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Abstract: Biomarkers for disease diagnosis and prognosis are crucial in clinical practice. They should
be objective and quantifiable and respond to specific therapeutic interventions. Optimal biomarkers
should reflect the underlying process (pathological or not), be reproducible, widely available, and
allow measurements repeatedly over time. Ideally, biomarkers should also be non-invasive and
cost-effective. This review aims to focus on the usefulness and limitations of electroencephalography
(EEG) in the search for Alzheimer’s disease (AD) biomarkers. The main aim of this article is to
review the evolution of the most used biomarkers in AD and the need for new peripheral and, ideally,
non-invasive biomarkers. The characteristics of the EEG as a possible source for biomarkers will be
revised, highlighting its advantages compared to the molecular markers available so far.

Keywords: EEG; Alzheimer’s disease diagnosis; non-invasive biomarkers; cerebral rhythms; alpha
wave; synchrony; complexity

1. The Search for Biomarkers in Alzheimer’s Disease

In the field of dementia, biomarkers are used to detect the pre-symptomatic pathologi-
cal changes either to evidence a pathological substrate that is related to a specific disease
or to predict the progression into the spectrum of the disease. Currently, the most-used
biomarkers in dementia are specific molecules that can be quantify in cerebrospinal fluid
(CSF) or anomalies detected through image techniques (such as MRI or PET coupled to
certain tracers) [1]. However, CSF extraction is an invasive technique, and imaging meth-
ods, although higher in spatial resolution, lack the temporal resolution needed to observe
the brain in function. Some imaging techniques allow the visualization of the activation
of brain areas, such as those based on the consumption of glucose, but their temporal
resolution is lower than that of the EEG (seconds or minutes versus milliseconds) [2].

Since AD is the most common form of dementia, many studies have focused on
specific AD biomarkers. At the end of the 20th century, the first criteria to diagnose AD
were established by two independent groups (NINCDS-ADRDA and DSM-IV [3,4]). On
the one hand, it was the first time that AD was recognized as a broad-spectrum disease,
and the diagnosis was divided into three probability stages: probable AD, possible AD, or
definitive AD. On the other hand, these criteria worked as a presumptive diagnosis, since
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AD definitive diagnosis still needed a post-mortem histopathological confirmation. At that
time, the sensitivity and specificity were too broad, since other dementias were included as
AD, blurring the final diagnosis [5,6].

Two pathological brain lesions characterize AD: the deposition of beta-amyloid (Aβ)
plaques due to poor processing of Aβ peptide, and the formation of neurofibrillary tangles,
composed mainly of abnormally phosphorylated tau (p-tau) protein [7]. With this informa-
tion, new diagnosis criteria were recommended by the International Working Group for
New Research Criteria for the Diagnosis of AD [8,9]. One of the latest concepts proposed
by the authors was the description of AD as an evolving disease, with an earlier stage with
no dementia syndrome present. This pre-dementia state could evolve to later stages when
the patient is already functionally disabled, and the dementia is completely established.
The aforementioned early stage is known as mild cognitive impairment (MCI), and it is
characterized by memory loss symptoms that do not interfere with everyday life but are
bothersome enough to seek medical advice [10,11].

A few years later, the National Institute on Aging and the Alzheimer’s Association
(NIA-AA) [12] defined new diagnostic criteria based on biological biomarkers, as previously
suggested by Dubois et al. [13]. On the whole, they proposed that AD diagnosis should be
established in vivo relying on both clinical and biological parameters, requiring evidence
of episodic memory impairment in addition to at least one supportive biomarker. These
AD biomarkers include those that indicate Aβ deposition, such as decreased CSF Aβ or
increased tracer retention on specific amyloid PET, and valid indicators of neuronal injury,
such as increased CSF total tau/p-tau, hippocampal and/or medial temporal lobe atrophy
on MRI, and temporal/parietal hypometabolism detected by fluorodeoxyglucose (FDG)
PET. AD autosomal dominant mutation present in presenilin genes PS1, PS2, or in the
amyloid precursor protein (APP) are also valid biomarkers that detect the genetic-AD
form [9,13].

Additionally, another potential use of the established biomarkers is to fully identify
MCI subjects that could progress to AD (MCI prodromal-to-AD), given that MCI could
either remain stable or evolve to AD. Nevertheless, the MCI concept has been widely
used worldwide in recent years in both clinical and research settings, and sometimes, this
entity has only been referred to as a pre-AD dementia state [14]. In this line, the NIA-AA
workgroup defined research criteria for MCI due to AD [10], and they proposed that the
use of biomarkers could aid in identifying etiological MCI subtypes by differentiating
between MCI due to AD and MCI that is unlikely to be due to AD [15,16].

2. The Need of New Peripheral Biomarkers

Nowadays, the use of biomarkers is broadly implemented in clinical practice [13,17].
The U.S. Food and Drug Administration (FDA) identified and validated them for AD [18],
and today, they are routinely used by clinicians as supportive criteria for differential
diagnosis. Despite their enormous impact on clinical practice, these biomarkers have
important limitations: some of them (PET or MRI) are expensive to be used in routine
clinical care, and their availability could be limited in some hospitals. On the other hand,
CSF biomarkers are invasive and difficult for serial recordings over time [19]. Furthermore,
repeated CSF extractions may cause side effects such as post-lumbar puncture headache
(up to 25%), back discomfort or pain, bleeding, or even brainstem herniation [20].

Consequently, the scientific community has driven itself into the quest of finding
new peripheral biomarkers that reflect AD’s core pathologies. Seeking a cost-effective and
minimally invasive method, blood-based biomarkers associated with AD have appeared
as a possible alternative. One of such proposed biomarkers is lipidic metabolite levels,
which show differences between AD and age-matched controls. Additionally, a lipid
combination could predict the disease progression [21]. However, it seems that lipidic
metabolite concentrations are neither specific nor sensible enough to be included as an AD
biomarker [22].
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Given that a biomarker should represent the pathological process of the disease,
specific AD-related proteins have also been proposed as biomarkers. Monllor et al. found
a set of proteins that correlates with amyloid burden. The levels of serum clusterin,
PKR, and RAGE were statistically different in the AD group compared to in controls and
correlated with those of CSF Aβ42. However, the number of patients recruited was low,
and confirmation in a bigger population must be performed [23]. Another approach to
protein-based biomarkers was made by Nakamura and co-workers, who detected Aβ42/40
levels in plasma using immunoprecipitation coupled with mass spectrometry with very
promising results [24]. Unfortunately, the method is not accessible nor easy to perform in
routine clinical practice. Fully automated plasma assays have also been developed with a
high value as screening test but not as a diagnostic biomarker itself [25]. Highly sensitive
and specific immuno- and mass spectrometry-based assays have been recently employed to
detect p-tau plasma concentrations with promising results, but more studies are necessary
to endorse it as AD biomarker [26].

Other blood-based proposed biomarkers include plasma neurofilament light [27] and
serum Glial fibrillary acidic protein [28], which reflect axonal damage and astrocytosis,
respectively. Nevertheless, these proteins are not specific to AD, since they can be found
in other neurodegenerative diseases, such as Huntington’s disease or frontotemporal
dementia [29], or even in cognitively normal people at risk of dementia [30].

Therefore, considering the aforementioned limitations regarding current blood biomark-
ers, looking for alternatives is a priority in the field. From this point of view, EEG recordings
could be a strong candidate as a peripheral biomarker. EEG is a direct measure of brain
function with high temporal resolution and could be specific and sensible enough to detect
AD-related brain changes. EEG is a non-invasive and cost-effective technique of regular
use in clinical practice [19]. In the next sections, the relevance of EEG as a possible AD
biomarker will be discussed.

3. The EEG as a Result of Brain Activity

Cognitive processing requires the temporal coordination of widely distributed neu-
ronal populations [31]. Such interactions involve transmembrane currents, which are
reflected in voltage fluctuations that can be measured invasively at the cellular level (intra-
or extracellular neuronal spike recordings), at a local network level (local field potentials),
or even at longer distances, at cortical levels (electrocorticograms). Electrical activity can
also be recorded non-invasively by means of electrodes placed on the scalp (EEG). All these
techniques allow monitoring the brain function with a high temporal resolution. Except
for unit recordings, which mainly, if not only, reflect neuronal discharges, all other ap-
proaches record both neuronal discharges and other electrical sources and are represented
as neural oscillations or brain rhythms [32]. However, when electrodes of bigger diameters
and lower impedance are used, larger neuronal populations are recorded, and thus the
spatial resolution diminishes. Consequently, the scalp EEG reflects not only the electrical
activity generated by the neuronal discharges of the recorded region but also the inputs
of connected regions and even distant sources whose activity is capable of travelling to
the recorded sites (volume conduction). In addition, electrical noises and artifacts from
many sources often interfere with the proper signals. Thus, the first relevant task when
recording EEG should be the isolation and depuration of the existing signals. A limitation
in dementia research is the need to reduce unnecessary movements, length, and difficulty of
the experiments performed, so resting EEGs are most often chosen instead of experiments
involving tasks.

Neural oscillations have been proposed to be crucial for information processing [33].
Each cycle of the oscillation can provide a temporal window for processing the neuronal
discharges occurred in this electrical context. In humans, as in other vertebrates, brain
rhythms present a wide range of frequencies, from very slow oscillations occurring up to 1
in 40 s to ultrafast oscillations (up to 600 Hz), thus offering an equally wide range of tem-
poral windows for information processing. The frequency of the oscillations relates to the
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extent of the network involved and is impacted by the axonal conduction velocity [34,35]:
while neighboring neurons can communicate very fast through the use of low-amplitude
fast oscillations, distant regions need slower oscillations, which recruit bigger neuronal pop-
ulations and therefore exhibit higher amplitudes. At cortical levels, interneurons usually
resonate at gamma frequencies [36–40]; therefore, their interactions with pyramidal cells
can induce local cycles of excitation and inhibition at these frequencies [41]. Therefore, fast
oscillations emerge from these local interactions. In contrast, low-frequency oscillations can
be recorded at longer distances. These slow waves are travelling waves [42–44] and thus
can be recorded far from their oscillatory generators and reflect wider network interactions
at an interregional level [45].

Usually, neural oscillations are subdivided in frequency bands for its study. There
are five traditionally defined specific frequency bands in the EEG that reflect different
physiological and pathological processes: alpha, beta, delta, theta, and gamma rhythms [46].
The alpha rhythm is considered a “fast” rhythm and is the prominent EEG wave pattern
of an awaken and relaxed adult with their eyes closed [47]. In general, amplitudes of
alpha waves weaken when subjects open their eyes and focus on external stimuli while
exercising mental effort [48]. The other “fast” rhythm of the EEG is the beta rhythm [49],
which is generally of low amplitude, often enhanced during drowsiness [50], and replaces
alpha activity when people become concentrated or anxious or take medications such as
benzodiazepines [51]. Delta and theta rhythms are the two usually considered as “low-
frequency” EEG patterns and become prominent during drowsiness and sleep in the
healthy adult [50]. As people move from lighter to deeper stages of NREM sleep (prior
to REM sleep), the occurrence of alpha waves diminishes and is gradually replaced by
higher amplitude waves of the lower theta and delta frequencies. Additionally, neocortical
slow oscillations (<1.5 Hz) can be recorded, although they usually are discarded from the
analyses due to the influence of artifacts [52]. Finally, gamma oscillations are involved in
attention, perception, and memory and have been proposed as biomarkers of cognitive
decline in the elderly [53]. Due to computational limitations, older studies restricted the
EEG analysis to these, or even narrower, frequency ranges (see Table 1). More recently,
other oscillations, such as spindles and ripples, are also included in the analyses.

When reviewing EEG studies in the literature, the first thing to note is the lack of
standardized classifications of the different rhythms and their further subdivisions (i.e., low
and high theta; alpha 1, alpha 2, beta 1, beta 2; and low, mid, and high gamma) by frequency
range. Thus, it is highly recommended to consider the exact frequencies analyzed instead
of the band names used in each study (Table 1). Usually, but not always, frequency ranges
are classified as follows: delta (from 1 to 3 or 4 Hz), theta (from 3 or 4 to 8 Hz), alpha (from 8
to 12 or 13 Hz), beta (from 12 to 30 Hz), and gamma (>30 Hz). Furthermore, these frequency
ranges could differ between humans and animal models, where theta can include a wider
range of frequencies (from 2.5 in anesthetized animals to 12 Hz) and thus overlaps with
delta and alpha bands.

Additionally, it is important to consider not only the rhythms themselves, but also the
brain area where these oscillations are recorded. For example, alpha rhythms correspond to
different neural correlates when occurring in the occipital or in the temporal cortex, since
they reflect the activity of different neuronal populations.

Finally, although the EEG provides immediate reports of the brain’s electrical activity,
this technique is usually restricted in clinical practice to study epilepsy and sleep disorders
and is sometimes considered a subjective technique [54]. This last consideration is due to
excessive de visu interpretation of data, which could lead to a high variability in results. In
order to make an objective analysis, the use of numerical analysis of the signals (quantitative
EEG or qEEG) is strongly encouraged [55]. The focus of this review lies on the results
of qEEG analysis conducted on AD patients. These analyses mainly involve spectral
decomposition of the signals into their frequency components and the study of their
synchronization and complexity (see Table 1).
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4. EEG Anomalies in AD

Healthy aging is the cause of changes in the activity of the brain that, accordingly,
are reflected in EEG recordings. In summary, they include a reduction in the amplitude
of alpha activity (8–13 Hz), the slowing of the background activity, and an increase in
delta (1–4 Hz) and theta (4–8 Hz) power [56]. However, all these physiological EEG
variations are pathologically exacerbated in AD patients. Next, we will analyze the main
EEG anomalies found in Alzheimer’s patients. They can be grouped into three categories:
change in frequency pattern, reduction in the complexity of EEG signals, and perturbation
in EEG synchrony.

4.1. Change of Frequency Pattern on EEG

Most EEG studies devoted to the diagnosis of AD have been based on the spectral
decomposition of the scalp signals in the resting state with closed eyes. Regarding spectral
decomposition, it is important to consider the type of analysis performed in different
studies, since the results can vary depending on these methods. For instance, different
spectral parameters such as peak frequency, mean frequency, absolute or relative power
are analyzed.

It is important to distinguish changes that appear in MCI and AD from those due
to normal aging. Babiloni et al. used low-resolution brain electromagnetic tomography
(LORETA) analysis in a large sample of healthy elderly and young individuals. By combin-
ing imaging and qEEG analysis, this technique estimates the location of electrical activity
generators in the brain [57], which is also named as the inverse problem [58]. They con-
firmed that alpha rhythm in posterior cortical regions decreases in magnitude during
physiological aging, and this correlates with the global cognitive level [58]. However, many
studies report that changes in EEG recordings of both MCI and AD suffer a change in
pattern compared to age-matched controls: alpha and beta rhythms usually decrease, while
there is a general increase in delta and theta oscillations [59–70]. Due to these findings,
these changes have been traditionally described as “a slowing of the EEG”, which is often
correlated with a decreased state of arousal and cognitive processing (Table 1). In order to
consider this change in raw EEG frequencies as an AD biomarker, it should have a clear
biological basis specifically related to the development of the disease. Indeed, it seems that
EEG slowing could be linked with the atrophy reported in AD patients of basal forebrain
cholinergic neurons, which innervate the neocortex and hippocampus, among others [71].
EEG slowing has also been correlated with the cognitive status of AD patients [72] and
with the Folstein Mini-Mental Score (MMSE) [73,74] and global deterioration score [75].
Importantly, this slowing of EEG correlates with gold standard biomarkers of AD, such as
Fluorodeoxyglucose-PET images [76] and phosphorylated tau and/or Aβ42 measured in
CSF [77–80].

Early studies already found that dominant occipital frequency decreases as the neu-
rodegeneration progresses, with demented patients exhibiting a peak frequency within
the theta range (5–8 Hz), together with generalized EEG slowing over most brain re-
gions [59,60]. Additionally, occipital EEGs of mild AD patients show a higher fraction of
total power in the theta band and a lower fraction of total power in the beta band than in
healthy controls, making the mean frequency higher in age-matched controls than in mild
AD [61]. In this line, EEG slowing has also been described in MCI patients compared to
control subjects [81].

This increase in slow waves, specifically in theta rhythm, occurs at the initial stages of
the AD. The theta power increase coincides with the earlier signs of cognitive decline [82].
Moreover, theta relative power (measured as % of the 4–13 Hz band) is higher in AD than
in MCI and higher in MCI than in healthy controls and is related to decreased performance
in all cognitive domains. This study also found that theta absolute power is higher in AD
than in healthy controls. Longitudinal studies corroborate the relevance of the anomalies
in the EEG as indicators of the disease progression [82]. In this line, a study conducted by
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Prichep et al. proposed that theta power and mean frequency are relevant components
while considering the possible progression from MCI to AD [83].

Moreover, the reduction in alpha activity shows a correlation with the severity of
the disease and the cognitive deficits [63,84]. Combining EEG-LORETA and MRI studies,
Babiloni and colleagues found a significant linear correlation between hippocampal volume
and the magnitude of alpha1 (8–10.5 Hz) sources in the parietal, occipital, and temporal
areas, and between progressive atrophy of hippocampus and decreased cortical alpha
power, in a continuum from MCI to AD [85]. Thus, alpha power may be used as an
indicator of the cognitive impairment degree. Later, the same group, in a year-long follow-
up study, suggested that cortical sources of different EEG rhythms are sensitive towards
the progression of early-stage AD [62]. Mild AD was characterized by increased power of
widespread delta sources as well as decreased power of widespread alpha and posterior
beta 1 (13–20 Hz) sources [86].

The combination of neuroimaging and quantitative EEG proves a useful tool for differ-
ential diagnosis with other dementias. Gasser and colleagues found that this combination
had a greater differential diagnostic contribution than clinical symptoms and neuropsy-
chology [55]. They observed that delta power was higher in mixed dementia than in AD,
still being higher in both cases than in healthy age-matched controls. Additionally, high
frequency power was nearly normal in mixed dementia, but decreased in AD.

The possible relation between EEG slowing and the currently used biomarkers may be
an interesting topic to address, on the one hand, to improve the knowledge and feasibility
of EEG as possible biomarker, and on the other hand, to assess the possibility that EEG
changes may reflect the extent of pathological degeneration. In this line, a study reported an
inverse correlation between EEG slowing and CSF tau levels in advanced AD patients [87].
Another study reported that tau, p-tau, and p-tau/Aβ42 ratio showed a correlation with
relative theta power in cognitively normal old subjects who developed memory complaints
throughout the follow-up [77]. It was also reported that decreases in cognitive speed
appeared to correlate with increased theta power. Together, these results suggest that
CSF biomarkers may be related to EEG theta activity, and this feature of EEG could be
potentially used to assess early abnormal degenerative changes in the brain.

4.2. Complexity Reduction in EEG Signals

EEG signals are non-stationary, complex, and non-linear signals [88] caused by the
interaction of different sources (oscillators) [46]. Therefore, the EEG exhibits complex
behaviors which cannot be linearly analyzed, and consequently, non-linear analyses have
been introduced to the study of EEG signals to quantify this complexity [89]. In some
diseases, the combination of linear and non-linear analyses can improve the accuracy EEG-
derived biomarkers [88]. Non-linear analyses provide a way to relate the complexity of
brain signals to functional aspects of the neural networks, such as the integrity of the neural
connectivity or the variety of generators contributing to a given oscillatory signal [90].
In consequence, they prove useful in the search for biomarkers of different neurological
and psychiatric conditions [91–93]. Additionally, these measurements have recently been
successfully combined with machine learning techniques in order to discriminate cognitive
performance [94]. Theoretically, higher complexity measures in the EEG signal are thought
to reflect an integration of information among segregated groups of neurons performing
different processing tasks and at different spatial scales, whereas reduced complexity
reflects a lower degree of information exchange. Thus, complexity analyses provide a
measure of the amount of information that is integrated within a neural system [95].

The reduction in EEG complexity in AD patients can therefore be interpreted as an
alteration in the information exchange, as reported by numerous studies [96,97]. For
example, Jeong et al. [98] used cross-mutual information and auto-mutual information
between EEG electrodes as a measure of complexity in EEG activity. These parameters
measure transmission among different cortical areas. By studying both AD and healthy
control subjects, they concluded that auto-mutual information declines in the EEGs of AD
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subjects, suggesting a less complex activity on their EEG compared to normal controls, as
supported by other studies [99,100]. Moreover, the authors reported that AD patients show
a reduction in the cross-mutual information compared to cognitively normal subjects. In
particular, the reduction was higher between interhemispheric (distant), compared to local
transmission of information [98], a result possibly related to the neuronal loss happening
in AD.

Other techniques have been used to estimate EEG complexity in the context of AD.
For example, approximate entropy is a non-linear statistic that can be used to quantify the
irregularity of a time series [101]. Several studies have shown a decreased irregularity in
the EEGs of AD patients compared to those from age-matched controls [102,103].

To summarize, there is evidence that EEGs of AD patients seem to be more regular
(that is, less complex) than EEGs of age-matched control subjects. This feature could be
related to the increase in slow EEG rhythms explained in the previous section, since the
slowing of EEG would increase the signal regularity making it less complex [104].

4.3. Perturbation in EEG Synchrony and Directionality

Synchronization between neuronal populations is relevant for to the interaction among
neural networks. EEG synchrony refers to the adjustment of different neural oscillations.
Two different signals become coupled when both begin oscillating at the same frequency,
become phase-locked, experience phase-amplitude coupling, or modulate their amplitudes
together (amplitude–amplitude coupling) [105]. Different measures are used to quantify
the synchronicity of neural activity. One of them is the measurement of spectral coherence,
which corresponds to the spectral covariance of the activity between two electrode locations.

It has been reported that resting state EEG coherence is reduced in AD patients
compared to cognitively healthy but depressed patients [106]. Furthermore, EEG co-
herence in AD subjects showed statistically significant differences compared to healthy
controls [107–113]. Curiously, Sankari et al. [108] found a significant decrease in EEG
coherence in the delta band measured in temporal regions compared to healthy controls.
In the same study, the parietal and central regions showed, instead, a reduction in the EEG
coherence in the theta and alpha bands. Thus, slow EEG frequencies in subjects with AD
are increased but with an altered spatial organization. Another study [114] reported that
AD subjects showed a decrease in alpha wave coherence in temporo-parieto-occipital areas
but an increase in delta wave coherence between frontal and posterior regions. These two
events can be related, respectively, to the alterations in cortico–cortical connections and to
the degeneration of subcortical structures such as the thalamus [71,98,115].

Using a multiple logistic regression, Prichep et al. proved that theta power (3.5–7.5 Hz)
mean frequency and interhemispheric coherence predicted the decline from MCI to AD at
long term, with an overall predictive accuracy of about 90% [116].

Regarding non-resting state, a study showed that neural synchrony in alpha2 (10–12 Hz)
and beta (12–30 Hz) bands in AD patients was reduced during a working memory task,
compared to control subjects. Additionally, a non-linear measure, synchronization likeli-
hood in the alpha band (8–10 Hz), was significantly higher in MCI compared to the control
subjects [111]. Another study showed that, under intermittent photic stimulation, AD
patients presented a reduced coherence, regardless the stimulus frequency [117].

Additionally, the directionality of the functional coupling can provide relevant infor-
mation. In this sense, using the directed transfer function (DTF), Babiloni et al. showed
that parietal to frontal direction of the information flux within EEG functional coupling of
theta (4–8 Hz), alpha 1 (8–10 Hz), and alpha 2 (10–12 Hz) were stronger in healthy controls
compared to those in both MCI or AD [118]. In their study, they did not find any differences
in the directional flow within inter-hemispheric EEG functional coupling. Later, with the
aim of optimizing the selection of frequency bands, Gallego-Jutglà et al. found that the
frequency range of 5–6 Hz (within the standard theta band) offered the best accuracy for
diagnosing AD for DTF Granger causality [119].
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Delbeuck et al. [120] defend that the pathophysiology underlying this synchrony loss
is the degenerative processes caused by the disease. Neurofibrillary tangles and amyloid
plaques would physically interrupt the electricity flow between the long cortico-cortical
tracts, leading to a neocortical disconnection between neurons. Other authors defend that
the perturbation in EEG synchrony has a mixed origin that involve a loss of cortical neurons
in combination with reduced cholinergic activity in the cortex [98].

Taking into account the previously discussed hypothesis of the severe impairment
of basal forebrain neurons, all three EEG features in AD, namely changes in frequency
patterns, complexity, and synchrony measurements, may be the result of the loss of neu-
rons, the altered anatomical structure of the neuronal tracts, plus the altered release of
neurotransmitters, all this resulting in impairments in the neural activity [121].

5. Discussion

Biomarkers in AD provide a useful tool for clinical practice and research. In contrast
to the stablished AD biomarkers, EEG recordings are minimally invasive, cost-effective,
and can be performed with portable systems, which facilitates access to patients when
necessary [122]. With all these features, EEG analysis could be a source of good candidates
as peripheral biomarkers.

The pathophysiology underlying the alterations in EEG described above is not fully
understood. However, plaques and tangles could clearly provoke the interruption of
the information flow along corticocortical tracts, leading to a neocortical disconnection
between neurons. It has been also described that Aβ plaques could have a toxic effect in
their surrounded inhibitory and excitatory neurons [123,124], thus disrupting neuronal
networks [125]. Moreover, prior to amyloid plaque formation, oligomeric Aβ peptide
causes the hyperactivity of hippocampal neurons and network hypersynchrony [126].
Furthermore, p-tau also changes the normal network functioning by depressing synapse
efficiency and quantity. Moreover, a process of demyelination has been demonstrated very
early in AD, even before atrophy of grey matter [127]. Changes in myelin thickness could
therefore influence network synchronization, resulting in disrupted oscillations [128]. In
this regard, for all the above, the proposal that AD is a disconnection syndrome could be
justified [120,129,130].

Moreover, AD is not a stationary disorder. Instead, it is considered as a long-evolution
disease that progresses over years [131,132]. In this progression, pathophysiological pro-
cesses will have direct consequences on neuronal transmission that can be detected by
EEG. Thus, EEG could reveal differences throughout the AD continuum. For instance,
studies comparing MCI patients and cognitively healthy subjects show a reduction in
alpha interhemispheric coupling [133] and abnormalities in alpha (8–12 Hz) band power
and synchronization at resting state [134]. Furthermore, EEG has ben also studied as a
tool to predict MCI conversion into AD [135,136]. Vecchio et al. [135] showed that EEG
connectivity analysis, combined with a neuropsychological MCI pattern and ApoE geno-
typing, reached high sensitivity/specificity and accurate classification on an individual
basis (>0.97 of AUC), helping to determine the risk of the progression to AD in MCI patients.
Jelic et al. [136] found that the most important predictors were alpha and theta relative
power, as well as mean frequency from left temporo-occipital derivation (T5-O1), which
classified 85% of MCI subjects correctly.

Baker et al. were able to distinguish two different profiles inside the MCI group: one
with EEG beta power profiles similar to AD patients, and one similar to controls [81]. In
this line, del Val et al. [137] showed that amnestic MCI individuals with lower capacity to
recruit alpha oscillatory cortical networks developed dementia in a two-year follow-up
study compared to healthy controls.
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Table 1. Main studies addressing EEG analysis in Alzheimer’s disease with their main findings and listed chronologically.

Reference Subjects Frequency bands Analysis Hallmarks

Prinz et al., 1982 [60]

22 HC (11male, 11 female), 18 mild
AD (9 male, 9 female), 16 moderate
AD (10 male, 6 female) and severe

AD (10 male)

Spectral analysis; dominant
occipital frequency (DOF).

DOF decreases inversely with the
progression of the neurodegeneration. A

discriminant analysis DOF and sleep
variables correctly classified 71% of the

subjects.

Coben et al., 1983 [61] 40 mild AD patients and40 HC; Age
range: 64.2–82.5; 21 female/19 male

Delta: 1–3 Hz (only 3 Hz for power),
theta: 4–7 Hz (5–7 Hz for power),

alpha: 7.75–13.50 Hz Beta: 14–20 Hz.

Spectral analysis of spontaneous
occipital EEG (Fraction of total

power in the 3–20 Hz or 5–20 Hz
band; average mean frequency;
alpha index (percent time alpha

rhythm).

Fraction of total power in theta mild AD >
HC; fraction of total power in beta mild

AD < HC in occipital EEGs; average mean
frequency HC > mild AD.

Rae-Grant et al, 1987 [64]
139 AD patients (69 male, 70

female)and 148 HC; Age range:
50–90

Longitudinal (4 years) correlated
with standardized test and autopsy;

DSM.

Slowing of the background activity (delta
and theta increases), superimposition of
focal abnormalities, spikes, sharp waves,

asymmetries and triphasic waves.
Excessive delta and triphasic waves only
in AD. More severe EEG abnormalities

(excessive delta) correlated with
hippocampal neuron density and less

with granulovacuolar ratio in autopsies.

Dierks et al., 1993 [66] 35 HC and 35 probable AD patients
(age range 45–85)

Delta (1.0–3.5 Hz), theta (4.0–7.5
Hz), alpha (8.0–11.5 Hz), beta1,

(12.0–15.5 Hz), beta2 (16.0–19.5 Hz),
and beta3, (20.0–23.5 Hz).

Spectral analysis–dipole
approximation; FFT power.

AD patients showed a shift of alpha and
beta activity toward frontal brain regions

which correlate with the degree of
dementia. AD patients had higher power

delta and theta, correlating with the
severity of dementia, and lower power in

the alpha and beta range. Theta is the
most sensitive band. FFT dipole

approximation results are constant.
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Table 1. Cont.

Reference Subjects Frequency bands Analysis Hallmarks

Besthorn et al., 1994 [109] 50 AD patients (18 possible AD and
32 probable AD) and 42 HC

Delta 1.5–3.5 Hz, theta 3.5–7.5 Hz,
alpha1 7.5–9.5 Hz, alpha2 9.5–12.5

Hz, beta1 12.5–17.5 Hz, beta2
17.5–25.0 Hz.

Spatially averaged spectral
coherence between individual
electrodes and all neighboring
electrodes, frequency bands.

AD showed decreased coherence, mostly
in the frontal and central derivations of

the theta, alpha and beta frequency bands.
A discriminant analysis had a 76%

accuracy of prediction (patient or control)
using Cz-alpha1, Pz-beta2, C3-beta1,

C3-alpha1, and T4-beta 2.

Locatelli et al., 1998 [114] 10 mild or moderate AD (age range
53–77) and 10 HC

Delta 0.5–4 Hz, theta 4–8 Hz, alpha
8–12 Hz, beta 12–30 Hz; frequency

resolution of 0.5 Hz.

Standard tests, imaging (CT or MRI).
Mean spectral coherence of 50

artifact-free 1 s duration epochs.
Coherence was calculated as the

average of coherence values
between electrodes.

Decrease in alpha band coherence in AD,
in temporo-parieto-occipital areas, more
evident in severe cognitive impairment.

Delta coherence increased in a few
patients between frontal and posterior
regions. Trend towards a reduction in

coherence in the
temporo-parieto-occipital regions for the

theta and beta bands in the AD.
Interhemispheric delta and theta

coherences tended to increase in all the
analyzed pairs of electrodes (exception:
F7–F8 and T5–T6). In these regions, and
in the beta band, a coherence decrease

was present in AD.

Claus et al., 1999 [65] 86 probable AD (49 male, 37 female)
and 49 HC

Visual inspection with Grand Total
EEG (GTE) score. Standardized tests

for cognition.

Abnormalities in the visual inspection of
the EEG can increase the diagnostic of

mild AD in in diagnostic doubt (with low
sensitivity). Frequency of rhythmic

background activity, diffuse slow activity,
and reactivity of the rhythmic

background activity were statistically
significant related to the diagnosis.
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Table 1. Cont.

Reference Subjects Frequency bands Analysis Hallmarks

Kowalski et al., 2001 [67] 95 probable AD (mild, marked, and
severe dementia); 75 female, 20 male

Theta 6–7 Hz; 5–7 Hz; 4–7 Hz; delta
3 Hz; slow waves: delta and theta.

Standardized test. Descriptive
(visual) analysis. Eight-degree scale

according to the background
activity, presence and amount of

theta and delta waves, focal
changes, lateralization of focal
changes, synchronization, and

presence of sharp and spike waves.

Significant correlation between the degree
of EEG abnormalities and cognitive

impairment. No correlation between delta
waves and MMSE nor GDS. No

association between duration of the
disease and degree of EEG abnormalities

Stam et al., 2003 [110]

10 AD (2 male, 8 females; age range
59–86), 17 MCI (8 male, 9 females;

age range 62–88) and 20 with
subjective memory complaints (SC)

(11 male, 9 females; age range:
51–89)

2–6 Hz, 6–10 Hz, 10–14 Hz, 14–18
Hz, 18–22 Hz, and 22–50 Hz (based
upon the suggestions of Leuchter

et al., 1993).

Standard tests and imaging for
diagnosis. Synchronization

likelihood (coherence measure),
comparing each channel with all

other channels.

Synchronization likelihood decreased in
the 14–18 Hz and 18–22 Hz bands in AD
compared with both MCI subjects and SC.

Lower beta band synchronization
correlated with lower MMSE scores.

Pijnenburg et al., 2004 [111]

14 AD (7 male, 7 female), 11 MCI (10
female, 1 male) and 14 (8 male, 6
female) with subjective memory

complaints (SC) (SC were younger)

0.5–4 Hz, 4–8 Hz, 8–10 Hz, 10–12
Hz, 12–30 Hz, 30–50 Hz.

Standard tests and imaging for
diagnosis. Synchronization

likelihood (coherence measure),
comparing each channel with all

other channels.

Negative correlation in the 10–12 Hz and
12–30 Hz bands between synchronization

likelihood and age. Synchronization
likelihood decreased in the upper alpha

(10–12) and beta (12–30) bands in AD
compared to SC. In the remaining

condition, the synchronization likelihood
was significantly higher in AD than in
MCI in the 0.5–4 Hz frequency band.

During the working memory task, the
synchronization likelihood was

significantly higher in MCI compared to
the SC in the lower alpha band (8–10 Hz).

Prichep et al., 2006 [83] Theta (3.5–7.5 Hz). Multiple logistic regression

Multiple logistic regression of theta
power (3.5–7.5 Hz), mean frequency, and
interhemispheric coherence predicted the
decline from MCI to AD at long term with

an overall predictive accuracy of about
90%.
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Table 1. Cont.

Reference Subjects Frequency bands Analysis Hallmarks

van der Hiele et al., 2007 [69] 22 HC, 18 MCI and 16 probable AD Theta (4– 8 Hz) and alpha (8–13 Hz).

Standardized test. Spectral analysis.
Theta relative power (% theta in the
4–13 Hz band), alpha reactivity and

alpha spectral coherence during
eyes closed and memory activation.
EEG power measures averaged over

all electrode positions.

Theta relative power (% of the 4-13 Hz) in
AD > MCI > HC and related to decreased

performance in all cognitive domains.
Theta absolute power AD> HC. Alpha

reactivity HC > AD and related to
decreased performance on tests of global

cognition, memory, and executive
functioning.

Schreiter Gasser et al., 2008
[55]

54 AD, 24 mixed dementia (vascular
Alzheimer) and 66 HC

Delta (1.5–3.5 Hz), theta (3.5–7.5
Hz), alpha1 (7.5–9.5 Hz), alpha2

(9.5–12.5 Hz), beta1 (12.5–18.5 Hz),
beta2 (18.5–25.0 Hz).

Standard clinical and
neuropsychological tests,

neuroradiology (CT) and qEEG.
Spectral power.

Neuroimaging and qEEG made a greater
differential diagnostic contribution than
clinical symptoms and neuropsychology.
Delta power: Mixed > AD > HC. High

frequency power decreased in AD.
Topography of slow band changed for

fast bands: both patient groups showed a
flattening in the anterior–posterior

distribution in alpha2, beta1, and beta2.

Babiloni et al., 2009a [85] 64 HC, 69 amnesic MCI, and 73 mild
AD

Delta (2–4 Hz), theta (4–8 Hz), alpha
1 (8–10 Hz), alpha 2 (10–12 Hz), beta
1 (13–20 Hz), beta 2 (20–30 Hz), and

gamma (30–40 Hz).

Standard clinical and
neuropsychological tests.

Neuroimaging (CT, MRI) and
laboratory analyses. Direction of

information flux within EEG
functional coupling by directed

transfer function (DTF) with Mvar
model. EEG power density

spectrum and relative power.
Directionality between F3–P3,

Fz–Pz, F4–P4. Interhemispheric
directionality between F3–F4,

C3–C4, P3–P4.

Parietal to frontal direction of the
information flux within EEG functional

coupling of theta: HC > MCI/AD;
Alpha1: HC > MCI/AD; Alpha2: HC >

MCI/AD; beta1: HC > MCI > AD; beta2:
HC > AD. No differences in the

directional flow within inter-hemispheric
EEG functional coupling.
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Table 1. Cont.

Reference Subjects Frequency bands Analysis Hallmarks

Babiloni et al., 2009b [118] 60 HC, 88 MCI, and 35 AD

Delta (2–4Hz), theta (4–8 Hz), alpha
1 (8–10.5 Hz), alpha 2 (10.5–13 Hz),
beta 1 (13–20 Hz), and beta 2 (20–30

Hz).

Standard tests. Spectral analysis:
power spectrum, alpha peak

frequency. EEG sources by low
resolution electromagnetic source

tomography (LORETA).

Significant linear correlation of
hippocampal volume with the magnitude
of alpha1 sources in the parietal, occipital
and temporal areas. Progressive atrophy

of hippocampus correlates with
decreased cortical alpha power in a

continuum MCI < AD.

Gallego-Jutglà et al., 2012 [119] 24 HC (10 male, 14 female), 17 mild
AD (9 male, 8 female)

Narrow frequency bands of
different sizes, with the aim of
optimizing the band selection.

Standard tests. Synchrony analysis
by cross-correlation, phase

synchrony and Granger causality.

The frequency range 5–6 Hz yields the
best accuracy for diagnosing AD (within

the classical theta band) for directed
transfer function (DTF) Granger causality.

Babiloni et al., 2013 [62] 88 mild AD (19 male, 69 female), 35
HC (6 male, 29 female)

Delta (2–4 Hz), theta (4–8 Hz), alpha
1 (8–10.5 Hz), alpha 2 (10.5–13 Hz),
beta 1 (13–20 Hz), beta 2 (20–30 Hz),

and gamma (30–40 Hz).

Standard tests. Spectral analysis:
power spectrum. EEG sources by

low resolution electromagnetic
source tomography (LORETA).

Mild AD had a power increase in
widespread delta sources and by a power

decrease in posterior alpha sources. In
mild AD, the follow-up EEG recordings
showed increased power of widespread
delta sources as well as decreased power
of widespread alpha and posterior beta 1

sources.

Poil et al., 2013 [138] 86 MCI (25 MCI converters to AD
and 61 others)

Broad band signal. Delta (1–3
Hz),theta (4–7 Hz), alpha (8–13 Hz),
beta (13–30 Hz), and gamma (30–45

Hz), alpha divided into three
narrower bands.

Logistic regression. Large-scale data
mining (177 biomarkers).

Neurophysiological Biomarker
Toolbox

(http://www.nbtwiki.net/).

Multiple EEG biomarkers mainly related
to activity in the beta frequency range

(13–30 Hz) can predict conversion from
MCI to AD in 2 years. By integrating six
EEG biomarkers into a diagnostic index

using log regression, the prediction
improved, with a sensitivity of 88% and

specificity of 82%, compared with a
sensitivity of 64% and specificity of 62%
of the best individual biomarker in this
index (peak width of the dominant beta

peak).

http://www.nbtwiki.net/
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Reference Subjects Frequency bands Analysis Hallmarks

Lizio et al., 2016 [70] 127 AD and 121 HC

Delta (2–4 Hz), theta (4–8 Hz), alpha
1 (8–10.5 Hz), alpha 2 (10.5–13 Hz),
beta 1 (13–20 Hz), beta 2 (20–30 Hz),

and gamma (30–40 Hz).

LORETA. Ratio between
parieto-occipital cortical sources of

delta and low-frequency alpha
rhythms.

The ratio offered 77.2% of sensitivity in
the recognition of the AD individuals;

65% of specificity in the recognition of the
Nold individuals; and 0.75 of area under

the receiver-operating characteristic
curve.

Babiloni et al., 2016 [76] 19 AD patients with dementia and
40 healthy elderly subjects.

Delta (2–4 Hz) and low-frequency
alpha (8–10.5 Hz)

LORETA. Fluorodeoxyglucose
positron emission tomography

(PET) images.

AD group pointed to lower activity of
low-frequency alpha sources and higher
activity of delta sources which correlates
positively with glucose hypometabolism

in the cortical region of interest.

Hata et al., 2017 [78] 14 probable Alzheimer’s disease
patients

Delta (2–4 Hz), theta (4–8 Hz),
alpha1 (8–10 Hz), alpha2 (10–13 Hz),
beta1 (13–20 Hz), and beta2 (20–30

Hz).

eLORETA: current source density
(CSD) and lagged phase

synchronization (LPS). Brain MRI,
cerebrospinal fluid measurements,

and neuropsychological
assessments.

Patients with AD showed significant
negative correlation between CSF Aβ42

concentration and the logarithms of CSD
over the right temporal area in the theta

band. Total tau concentration was
negatively correlated with the LPS

between the left frontal eye field and the
right auditory area in the alpha-2 band in

patients with AD.

Houmani et al., 2018 [97]
169 patients:SCI (n = 22), MCI (n =
58), AD (n = 49), Other pathologies

(n = 40)

0.1–4 Hz (delta), 4–8 Hz (theta), 8–12
Hz (alpha), 12–30 Hz (beta), 30–100

Hz (gamma)

Epoch-based entropy (signal
complexity) and bump models (EEG

local synchrony)

Automatic discrimination of possible AD
patients from SCI patients and from MCI

or other pathologies. Accuracy 91.6%
(specificity = 100%, sensitivity = 87.8%)

Discriminating SCI patients from possible
AD patients’ accuracy 81.8% to 88.8%.

Handayani et al., 2018 [112] 22 elderly subjects consisted of 10
MCI subjects and 12 healthy subjects

Delta (1–4 Hz), theta (4–7 Hz), alpha
(7–13 Hz), and beta (13–30 Hz).

Coherence between each electrode
pair measured for all frequency

bands.Magnitude of phase
synchrony expressed in the phase

locking value (PLV).

Decrease in intrahemispheric and
interhemispheric coherence especially in

the beta band.Decrease in signal
synchronization in some electrode pairs
for the alpha band and on all electrode

pairs for beta band.
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Smailovic et al., 2018 [80]
Subjective cognitive decline (SCD;
n=210), mild cognitive impairment

(MCI; n=230) and AD (n=197)

Delta (1–3.5 Hz), theta (4–7.5 Hz),
alpha (8–11.5 Hz) and beta (12–19.5

Hz)

qEEG, global field power (GFP) and
global field synchronization (GFS),

and CSF biomarkers

Decreased CSF Aβ42 correlated with
increased theta and delta GFP. Increased
p- and t-tau with decreased alpha and

beta GFP. Decreased CSF Aβ42 and
increased p- and t-tau associated with

decreased GFS alpha and beta.

Koelewijn et al., 2019 [113]

Healthy young humans (N = 183)
genotyped for APOE-e4. AD

patients (N = 14) and age-matched
controls (N = 11)

Delta: 1–4 Hz, Theta: 3–8 Hz, Alpha:
8–13 Hz, Beta-13–30 Hz,

LowGamma: 40–60 Hz, and
High-Gamma: 60–140 Hz.

Amplitude–amplitude connectivity
of beamformer-derived oscillatory
source signals, across six frequency
bands and 90 AAL atlas brain areas.

Connectivity across alpha/beta increased
in APOE-e4 in right-hemisphere, lateral

parietal and precuneus of the default
mode network. Hyperactivity in gamma.
Hypoconnectivity in bilateral network in

AD.

AD: Alzheimer’s disease patients; CT: computerized tomography; HC: healthy controls; MCI: mild cognitive impairment patients; EEG electroencephalogram; qEEG: quantitative EEG.
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Furthermore, different studies have shown the ability to predict the progression of the
disease combining a variety of EEG measurements. Poil et al. used an integrative approach
to improve the prediction of progression from MCI to AD, extracting multiple biomarkers,
including spatial, temporal, and spectral parameters from the EEG, and selecting those
that better classified the groups [138]. They found that MCI patients who progress to AD
showed differences in beta (13–30 Hz) peak width, beta bandwidth, beta amplitude range,
beta amplitude correlation, alpha relative power, and alpha/theta power; combining these
six EEG biomarkers into a diagnostic index, they are able to predict the conversion to AD
with a sensitivity of 88% and specificity of 82%.

There are also studies that focus on AD diagnosis; for example, Henderson et al.
used a fractal dimension-based method for analyzing the EEG from both AD subjects and
cognitively healthy controls [139]. Even with the small sample size, they showed that a
single fractal measure could discriminate between AD subjects and controls with a 67%
sensitivity and a specificity of 99.9%. Similarly, in a recent study, Ge et al. [140] proposed a
framework that systematically discriminates among AD patients and age-matched controls
based on EEG signal processing. Combining several EEG features, they obtained a ROC
curve with an area under the curve of 97.92 ± 1.66 (%). Many studies show that the
combination of different biomarkers improves accuracy, sensitivity, and specificity for AD
diagnosis [23,141,142]. This matches with the idea defended by Dauwels et al. [143] that
the combination of various EEG features could be a good approach to obtain a diagnostic
tool for AD.

6. Conclusions

EEG is a non-invasive, low-cost technique that constitute a good alternative to the
gold standard biomarkers for AD. Dellabadia et al. found that MRI and PET cost were,
respectively, three and six times higher than that of EEG [144]. Furthermore, EEG does
not need to be performed in hospitals, as it can be done in primary care centers or even
in ambulatory environments, making it a more flexible alternative for this vulnerable
population [145].

Although EEG recordings in the elderly are different compared to those in younger
people, the process of dementia leads to the appearance of pathological changes in the EEG
that are clearly distinguishable from those of aged-matched controls. Three features of the
EEG have been related to AD: a slowing of EEG, namely a reduction in fast and increase
in slow frequential components, a perturbation in EEG synchrony, and a reduction in its
complexity measures. Particularly, the increase in frontal delta and theta rhythm and the
decrease in posterior alpha rhythms seem to reflect the AD pathophysiology.

However, to use EEG parameters as biomarkers for AD, there is still a need to over-
come the current differences in the methodological approaches for data acquisition and
signal analysis. Currently, the International Federation of Clinical Neurophysiology is
working on establishing unanimous recommendations for the topographic and frequency
analysis of resting state EEGs. These recommendations include: how to record EEGs
(environment, montage, settings); digital storage of EEG and control data; extraction of
synchronization, connectivity, and topographic features; and statistical analysis and neu-
rophysiological interpretation of those EEG features [146]. Setting up an international
working group specialized in dementias could be an interesting and useful idea in order to
standardize the use of EEG in the diagnosis of EA.

Yet, considering the complexity of AD pathophysiology, the current knowledge sug-
gest that a set of EEG-derived biomarkers could reach an acceptable accuracy, sensitivity,
and specificity for the diagnosis of AD. Moreover, a well-defined combination of EEG fea-
tures could potentially be used to estimate the severity and the progression of the disorder.
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