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Simple Summary: Cancer cells are the target of most approved therapies. A growing body of
evidence suggests that these agents have important roles in modulating the biology of host cells
and their interactions with cancer cells, including blood vessels, fibroblasts, immune and fat cells,
among others. This review provides an overview of potential roles of commonly used therapeutics
in the tumor microenvironment, with a focus on cancer-associated fibroblasts. This includes an
emphasis on therapies commonly used for the treatment of high-grade serous ovarian cancers
(e.g., platinum, taxanes, PARP inhibitors, and anti-angiogenic agents). In vitro, in vivo, and clinical
studies are included, and perspectives offered on how to best interpret the influence of therapeutics
on normal cells.

Abstract: High-grade serous ovarian cancer (HGSOC) is characterized by a complex and dynamic
tumor microenvironment (TME) composed of cancer-associated fibroblasts (CAFs), immune cells,
endothelial cells, and adipocytes. Although most approved therapies target cancer cells, a growing
body of evidence suggests that chemotherapeutic agents have an important role in regulating the
biology of the diverse cells that compose the TME. Understanding how non-transformed cells respond
and adapt to established therapeutics is necessary to completely comprehend their action and develop
novel therapeutics that interrupt undesired tumor–stroma interactions. Here, we review the effects of
chemotherapeutic agents on normal cellular components of the host-derived TME focusing on CAFs.
We concentrate on therapies used in the treatment of HGSOC and synthesize findings from studies
focusing on other cancer types and benign tissues. Agents such as platinum derivatives, taxanes, and
PARP inhibitors broadly affect the TME and promote or inhibit the pro-tumorigenic roles of CAFs by
modifying the bidirectional cross-talk between tumor and stromal cells in the tumor organ. While
most chemotherapy research focuses on cancer cells, these studies emphasize the need to consider all
cell types within the tumor organ when evaluating chemotherapeutics.

Keywords: tumor microenvironment; stroma; cancer-associated fibroblasts; ovarian cancer; cancer
therapy; carboplatin; taxanes; PARP inhibitors; review

1. Introduction

High-grade serous ovarian cancer (HGSOC) is the most lethal gynecologic malignancy.
It is diagnosed at an advanced stage in 75% of women, which substantially contributes
to the poor five-year survival of less than 50%. Despite aggressive treatment with cy-
toreductive surgery and platinum/taxane-based chemotherapy, 70–85% of patients with
HGSOC will experience a recurrence [1]. Furthermore, the chemotherapeutic agents used
during treatment can elicit serious off-target effects, including fatigue, myelosuppression,
and neuropathy [2]. A small but growing body of literature has identified important
biological effects of chemotherapeutics on the non-transformed cells of the tumor microen-
vironment (TME) [3]. Several chemotherapeutic agents can regulate cancer-associated
fibroblasts (CAFs) by modifying their biology in ways that either enhance or restrain
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their pro-tumorigenic behavior. Dissecting these changes will help us better understand
how chemotherapy influences non-malignant host cell populations to modulate disease
progression, therapeutic response, and side effects of therapy.

The TME is a multicellular network of tumor cells and host-derived cells, including
CAFs, fibroblasts, myofibroblasts, adipocytes, endothelial cells, and immune cells, embed-
ded in a distinct extracellular matrix (ECM; Figure 1). The host cells often comprise the most
significant proportion of cells within the tumor organ. As one of the most abundant cellular
components of the TME, CAFs are of particular interest in tumor progression [4]. CAFs
encompass a highly dynamic populations of activated fibroblasts with pleiotropic functions
that shape tumor behavior and engage in a complex network of cross-talk with cellular
and non-cellular components of the TME. Their rich secretome supports interactions with
multiple cell types in the TME to induce tumor growth, epithelial-to-mesenchymal transi-
tion (EMT), angiogenesis, immunosuppression, and ECM remodeling. These elongated
cells do not express epithelial, endothelial, or leukocyte markers, and generally maintain
stable genomes that lack mutations found in nearby tumor cells [5]. In addition, reactive
oxygen species secreted by tumor cells alter CAF metabolism and induce oxidative stress,
autophagy, and upregulation of glycolytic enzymes [6]. Although most studies support a
pro-tumorigenic role for CAFs in the TME, other studies have found compelling evidence
that, in some situations or model systems, CAFs restrain tumor progression [7–9]. Several
markers have been used to characterize distinct subtypes of CAFs, with smooth muscle
actin (αSMA) and fibroblastic activation protein (FAP) among the most widely used. Other
markers, such as platelet-derived growth factor receptor beta (PDGFR-β), vimentin, cave-
olin 1, CD10, GPR77, and tenascin C, are also useful to resolve organ-specific CAF subtypes.
Several comprehensive reviews addressing CAF origins, functions, and subtypes can be
found elsewhere [4,5,8].
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image of a high-grade serous ovarian cancer metastasis to the omentum exemplifies the diverse
ecosystem of tumors that includes cancer cells, immune cells, CAFs, adipocytes, endothelial cells,
and other cells embedded in an ECM. CAFs and endothelial cells are present throughout the TME.
(1:100) (b) Cross-talk between cell types in the ECM involves bidirectional signaling between tumor
and stromal cell types that enforce a pro-tumorigenic microenvironment.
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Advanced HGSOC is treated with an aggressive combination of chemotherapy and
surgery. Depending on tumor volume at presentation, patients with localized or low-
volume metastatic disease undergo surgery followed by six cycles of chemotherapy. Pa-
tients with high-volume metastatic disease first receive three cycles of carboplatin and pacli-
taxel prior to surgery, with three additional cycles after surgery (“neoadjuvant chemother-
apy”). A debulking surgery that leaves behind no visible disease confers the most survival
benefit to the patient, and the choice of treatment sequence is weighted to maximize the
benefit and minimize the morbidity of surgery [10,11]. Unfortunately, recurrence rates are
high, being greater than 70%, and long-term survival is infrequent, with only 15% of women
with advanced stage cancer surviving 7–10 years [12]. An important determinant of overall
survival in HGSOC is persistent susceptibility of the disease to platinum-based agents [13].
Recurrence therapy is chosen based on the interval from the last platinum agent, overall
health, acquired toxicities, germline/somatic mutations, and other factors. Second-line
or maintenance treatments can involve anti-angiogenics, anti-metabolites, PARP (poly
ADP-ribose polymerase) inhibitors, topoisomerase inhibitors, and occasionally radiation
therapy [14–18]. The diverse treatment options used in patient care and clinical trials
highlight the relevance of understanding their potential impact on the non-transformed
components of the TME.

In this review, we assess experimental data that examines how commonly used ovarian
cancer chemotherapeutics, including platinum derivatives, taxanes, PARP inhibitors, and
anti-angiogenics, alter the function of genetically normal cells in the TME. Although we
focus on therapies used in the treatment of ovarian cancer, we incorporate evidence from
other histological types of cancer to broadly understand therapy-induced changes in CAF
biology and their impact on modifying cancer progression across different tumor types. The
challenges in understanding these complex interactions highlight the need for improved
model systems that recapitulate the heterogeneity of the TME. Single-cell or compartment-
resolved approaches, combined with high-fidelity preclinical models of cancer treatment,
will be essential to unravel the biological and clinical relevance of these effects.

2. Alkylating Agents (Cisplatin and Carboplatin)

Alkylating agents, including cisplatin and carboplatin, act by forming DNA adducts
and DNA strand cross links which lead to DNA breakage or cross-linking [19]. If a cell
cannot repair the lesion, RNA synthesis and DNA replication stall, and the cell undergoes
apoptosis. The most common and most efficient primary therapeutic regimen for HGSOC
is carboplatin in combination with paclitaxel every three weeks for a total of six cycles [20].
Cisplatin can be used with equivalent efficacy, particularly in patients with myelosuppres-
sion that cannot be overcome with carboplatin dose reduction but is associated with a
worse overall side effect profile [21]. Platinum compounds cross the fibroblast cell mem-
brane via the CTR1 and CTR2 copper membrane transporters [22,23]. CAFs, in particular,
express less CTR1 than adjacent normal fibroblasts and cancer cells, which contributes to
their generally chemoresistant phenotype [24].

Platinum agents have been found to alter the CAF secretome, inducing the secretion
of protease inhibitors, cytokines, and miRNA-containing exosomes. In primary esophageal
squamous cell cancer (ESCC), cisplatin-treated CAFs secreted high levels of plasminogen
activator inhibitor-1 (PAI-1), which subsequently promoted cancer cell proliferation and
protection from cisplatin-induced apoptosis via inhibition of caspase-3 and activation of
AKT and ERK1/2 pathways [25]. Clinical analysis of 49 ESCC patients indicated that those
with high expression of PAI-1 in CAFs had significantly worse progression-free survival
(PFS). Masuda et al. further found that in vitro inhibition of PAI-1 in lung CAFs increased
cancer cell apoptosis and reduced CAF α-SMA expression. Treatment of a co-culture
system with PAI-1 inhibitors consequently increased the efficacy of cisplatin killing cancer
cells [26].

Multiple studies have found that platinum-based agents can regulate the cytokine
profile of CAFs. Lung CAFs treated with cisplatin upregulated IL-11 expression in a time-
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and dose-dependent manner, promoting pro-survival STAT3 signaling in lung cancer
cells [27,28]. In a longitudinal study of ovarian cancer patients from whom tumor tissue
was collected before and after chemotherapy, levels of IL-6 were elevated in αSMA+

stromal cells following platinum treatment [29]. In vitro treatment of CAFs from primary
human ovarian cancer with cisplatin enhanced their chemoprotective properties in an
IL-6-dependent manner. Systematic profiling of cytokines upregulated by HGSOC CAFs
following cisplatin treatment found significant elevation of CCL5, IL-8, and MIP [30].
Ovarian cancer cells treated with CCL5 showed decreased apoptosis when exposed to
cisplatin, which was consistent with the finding that platinum-resistant patient samples
expressed elevated CCL5 levels compared to platinum-sensitive samples. Moreover, CAFs
may respond differently than normal fibroblasts to platinum agents, as was observed
when oxaliplatin treatment upregulated sDTK, IL-17A, and TGF-β in CAFs but not in
normal fibroblasts [31]. In colorectal cancer patient samples, IL-17A level was also found
to increase following chemotherapy.

In addition to growth factors and cytokines, CAFs also secrete exosomes containing
RNA molecules that may influence the gene expression profile and behavior of cancer
and normal cells in the TME [32]. Cisplatin- or paclitaxel-treated gastric CAFs secreted
exosomes containing high levels of miR-522, which suppressed ferroptosis in cancer cells
and promoted chemo-resistance [33]. Although miR-522 expression in primary CAFs was
not elevated, treated CAF exosomes contained nearly a four-fold higher level of miR-522,
indicating a preferential enrichment of miR-522 in exosomes. Another miRNA, miR-
196a, was upregulated in exosomes from cisplatin-treated head-and-neck cancer (HNC)
CAFs, which ultimately enhanced the proliferation and chemo-resistance of HNC cells via
targeting CDKN1B and ING5 [34].

Platinum-based interventions may also contribute to transforming normal fibroblasts
into CAFs through increasing the expression of CAF-related markers such as FAP and
α-SMA, altering the metabolic activity of normal fibroblasts, and inducing some aspects of
senescence. Co-culture experiments with bladder cancer suggest that cisplatin accelerates
normal fibroblasts’ transition to CAFs and increased the expression of α-SMA and FAP [24].
In immortalized human foreskin fibroblasts, cisplatin and carboplatin treatment increased
L-lactate production and glucose consumption [35]. Using glycolytic flux analysis, the
authors found that platinum treatment elevated fibroblast glycolysis and reduced oxygen
consumption rates, indicating a metabolic switch. A secreted fibroblast factor, the ECM,
and metabolism are linked in a report describing a novel role for the ECM protein collagen
(COL) 11A1.The CAFs secrete COL11A1 that binds to the cancer cells through a discoidin
receptor, which leads to upregulation of fatty acid oxidation, enabling the cancer cells to
withstand carboplatin treatment [36].

Because some features of the CAF phenotype are similar to the senescence-associated
secretory phenotype (SASP), it may be significant that platinum treatment has also been
found to induce senescence and autophagy in CAFs. Treatment of human lung fibroblasts
with platinum agents caused a prematurely senescent phenotype, evidenced by elevated
p53 expression, loss of the membrane gap junction protein connexin 43 (Cx43), and mor-
phological changes including flattening, filopodia extensions, and cytoplasmic vacuole
formation [37]. Similarly, cisplatin treatment of normal oral fibroblasts and foreskin fibrob-
lasts upregulated senescence markers and increased α-SMA expression [38]. An important
consideration when interpreting these studies is that carboplatin and cisplatin may exert
distinct effects on CAFs due to differences in uptake, bioactivity, and mechanism [39–41].
For example, carboplatin, but not cisplatin, was found to augment the glycolytic reserve,
upregulate senescence and CAF markers, and promote HIF, SMAD, and STAT signaling in
immortalized fibroblasts [35].

As CAFs comprise a highly heterogeneous cell population [42], CAF subpopulations
may respond differently to platinum-based therapies. Indeed, Su et al. demonstrated
that CD10+GPR77+ CAFs associated with poor prognosis also exhibited docetaxel and
cisplatin resistance compared to CD10−GPR77− CAFs [43]. When challenged with cisplatin,
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CD10+GPR77+ breast cancer CAFs demonstrated significantly lower levels of apoptosis
and growth inhibition. Furthermore, not all studies have found that platinum agents
have tumor-promoting effects on the TME. In a study focused on lung cancer, cisplatin
attenuated the ability of CAFs to promote the adhesion and invasion of cancer cells and
reduced cancer cell AKT and NF-κB signaling via an unidentified paracrine mechanism [44].
In vivo experiments demonstrated that while co-implantation of CAFs and lung cancer
cells increased tumor volume by over seven-fold, co-implantation with cisplatin-treated
CAFs was comparable to implantation of cancer cells alone. Mesothelial cell-derived CAFs
in the omental TME decreased cisplatinum sensitivity of HGSOC cells through secretion of
fibronectin, which induced the PI3K pathway in the cancer cells [45].

Fully elucidating the mechanistic effects of therapeutic agents on CAFs will require
understanding CAF heterogeneity and how therapies might balance cell subpopulations.
It is important to note that all these studies indicate that some chemotherapy effects are
tumor-promoting.

The effects of alkylating agents on other cellular components of the TME also de-
serve further attention. Notably, many studies demonstrate alkylating agents cause
bone marrow toxicity, myelosuppression, and inhibition of the self-renewal capacity of
hematopoietic stem cells [46–48]. Cisplatin has multifactorial roles in promoting a tumor-
suppressive immune response, including increasing the range of antigen recognition,
enhancing macrophage tumoricidal ability, promoting Th1 cytokine secretion, and regu-
lating the recruitment of M1 macrophages, T regulatory cells, and CD8+ T cells [49–52].
In adipocytes, cisplatin may increase lipolysis while impeding lipogenesis [53]. Platinum
treatment of endothelial cells induces features associated with angiogenesis, including
dose-dependent decreases in migration and upregulation of ICAM-1, VEGF, and several
cytokines such as IL-1 and IL-6 [54–57]. Independently, CAFs can promote the leakiness of
blood vessels through the secretion of microfibrillar-associated protein (MFAP) 5 which
binds to integrin receptors present on endothelial cells [58]. All of these effects on other
cell types in the TME may also have the potential to regulate the behavior of CAFs.

3. Paclitaxel and Docetaxel

Paclitaxel, a plant alkaloid derived initially from the yew tree, is a cornerstone of
upfront and recurrent treatment of HGSOC. Taxanes act during the M phase of the cell cycle
by binding to intracellular microtubules to promote their assembly and stabilization, thus
disrupting mitosis and leading to cell death [19]. Docetaxel is a therapeutically equivalent
choice with a lower risk of peripheral neuropathy [59]. Taxanes can be used in the recurrent
setting in both platinum-sensitive and -resistant patients [60].

There is emerging evidence that, in many situations, CAFs cooperate with tumor cells
to enhance resistance to anticancer treatments [61]. In response to chemotherapy, CAFs
may secrete cytokines, metabolites, and exosomes to potentiate stemness, metabolic repro-
gramming, and pro-survival signaling in tumor cells to orchestrate chemo-resistance [62].
Co-culture of taxane-treated normal lung fibroblasts with non-small-cell lung carcinoma
tumor cells led to increased paclitaxel resistance of cancer cells, suggesting that paclitaxel
may promote chemo-resistance via paracrine signaling [63]. Taxane-based chemotherapeu-
tics may also regulate other aspects of the CAF phenotype by transcriptionally attenuating
pro-tumorigenic paracrine signaling. Treatment of primary human breast cancer CAFs with
docetaxel led to significant decreases in the expression of CXCL2, MMP1, IL-8, FF1, and
CXCR7, among other cytokines. Co-culture experiments revealed that docetaxel-treated
CAFs promoted the adhesion, invasion, and proliferation of MDA-MB-231 breast cancer
cells [64]. A study of primary breast CAFs treated with docetaxel found that upregulation
of MMP-1 and collagen IV was important for mediating chemo-resistance through ECM
remodeling [65]. Caution should be applied to the interpretation of any in vitro or ex
vivo experiments, however, as one study found divergent effects of paclitaxel treatment
on primary CAFs compared to intact tissue sections, with increased apoptosis of CAFs
observed in the ex vivo model system [66].
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Several studies have suggested that taxanes may also regulate the behavior of normal
fibroblasts and promote some aspects of the CAF phenotype. In an approach using label-
free, quantitative proteomics, treatment of benign foreskin fibroblasts led to profound
changes in energy metabolism, autophagy, senescence, myofibroblastic differentiation, and
expression of inflammatory markers [67]. This included increased expression of common
CAF markers such as α-SMA, fibronectin, and vimentin and upregulation of interleukin
6 (IL-6) and STAT3 signaling. In parallel to the metabolic reprogramming that occurs in
CAFs [4,68,69], taxane treatment of dermal fibroblasts increased glycolysis, autophagy, and
pro-inflammatory signaling [35,67].

In contrast, studies investigating the effects of taxanes on normal fibroblasts in non-
cancer conditions have found evidence of anti-fibrotic effects. In a model of extrahepatic
bile duct fibrosis, treatment of human gallbladder myofibroblasts with paclitaxel led to
decreased autocrine TGFβ-1 signaling and reduced collagen 1 production associated with
fibrosis [70]. In another study examining renal interstitial fibrosis, paclitaxel treatment led
to decreased SMAD signaling and suppression of pro-inflammatory cytokine production
accompanied by a strong reduction in α-SMA and collagen 1 expression [71]. The mecha-
nistic basis for the differential effects of taxanes on normal fibroblasts and CAFs has not
yet been explored.

In addition to effects on fibroblast components of the TME, taxanes may also regu-
late endothelial cells by exerting intrinsic anti-angiogenic effects. Interestingly, human
endothelial cells accumulate higher intracellular levels of paclitaxel than non-endothelial
cells, suggesting selectivity and increased susceptibility of endothelial cells to the drug [72].
Multiple studies have found that taxanes can directly compromise endothelial cells by
inducing apoptotic cell death [73–76]. Functionally, paclitaxel attenuates endothelial cell
migration, inhibits endothelial tube formation [77], and induces some aspects of the senes-
cent phenotype [78]. Although taxanes may reduce the angiogenic activities of endothelial
cells, there is also evidence indicating paclitaxel can increase vascular endothelial growth
factor (VEGF) production in cervical cancer tumor cells by regulating hypoxia-inducible
factor 1α (HIF-1α) and NF-κB signaling, thereby increasing angiogenesis and promoting
chemo-resistance [79].

4. Poly ADP-Ribose Polymerases Inhibitors

Poly ADP-ribose polymerases (PARPs) are enzymes critical for the repair of single-
stranded DNA breaks, as well as contributing to the repair of double-stranded breaks
and the stabilization of replications forks [80]. In cells with double-stranded DNA repair
deficiencies, such as those with BRCA1/2 gene mutations, PARP inhibition leads to synthetic
lethality. PARP inhibitors (PARPi) are oral medications that act to trap or inhibit PARP
enzymatic action. Maintenance PARPi treatment after upfront chemotherapy has recently
proven effective at lowering the risk of disease progression or death by 70% at 41 months
in HGSOC patients with a BRCA1/2 mutation. They are now standard in the frontline
setting [11,15].

Most studies examining the effects of PARP inhibition on stromal cell populations
have focused on normal fibroblasts and found that PARPi affected the regulation of TNFα
and TGF-β signaling. Whereas PARP inhibition attenuates the TNFα-induced fibrob-
last response, its impact on TGF-β mediated effects is less clear. Isolated fibroblast-like
synoviocytes treated with TNFα and a PARPi (DPQ or ANI) had reduced expression
of inflammatory mediators such as MMP-3, IL8, and MCP-1 [81]. This was associated
with diminished TNFα-induced proliferation, JNK phosphorylation, and AP-1 and NF-kB
binding. Similar trends were observed in another study which found that pretreating
murine fibroblasts with the PARPi INH2BP also suppressed JNK activation and AP-1 DNA
binding [82]. In murine fibroblasts, the PARPi 3AB reduced levels of TNF-induced ATP
depletion and death [83]. Broadly, TNFα-induced signaling in fibroblasts is attenuated
by PARPi.
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In human skin fibroblasts, PARP inhibition by 3-AB increased the stimulatory effects
of TGF-β, including upregulation of α-SMA transcription, expression, and stress fiber for-
mation compared to TGF-β alone [84]. Additional synergistic effects included upregulation
of collagen expression, increased collagen release, and elevated SMAD3 signaling. In vitro,
treatment with 3-AB exacerbated fibrosis induced by topoisomerase or bleomycin, result-
ing in increased dermal thickness and hydroxyproline content. Other studies, however,
indicate anti-fibrotic roles for PARP inhibition. Knockdown of PARP1 in cardiac fibroblasts
repressed TGF-β1-induced proliferation, migration, and differentiation [85]. In rat models
of myocardial infarction (MI), 4-AB alleviated fibrosis and reduced collagen deposition,
with an associated decrease in α-SMA expression. In addition, 4-AB increased p62 lev-
els and reduced the LC3-II/LC3-I ratio, suggesting that PARP inhibition may increase
autophagy. These divergent phenotypes may be due to differences in cellular context,
fibroblast type, or experimental design considerations.

PARPi also demonstrates profound immunomodulatory effects, promoting anti-tumor
immune responses by upregulating cytotoxic immune cells such as CD8+ T-cells, B-cells,
and NK cells, while decreasing the number of myeloid-derived suppressor cells [86,87].
This anti-tumor response is at least in part due to upregulation of the STING pathway
by PARPi [88]. While PARPi show promise in cancer treatment, they are also associated,
albeit rarely, with severe side effects such as myeloid leukemia and myelodysplastic
syndrome [89]. Importantly, maintenance PARPi treatment can be of extended duration,
for two or more years, raising the possibility that long-term, global inhibition of PARP may
have distinct influences on the biology of normal cells.

5. Anti-Angiogenic Agents (Bevacizumab)

Bevacizumab, an antibody against VEGF and angiogenesis, is often used to treat
recurrent HGSOC as an additional treatment option to target the angiogenic potential
of the TME [90]. In upfront therapy for HGSOC, there is some evidence that it benefits
poor-prognosis patients with high tumor volume, stage IV, or incompletely resected dis-
ease [91]. Bevacizumab is also used in combination with PARPi for maintenance therapy
in the upfront setting, with a 19.5-month progression-free survival benefit [92]. A PFS
benefit has been seen when used in combination therapy for both platinum-sensitive and
-resistant recurrence [93,94]. The lack of a consistent overall survival benefit and the rare
risk of serious adverse events, including gastrointestinal perforation, bleeding diathesis,
and poor wound healing, has limited this agent’s use. Although anti-VEGF inhibitors
are meant to target endothelial cells, fibroblasts also express the receptors VEGFR1 and
VEGFR3 [95]. No studies have directly investigated the effects of anti-angiogenic agents
on CAFs, but bevacizumab exerts some direct effects on normal fibroblast populations.
Bevacizumab-treated rat conjunctival fibroblasts exhibit reduced growth, ECM remodeling,
and metabolic activity associated with decreased expression of VEGF, VEGFR1, VEGFR2,
TGF-β1, and TGF-β2 [96]. Pharmacologically blocking VEGFR in human lung fibroblasts
from patients with idiopathic pulmonary fibrosis suppressed the proliferative effects of se-
creted factors, including PDGF and bFGF [97]. VEGFR inhibition upregulated pro-MMP-2
activity, downregulated TIMP-2 secretion, and suppressed TGF-β-induced collagen se-
cretion. Another study examining human tendon fibroblasts found that treatment with
bevacizumab reduced metabolic activity and viability in a dose-dependent manner [98].
Bevacizumab also decreased the expression of MMP-1, MMP-2, and laminin, suggesting
that it may play a role in ECM remodeling.

6. Topoisomerase Inhibitors (Doxorubicin, Ropotecan, and Mitoxantrone)

Topoisomerase inhibitors, including doxorubicin, topotecan, and mitoxantrone, act
by inhibiting topoisomerase enzymes, which are responsible for the winding of DNA,
leading to DNA strand breaks [99]. Doxorubicin has the additional effect of distorting the
DNA double helix and generating free radicals. Liposomal doxorubicin and topotecan
are both used for recurrent ovarian cancer with limited efficacy [100]. Although the ef-
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fects of topoisomerase inhibitors on CAFs have not been extensively investigated, several
studies of normal fibroblasts suggest that topoisomerase inhibitors may regulate the TME.
Fibroblasts appear to be sensitive to the topoisomerase II inhibitor mitoxantrone, with
the treatment of dermal fibroblasts leading to senescence and enhanced glycolysis [101].
Mitoxantrone-treated fibroblasts have been found to induce a cancer stem cell phenotype
in MCF7 cells, as assessed using a luciferase reporter system in tumor–stromal co-culture
conditions [35]. Mitoxantrone treatment of prostate, ovarian, and breast primary CAFs
upregulated WNT16B, thereby mediating acquired resistance, suggesting a role for mi-
toxantrone in the regulation of Wnt signaling [102]. In a study that directly examined the
effects of topoisomerase inhibitors on CAFs in a mouse model of desmoplastic melanoma, a
combination of mitoxantrone and the triterpenoid celastrol decreased CAF-mediated colla-
gen production and was associated with a CD8 T-lymphocyte- and dendritic cell-mediated
immunogenic response [103]. The effects of topoisomerase inhibitors on other components
of the TME have not been systematically investigated.

7. Antimetabolites (Gemcitabine)

Gemcitabine is a pyrimidine analog that primarily acts by inhibiting DNA synthesis
through direct incorporation into the DNA backbone. It may also induce activation of
mitogen-activated protein kinase (MAPK), triggering apoptosis in response to cellular stress
in tumor cells [104]. Gemcitabine is commonly used in the recurrent setting and has a single-
agent response rate of about 19%. Common dose-limiting toxicities include neutropenia,
nausea, appetite suppression, and a flu-like syndrome [105]. Relatively few studies have
examined the effects of gemcitabine on stromal cell populations. CAFs appear to be resistant
to gemcitabine treatment when compared to normal fibroblasts or cancer cells [106]. It has
been suggested that scavenger molecules from pancreatic CAFs may modify gemcitabine
accumulation in tumors by entrapping the active drug and reducing its delivery to cancer
cells [107]. In co-culture model systems, pre-treatment of immortalized rat CAFs protected
tumor cells from the cytotoxic effects of gemcitabine. Interestingly, inhibition of autophagy
in CAFs with chloroquine also reduced cancer cell death in response to gemcitabine [108].
Several studies have also found roles for gemcitabine in the regulation of CAF exosome
production. The treatment of pancreatic CAFs with gemcitabine resulted in the increased
release of exosomes containing the EMT regulator Snail. Uptake of these exosomes by
tumor cells reduced the cytotoxic effects of gemcitabine treatment [109]. Similarly, Fang
et al. found that CAF-derived exosomes transferred miRNA-106b to tumor cells and
regulated gemcitabine resistance in a TP53INP1-dependent manner [106].

8. Radiotherapy

Radiotherapy involves targeted high-frequency ionizing radiation which ejects elec-
trons from atoms to create ions which then form free radicals, leading to DNA damage.
The advent of highly active chemotherapy for HGSOC in the 1990s sidelined radiation
therapy in this disease. Its current use is limited to treating isolated recurrences or for
symptom palliation [18]. Radiation induces significant changes in the CAF secretome, in-
cluding upregulation of factors such as IGF-1, bFGF, IL-6, IL-8, GRO, HDGF, and potentially
HGF [110–113]. Furthermore, radiation promotes MMP-3 and possibly MMP-1 expression
in CAFs [114,115]. Consistent with the role of CAFs in the regulation of ECM remodeling,
it has also been reported that radiotherapy elevates CAF expression of integrins β1, α5,
and, most significantly, α2 [114]. Irradiated CAFs produced a stiffer collagen matrix when
grown in a 3D culture system [116]. Radiotherapy also increases premature senescence
in CAFs [114,117]. Cumulatively, these data suggest that CAFs resist radiation treatment
through acquiring a senescent phenotype and that they can simultaneously contribute to
cancer cell resistance by secreting pro-tumorigenic factors and remodeling the ECM.
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9. Discussion

Studies investigating the effects of anticancer agents on normal cells in the tumor
microenvironment have focused on a wide range of molecular and phenotypic features, in-
cluding metabolic and transcriptional reprogramming and intracellular signaling (Figure 2).
These studies have primarily found that CAFs, in response to first-line chemotherapies,
secrete multiple cytokines, metabolites, ECM-remodeling enzymes, and exosomes that
transform the TME and generally promote chemo-resistance. Platinum derivatives and
taxanes appear to promote a precancerous metabolic phenotype in stromal cells, resulting
in augmented glycolysis, glucose consumption, lactate production, and activity of sev-
eral pro-tumorigenic pathways [35,67]. In response to these agents, normal fibroblasts
adopt at least some aspects of the CAF phenotype, but it is unclear if these changes are
long-lasting or reversible [24,35,67,83]. Other therapies, including PARP inhibitors, anti-
angiogenic agents, and topoisomerase inhibitors, have been less studied; nevertheless,
some evidence suggests that they have TME-modifying capabilities. Of note, alongside
cytotoxic chemotherapeutics, many patients receive 5-HT3 antagonists, steroids, and NK1
antagonists to manage nausea and emesis [118]. The effects of these agents on the TME
have not been well investigated, although several stromal cell types express the relevant
cognate receptors [119–123].
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inhibitors, and anti-angiogenics, may have (a) pro-tumorigenic or (b) anti-tumorigenic effects on CAFs. * Experimental or
clinical observations in normal fibroblasts or fibroblasts from disease states other than cancer.

Additional research using more physiologically relevant models will be necessary if
we are to illuminate the complex processes that occur in the treated TME. Organotypic
model systems that incorporate both tumor and stromal cell types have proven to be
particularly valuable in studies that reveal heterotypic cross-talk, cancer progression, and
opportunities for drug discovery [26,63]. For instance, using a complex model system, Gao
et al., found that CAFs can form metastatic units with ascitic tumor cells and drive peri-
toneal metastasis formation, which is common in ovarian cancer [124]. Using such complex
models can also identify mechanisms of chemo-resistance and pinpoint drug candidates
more likely to be effective in vivo, since malignant cells often exhibit profound differences
in sensitivity to therapeutic agents depending on the culture system utilized [125–128].
Furthermore, while patients receive well-defined cycles of chemotherapy, most studies,
both in vitro and in vivo, do not mirror the concentrations and durations of treatment
typical of clinical exposures.
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In addition, preclinical examinations of chemotherapy-induced changes in the TME
have been largely restricted to subcutaneous xenograft models that do not fully reca-
pitulate all components of the TME. Studies using orthotopic or genetically engineered
mouse models are needed to more fully understand disease processes. In HGSOC, most
tumor cells harbor mutations in TP53, and mouse models have been recently developed
with syngeneic murine ovarian cancer cells engineered to express mutant p53 protein via
CRISPR/Cas9 [129]. Researchers must carefully consider candidate cell lines for their
experiments, since unique and characteristic TMEs arise depending on the HGSOC model
employed [130].

CAFs originate from numerous sources and are composed of discrete subpopulations.
Therefore, it is difficult to generalize microenvironmental responses to chemotherapy due
to heterogeneity within single tissues and between anatomic sites. For example, while
cisplatin treatment may downregulate α-SMA in lung fibroblasts, studies in bladder and
foreskin fibroblasts have found upregulation of α-SMA or no changes at all [24,35,44].
Furthermore, few studies have examined differences in CAFs between humans and other
model organisms [131]. Research in the ovarian cancer TME has identified at least four
different CAF subpopulations that express distinct molecular signatures characterized
by variable expression of CD29, CD10, FAP, α-SMA, FSP1, PDGFR-β, podoplanin, and
caveolin-1. This suggests that the use of single markers such as α-SMA to define CAF
identity is imprecise. Embracing multiple CAF markers with complementary functional
studies has the potential to elucidate whether therapy-induced changes reflect reprogram-
ming of stromal fibroblasts or the selection of discrete populations. We anticipate that
single-cell sequencing will serve to spatially and temporally resolve CAF subpopulations,
as well as shed light on the epigenetic and evolutionary dynamics within specific microen-
vironments [132–134]. Advances in mass spectrometry-based proteomics have generated
opportunities to characterize the tumor and stromal proteomes in situ [135], quantify the
phosphorylation levels of critical signaling pathways [136,137], and identify secreted fac-
tors derived from both tumor and stromal cells [138]. In addition, imaging mass cytometry
enables the multiplexed, spatial characterization of proteins in both tumor and stromal
compartments and has already revealed important aspects of cellular communication and
“cellular neighborhoods” in breast cancer [139].

Understanding how chemotherapeutics impact cell types in the TME other than CAFs
may also inform opportunities for therapeutic intervention. Patients can experience vary-
ing degrees of myelosuppression, mucous membrane reactions, and alopecia, all evidence
of unintended cellular targets [19,140]. In addition, taxanes and platinum-based agents can
have significant neurotoxicity [141,142]. Because neurons interact with the TME in myriad
ways, releasing neurotransmitters, peptides, and growth factors [143–145], there are likely
to be unexamined roles for chemotherapeutic agents in the regulation of the communica-
tion between neurons and cancer cells [146]. Despite a growing literature showing that
chemotherapeutics perturb nonmalignant TME cells, in most situations, the mechanistic
basis of these effects remains unclear. As well as cross-linking DNA, cisplatin is also
known to generate reactive oxygen species, lower GSH and NADH levels, disrupt calcium
homeostasis, and activate ERK, JNK, and AKT signaling pathways [147]. PARP inhibitors
may disrupt the roles of PARP in DNA damage repair and influence epigenetic remodeling.
Several of these therapy-induced effects on fibroblasts are therefore unsurprising, whereas
others require further elucidation. For example, the general upregulation of α-SMA may be
due to cisplatin-induced changes in SMAD3 signaling, PAI-1 autocrine signaling, or other
mechanisms [148]. To understand these aspects of treatment, future studies should inves-
tigate the transcriptional and translational changes as well as the epitranscriptomic and
epigenetic remodeling that occurs in response to anticancer agents. How chemotherapeutic
agents may remodel the pre-metastatic niche has not yet been explored.

Beyond their likely prognostic and diagnostic value [149], CAFs have garnered interest
as targets of cancer therapy [150]. This could be of particular relevance to OvCa, since
there are few targetable mutations. Rather than aiming to ablate whole CAF populations, it
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may be possible to reprogram CAFs towards an anti-tumorigenic phenotype [151]. Indeed,
emerging research provides a rationale for targeting the TME with all-trans retinoic acid to
induce CAF quiescence [152] or using CXCL12 receptor inhibitors to disrupt CAF-mediated
immune evasion, as well as targeting many other CAF behaviors [153]. Fully realizing the
clinical efficacy of these emerging chemotherapies will require a robust understanding of
how common treatments influence the tumor microenvironment.

10. Conclusions

In summary, chemotherapy and radiation does not only affect the cancer cells, but has
a profound imapct on the TME. Understanding the effect of various treatments on cancer
cells is necessary to completely comprehend their action and develop novel therapeutics
that interrupt undesired tumor–stroma interactions.
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