r2
11.

Finally, if the solution given by the above lies outside the
simplex (i.e., |αi| > 0), then we minimise ϕ on the edges of
the simplex, which is again a 1D problem. This is equivalent
to setting one of the {αi}3

i=1 to zero, and keeping the results
which minimises ϕ:

(i) α1 = 0:

α2 = argmin
α

{
αk2 + k3 +

∥∥αy2 + y3
∥∥

M

}
, (B.8)

(ii) α2 = 0:

α1 = argmin
α

{
αk1 + k3 +

∥∥αy1 + z3
∥∥

M

}
, (B.9)

(iii) α1 + α2 = 1:

α1 = argmin
α

{
α
(
k1 − k2

)
+ k2 + k3

+
∥∥α(y1 − y2

)
+ y2 + y3

∥∥
M

}
α2 = 1− α1.

(B.10)
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