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Previous studies have implicated abnormal functional coordination in brain regions

of smokers. Neuroimaging studies demonstrated alternations in brain connectivity by

using the resting-state functional connectivity (rsFC) method which arbitrarily chooses

specific networks or seed regions as priori selections and cannot provide a full picture

of the FC changes in chronic smokers. The aim of this study was to investigate the

whole-brain functional coordination measured by functional connectivity density (FCD).

As the variance of brain activity, dynamic FCD (dFCD) was performed to investigate

dynamic changes of whole-brain integration in chronic smokers. In total, 120 chronic

smokers and 56 nonsmokers were recruited, and static FCD and dFCD were performed

to investigate aberrance of whole-brain functional coordination. Shared aberrance in

visual areas has been found in both static and dFCD study in chronic smokers.

Furthermore, the results exhibited that both heavy and light smokers demonstrated

decreased dFCD in the visual cortex and left precuneus, and also increased dFCD in

the right orbitofrontal cortex, left caudate, right putamen, and left thalamus compared

with nonsmokers. In addition, alternations of dFCD have been found between heavy and

light smokers. Furthermore, the dFCD variations showed significant positive correlation

with smoking-related behaviors. The results demonstrated that chronic smokers not only

have some initial areas, but also have some regions associated with severity of cigarette

smoking. Lastly, dFCD could provide more subtle variations in chronic smokers, and the

combination of static and dFCD may deepen our understanding of the brain alternations

in chronic smokers.
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INTRODUCTION

Cigarette smoking is considered as the leading cause of
preventable disease in the world. It has a negative influence on
health, economic and society. Nearly 6 million deaths and over a
half trillion dollars in healthcare costs in the world are attributed
to smoking (1). In addition, cigarette smoking has also been
associated with the higher risk of cognitive decline and dementia
(2, 3). According to previous studies, chronic smokers lose at
least 10 years of life compared to nonsmokers (4). Although a
large number of smokers are willing to quit smoking, only a few
people could succeed without the help of medication or other
treatment (5). In fact, most of them relapse within only 1 week
(6). Therefore, a better understanding of the neural effects of
smoking in human brains is important to help chronic smokers
quit smoking. There exists an amount of evidence stating that
that cigarette smoking has a negative influence on functional
alternations in the brain. For instance, substance addiction might
alter the sensitivity of brain regions, including motivation and
reward (7).

Numerous neuroimaging studies have been conducted to

explore alternations of functional coordination in several brain

regions and networks of smokers in recent years. Resting-state

functional magnetic resonance imaging (fMRI) studies have

reported that chronic smokers showed widespread abnormal
functional connectivity (FC) in some brain regions. The
orbitofrontal cortex (OFC) is thought to integrate and modulate
activity from several limbic areas involved in reward processing
(8). Activation has been recorded in brain regions including
the caudate, OFC, and parahippocampal gyrus during control
scanning in response to smoking-related images (9). Compared
with nonsmokers, smokers had lower connectivity associated
with key network hubs, including the default mode network
(DMN) (10). Lower FC has been found between the caudate
and OFC in smokers (11). Decreased FC in the left thalamo-
precuneus has also been found in relapsing addicts (12).
Furthermore, widespread FC attenuation has been observed
in the reward circuit of smokers compared with non-smokers
(13). In addition, neuroimaging studies have found alternations
in brain coordination among different severity of smoking.
That is, smokers with greater nicotine dependence severity
tend to demonstrate greater engagement of sensorimotor and
motor preparation circuits, and Fagerström Test for Nicotine
Dependence (FTND) scores were positively associated with
increased connectivity between insular and dorsal striatum and
early visual processing cortex (14). Therefore, this research
attempted to identify the alternations of brain coordination
between smokers with different nicotine dependence severity by
using a cross-sectional sample. However, all above FC studies
required prior assumption and cannot provide a landscape of
whole-brain FC changes, which might exist some limitations for
exploratory analyses.

Recently, resting-state FC density (FCD) has been performed
to measure the number of resting-state functional connections
of a given voxel with all other voxels in the whole brain (15).
This has been generally used in some psychiatric disorders to
investigate the aberrance in brain static FC (16, 17). Unlike the

seed-based FC method, FCD is a kind of method that is defined
by the functional connections between each voxel in the brain. It
does not need previous hypothesis (15). Therefore, FCDmight be
an approach that could providemore information compared with
FC. Higher FCD of a specific voxel indicates that it is functionally
connected with a large number of voxels within the brain and that
the voxel plays a more important role in information processing
compared with others. A previous study has used this method
to demonstrate brain coordination in smokers of different states,
i.e., abstinence and satiety state (16). Considering the dynamic
nature of brain activity (18), the sliding window correlation
approach has been widely used in the FC method to demonstrate
the collaboration of brain regions by measuring the time-varying
covariance of their neural signals during resting-state (19). The
aberrance of the variance of FC has been conducted in many
other mental diseases such as depression and schizophrenia
(20, 21). In addition, the dynamic FCD (dFCD) method has
been conducted in some diseases, including generalized anxiety
disorder (GAD) and benign epilepsy with centrotemporal spikes
(22, 23), despite not yet being performed on smokers in previous
research. In the current study, the sliding window correlation
approach was combined with FCD to evaluate the variance of
brain activity. In conclusion, the static FCD provides a new
avenue to illustrate the FC of whole brain, whereas the dFCD was
calculated to identify the variance of brain activity by dividing
the whole time series into different segmentations. Therefore,
exploiting the methods of static and dFCD could help to provide
supplementary evidence to uncover the aberrance of brain areas
between chronic smokers and nonsmokers.

In the current study, we aimed to identify the aberrance of
brain FC caused by cigarette smoking using static and dFCD
method in 120 chronic smokers and 56 age- and gender- matched
nonsmokers. Based on previous studies, we hypothesized that (1)
the static and dFCD method could reveal shared and different
brain areas showing functional abnormalities (20), and that (2)
there might exist some brain regions that can be associated with
the severity of smoking. In addition, the correlation analyses
were performed to identify the relationships between FCD
measurements and smoking-related behaviors.

MATERIALS AND METHODS

Participants
In total, 120 chronic smokers and 56 nonsmokers were recruited
from online advertisement, and all the participants are males.
Then, 120 chronic smokers were divided into 61 nonsmokers
(cigarette per day>20) and 59 light smokers (cigarette per day
<20) (24). Smokers eligible for the study included those that:
met the DSM-IV criteria for nicotine dependence, smoked at
least 10 cigarettes per day for the past 5 years, had no period
of smoking abstinence longer than 3 months in the past years,
and whose smokers’ nicotine addiction was assessed by the
FTND. Nonsmokers were those who smoked <5 cigarettes in his
lifetime. The exclusion criteria included physical illnesses, such
as brain tumor, obstructive lung disease; a history of neurological
and psychiatric diseases; addiction to other substances (except
nicotine); and those with contraindications to MRI. This study
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aimed to study differences in neural activity between smokers in
satiety state and nonsmokers. Smokers were required to smoke
a cigarette 30-45min before examination to prevent withdrawal
symptoms. All the participants provided informed consents to
the study protocol. The study was reviewed and approved by the
Local Medical Ethics Committee of the First Affiliated Hospital
of Zhengzhou University.

Data Acquisition
Magnetic resonance imaging data were obtained using a 3.0T
German Siemens Magnetom Skyra magnetic resonance imaging
equipment with a sixteen-channel prototype quadrature birdcage
head coil. Participants were instructed to keep their eyes closed,
not to fall asleep, and to maintain their head motionless during
scanning. Functional images were obtained using an echo planar
imaging sequence with the following parameters: repetition time
(TR)/echo time = 2,000/30ms, matrix size = 64 × 64, flip angle
= 80◦, field of view = 240 × 240mm, voxel size = 3 × 3 ×

3mm, slices = 36, slice thickness = 4mm, no gap, and a total
of 180 volumes.

Image Analysis and Preprocessing
The Data Processing and Analysis of Brain Imaging (DPABI
v3.0) (http://rfmri.org/DPABI) toolbox was used to preprocess
the functional imaging data. Imaging preprocess was performed
as follows. The first 5 volumes from each subject were discarded.
Then, functional images were slice-timing corrected, realigned
(cut off < 2.5mm or 2.5◦), spatially normalized to the Montreal
Neurologic Institute space, and re-sampled to 3 × 3 × 3 mm3.
Next, several spurious variances (24 head motion parameters,
global signals, ventricular signals, and white matter signals) were
regressed using multiple linear regression analysis. For a precise
head motion correction, the parameters from scrubbing data
were also regressed. Previous researches reported that the global
signal regression could improve the accuracy of FC calculation
(25). Thus, we regressed the global signal in our study. Framewise
displacement (FD) was calculated for each time point (26), and
participants with mean FD value exceeding.5mm were excluded.
Subsequently, functional images were trended and temporal
band-pass filtered.01 Hz∼0.08 Hz.

Estimation of Static and Dynamic FC
Density
In comparison to static FCD, dFCD is a method combining
with sliding window correlation approach looking at variation
across the time series. To calculate the static FCD, Pearson’s
linear correlation was used to evaluate the strength of the FC
between voxels. Two voxels with a correlation coefficient of R
>0.6 were considered significantly connected. This threshold was
proposed to be the optimal threshold for calculating resting-
state FCD in a previous study (15). The dFCD analysis was
performed by using Dynamic Brain Connectome (DynamicBC)
toolbox (27) (V2.0 http://restfmri.net/forum/DynamicBC). The
window length is a key parameter in sliding window correlation
calculation. According to the rule of thumb, the minimum
window length should exceed 1/fmin, where fmin denoted the
minimum frequency of time courses (28). Therefore, we selected

50 TRs as a window wise and a window overlap of 90%. To
certify the robustness of the sliding-window analysis, we also
examined other window wises that were included in validation
analysis. In each sliding window, we obtained a global FCD map
in each window by computing Pearson’s correlations between the
voxels within the whole brain. Two voxels were considered to
be connected when the Pearson’s correlation coefficient of the
two voxels was greater than a given threshold r = 0.2 according
to the significant level of p < 0.001 (uncorrected) in order to
eliminate weak correlation which may be caused by noise (29).
The temporal variability was calculated by the SD of FCD across
sliding windows. Then, the temporal variability map of each
subject was normalized into a z-score matrix. Subsequently, all
the normalized images were smoothed (6× 6× 6 mm full width
at half maximum Gaussian kernel).

Statistical Analysis
One-way ANOVA was conducted among the three groups for
voxels within the whole brain to explore the alternation of
static and dFCD among nonsmokers, light smokers, and heavy
smokers. In this step, age, years of education, and mean FD were
included as covariates. The threshold of gaussian random field
correction (GRF) was performed on the F-value map with voxel
p < 0.005, cluster p < 0.01 (two-tailed).

Then, to investigate the details about the aberrance among
these three groups, a two tailed two-sample t-test was performed
between each pair of groups based on those brain regions
having a significant F value alternation among three groups
to detect the between-group differences in static and dFCD.
Region of interest (ROIs) were defined as spheres with radius
of 6mm centered at the MNI coordinate reported for the brain
regions having a significant F value. To examine the association
between the abnormalities of FCD measurements and cigarette
smoking, correlation analyses were performed between FCD
measurements and smoking-related behaviors including pack-
years and FTND.

Validation Analyses
Since there is no clear conclusion on the optimal window length
for the sliding window method. We validated our results with
window lengths of 30 and 80 TRs. The additional window
lengths were 30 and 80 TRs. In addition, we have conducted
analyses that global signal was not regressed to verify the stability
of our results. The corresponding results are shown in the
Supplementary Materials.

To exclude the effect of head motion on observed results,
Pearson correlation was calculated between the dFCD of ROI
signals with mean FD among three groups. In addition, the
mean FD was compared among three groups and between heavy
smokers and light smokers.

RESULTS

Demographics and Clinical Characteristics
In total, there were 61 heavy smokers, 59 light smokers,
and 56 nonsmokers included in the current study. No
significant difference was found among groups in terms of
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TABLE 1 | Demographic and smoking behaviors.

Heavy smokers Light smokers Nonsmokers p value

Sex (male/female) 61/0 59/0 56/0 –

Age (mean±SD) 36.78 ± 7.78 35.40 ± 8.96 36.52 ± 7.48 0.096a

Education (mean±SD) 14.23 ± 2.35 14.56 ± 2.51 15.23 ± 3.09 0.084a

FTND (mean±SD) 5.39 ± 1.99 2.29 ± 1.57 – –

Cigarette per day (mean±SD) 26.89 ± 6.88 12.02 ± 4.15 – –

Peak-year (mean±SD) 26.89 ± 13.33 9.96 ± 7.04 – –

FTND, Fagerström Test for Nicotine Dependence; Pack-years, (Years of smoking × Cigarettes smoked per day)/20.
aOne-way ANOVA.

TABLE 2 | Brain regions with changed static and dynamic functional connectivity density (FCD) among the three groups.

Indices Cluster Voxels Brain region Sphere Peak intensity MNI coordinate

Dynamic FCD: 1 1671 Caudate L 16.79 −18, 18, 12

ParaHippocampal Gyrus L 16.53 −30, −18, −24

Thalamus L 12.13 9, −12, 9

2 636 Frontal Gyrus R 14.32 21, 12, −12

Pallidum R 14.25 15, 9, −3

Orbitofrontal Cortex R 13.89 30, 27, −12

3 74 Superior Temporal Gyrus L 11.43 −69, −21, 6

Middle Temporal Gyrus L 11.02 −69, −33, 3

4 269 Cuneus R 10.99 3, −72, 21

Calcarine R 10.90 15, −63, 9

Calcarine L 9.21 −12, −75, 9

5 60 Thalamus R 9.512 9, −12, 9

6 78 Precuneus L 9.61 −6, −48, 54

Static FCD: 1 380 Occipital Cortex L 12.19 −27, −75, 18

Calcarine L 11.47 −12, −75, 12

2 72 Calcarine R 10.36 9, −72, 18

Cuneus R 6.68 12, −87, 15

GRF corrected, voxel p < 0.005, cluster p < 0.01; L, left; R, right.

sociodemographic characteristics, such as age and year of
education. The detailed demographic information and smoking
behaviors were shown in Table 1.

Static FCD Between Chronic Smokers and
Nonsmokers
The three groups presented significantly static FCD of brain
regions in the visual cortex, including the bilateral calcarine
and right cuneus (GRF corrected p < 0.005, F = 6.20, Table 2,
Figure 1).

The post-hoc results demonstrated that both heavy and light
smokers showed decreased static FCD in the bilateral calcarine,
and heavy smokers showed significantly lower static FCD in the
right calcarine compared with light smokers. As for right cuneus,
only heavy smokers showed significantly decreased static FCD in
comparison to nonsmokers.

Dynamic FCD Differences Between
Chronic Smokers and Nonsmokers
The three groups presented significantly different dFCD of brain
regions in the right OFC, dorsal striatum (left caudate and right

putamen), visual cortex (bilateral calcarine and right cuneus),
DMN [left parahippocampal gyrus, left precuneus and middle
temporal gyrus (MTG)], and bilateral thalamus (p < 0.005, GRF
corrected, F = 6.20, Table 2, Figure 1).

The post-hoc results demonstrated that both light and heavy
smokers showed decreased dFCD in the brain areas of visual
cortex (including bilateral calcarine and right cuneus) and left
precuneus, and also showed increased dFCD in right OFC, dorsal
striatum (left caudate and right putamen), and left thalamus
compared with nonsmokers (Figure 2). In addition, heavy
smokers showed an increased dFCD in the right thalamus, while
light smokers showed decreased dFCD inMTG in comparison to
nonsmokers. Moreover, heavy smokers showed increased dFCD
in left MTG and right thalamus, and decreased dFCD in left
parahippocampal gyrus compared with light smokers (Figure 3).
The details were showed in Supplementary Table S1.

Correlation Analyses
The results showed that the temporal variability in dFCD in the
left MTG was positively correlated with pack-years and FTND (r
= 0.292, p = 0.001, Bonferroni corrected). Temporal variability
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FIGURE 1 | (A) Significant alternations of dynamic functional connectivity density (dFCD) among three groups; (B) Significant alternations of static functional

connectivity density (FCD) among three groups.

FIGURE 2 | Shared alternations of dFCD measurements of brain regions in both heavy smokers and light smokers compared with nonsmokers. R.OFC, right

orbitofrontal cortex; L.CAU, left caudate; R.PUT, right putamen; L.THA, left thalamus; R.CUN, right cuneus; R.CAL, right calcarine; L.CAL, left calcarine; L.PCUN, left

precuneus. (The subplot means that both heavy and light smokers have significant alternations of dFCD measurements compared with nonsmokers). * means

difference between the two groups has statistical significance.

in the right thalamus was positively correlated with FTND (r =
0.265, p= 0.003, Bonferroni corrected).

Validation Analyses
Our results reported above could be validated with different
window length of 30 and 80 TRs. The corresponding results
are shown in the Supplementary Materials (p < 0.01,
Supplementary Table S2).

There was no significant difference of mean FD among
three groups (p = 1.45 for ANOVA). The mean FD in heavy

smokers was not significantly different from that in light smokers
(p = 0.096 for two sample t-test). The correlations between
mean FD and ROI signals of brain regions were all not
significant (p > 0.05).

DISCUSSION

In the current study, we explored altered static and dFCD in
chronic smokers compared with nonsmokers. As we assumed,
shared abnormalities of dFCD and static FCD both in heavy
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FIGURE 3 | (A) Both heavy smokers and light smokers showed significant alternations of dFCD measurements in left parahippocampal gyrus, significant differences

have been found between heavy smokers and light smokers; (B) Heavy smokers showed significant alternations of dFCD measurements in right thalamus compared

with nonsmokers, significant differences have been found between heavy smokers and light smokers; (C) Light smokers showed significant alternations of dFCD

measurements in left middle temporal gyrus (MTG) compared with nonsmokers, significant differences have been found between heavy smokers and light smokers.

* means difference between the two groups has statistical significance.

and light smokers have been found to be possible inherent
abnormalities irrelated with the degree of cigarette smoking. In
addition, the aberrance of static FCD and dFCD between heavy
and light smokers has been found in certain brain areas. Also, the
correlation analyses showed that part of the temporal variability
in dFCD of different smoking severity was positively correlated
with pack-years and FTND, which was originally thought to be
associated with the severity of smoking.

In the dFCD study, heavy smokers exhibited significant
increases in the left MTG and right thalamus, and a decrease in
the left parahippocampal gyrus in comparison to light smokers.
As suggested by previous studies, theMTG and parahippocampal
gyrus are core components of DMN. Increased dFCD variability
in MTG and decreased dFCD variability in parahippocampal
gyrus suggests a disturbed integrity of DMN connectivity in the
resting state. The DMN is hypothesized to be correlated with
internal mentation (30) and is associated with self-referential
mental activity and emotional processing tasks (31). To date, the
DMN is reported to be implicated in substance use disorders (32),
while the chronic nicotine use is reported to negatively impact FC
within the DMN, possibly contributing to the difficulty smokers
have in quitting (10). Though it is not typically considered to
be part of DMN, strong FC has been proved between thalamus
and DMN (33). In addition, the variability of dFCD in the right
thalamus and left MTG was positively correlated with smoking
behaviors, including pack-years and FTND. Given that the
localization of significant correlation was primarily in the DMN,
the findings were consistent with the incentive-habit model
of addiction (34). In chronic smokers, the degree of nicotine
dependence is continually reinforced through positive and
negative reinforcement, while greater severity is associated with
more reliance on habitual use (14). We may draw a conclusion
that with the progression of degree of smoking, smoking-related
behaviors may become more habitual. Hence, smokers tend

to have more difficulty in quitting smoking. Longitudinally,
studies could be applied to examine the alternations of functional
coordination in brain regions along with the changes of severity
of nicotine dependence.

The dFCD study also revealed shared abnormalities of brain
regions in right OFC, dorsal striatum (including left caudate and
right putamen), left thalamus, and left precuneus in both heavy
and light smokers. The frontal-striatal-thalamic circuits is critical
for processing of reward (35, 36). Thereinto, the dorsal striatum is
associated with motivation, or the drive for action that leads one
to work to obtain rewards (37), which drives to obtain smoking-
related reward (38). Smoking addicts who are accompanied
with dorsal striatum damage were more likely to discontinue
smoking. In addition, the characteristics of this interruption
is that smoking can be quitted easily and quickly, without
recurrence. Furthermore, the impulse to smoke in these people
is reduced compared to those smokers without dorsal striatum
damage (39). The thalamus is vulnerable to addictive effects
of cigarette smoking due to the high density of acetylcholine
receptors (AChRs) (40). It participates in the circuit by relaying
striatal inputs to the frontal regions and providing feedback
to the striatum. Dysregulation of the OFC is correlated with
faulty decision-making and the incapacity to inhibit compulsive
and repetitive behaviors (41). Imageology studies indicated that
the OFC presented hypoactivity during withdrawal in substance
use addiction (42, 43). Consistent with previous studies, in this
study, the increased dFCD variability in the frontal-striatal-
thalamic circuits suggested that regions involved in reward
and impulsive-compulsive behavior exhibited more flexibility in
functional regulation with other brain networks in smokers. As
for precuneus, it is a crucial component part of DMN, which is
thought to be associated with self-referential processing such as
monitoring craving or withdrawal symptoms (14). Therefore, we
hypothesized that the aberrance of the frontal-striatal-thalamic
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circuits and precuneus might be associated with the craving for
nicotine and relapse of smoking behaviors. Furthermore, the
above alternations were supposed to be inherent abnormalities
related to smoking behaviors.

Compared with nonsmokers, both heavy and light smokers
also showed alternations of dFCD in bilateral calcarine and right
cuneus. Previous studies have demonstrated that calcarine is a
component of the visual attention network and plays a major
role in visual information integration and attention processing
(44). The cortex around the calcarine fissure is the primary
visual cortex (45). The bilateral calcarine are components of the
occipital cortex, which is considered as low order brain region
in the visual cortex (46). The cuneus is functionally connected
to a visual network and is considered to be have crucial role in
the integration of visual information (47). According to previous
studies, smokers display an initial top-down attention bias
toward cigarette cues and demonstrate impairment in inhibiting
attentional biases (48, 49). Attentional mechanisms of top-down
biasing of feature selection in visual cortex have been extensively
investigated, indicating that attention exerts its effect by
modulating the gain of neural processing in sensory visual areas
(50). Therefore, we supposed that the aberrance in visual cortex
in chronic smokers might be associated with the impairment of
attention biases.

In the current study, static and dFCD methods illustrated
brain regions located in the same areas, including the bilateral
calcarine and right cuneus. The reduced dFCD variability in
visual cortex in chronic smokers might signify the weakness
in neural communication between this area and other regions
of the brain, which is consistent with the result of static FCD.
Alternations in static FCD suggest the functional impairment
in visual network. However, in to dFCD, the static index only
showed alternations in the more primitive part of visual cortex.
The dynamic index tended to show changes in brain regions
that associated with emotion and perception. We supposed
that dFCD tends to show fluctuation within a short period
of time, and it could provide more subtle variations in brain
coordination. A combination of static and dynamic FC has
been performed in schizophrenia and depression (20, 51). In
addition, we used 30 and 80 TRs with 90% overlap to validate
our results. The results showed inconsistent results in some
brain regions in different parameters. Hence, we may draw
the conclusion that longer or shorter sliding window size
might weaken the sensitivity of examining the variance of
dynamic changes in brain connectivity. In this study, heavy
smokers showed significantly decreasing static FCD in right
calcarine and right cuneus. The reason might be that smoking
behaviors in smokers with higher degree of nicotine dependence
tend to become more habitual. Hence, incentive effects will
be weaker, suggesting that heavy smokers’ attentional and
approach biases for smoking cues should be attenuated compared
with light smokers (34). From the above results, we may
draw the conclusion that static FCD tends to perform more
subtle variations in comparison to dFCD. In addition, the
aberrance of static FCD represents impairment of brain FC,
while the dFCD demonstrated the alternations of the variance

within brain coordination over a short time and supply more
subtle information.

The current study still exists several limitations. First, all
the subjects in our study are male. Hence, the current study
fails to analyze intergender differences. Second, the sample
size is small in this study. A larger size of subjects needs to
be performed in the future to verify our results. Finally, the
current studies are cross-sectional. To investigate the alternations
of brain coordination, accompanied with the development
of severity of cigarette smoking in chronic smokers, and to
elucidate the static and dynamic characteristics of whole-brain
connectivity, longitudinal studies are needed to be conducted in
future research.

CONCLUSION

In conclusion, there exists some brain regions that tend to
associate with the severity of nicotine dependence. In addition,
chronic smokers showed inherent aberrance which is irrelevant
to the severity of nicotine dependence. The dFCD significantly
outperforms the static FCD, which could provide more
variations. The current findings demonstrated that combing
static and dynamic analyses could provide complementary
evidence to help people understand the changes of neuroscience
in cigarette smokers.
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