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While a bidirectional positive link between palatable food intake and alcohol drinking
has been suggested, several rodents studies report reduced alcohol drinking following
palatable diets exposure. These studies utilized purified rodents’ diets high in sugar/fat;
however, the effects of hyper-palatable food (HPF) rich in fat and sugar on alcohol
drinking remain unclear. Furthermore, neural substrates involved in HPF-mediated
changes in alcohol consumption are poorly understood. Therefore, the present study
evaluated the effects of patterned feeding of a hyper-palatable food (Oreo cookies)
on alcohol drinking as well as dopamine (DA) and serotonin (5-HT) content in rat’s
mesocorticolimbic (medial-prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus
accumbens) circuitry. Male Long Evans rats received 8-weeks of intermittent (Mon,
Tue, Wed) Oreo cookies access, which induced a patterned feeding, in which rats in
the Oreo group overconsumed calories on HPF days whereas underconsumption was
observed on chow only (Thu, Fri) days. Following HPF exposure, alcohol consumption
was evaluated while patterned feeding continued. Alcohol intake in the Oreo group was
significantly lower as compared to the chow controls. However, alcohol intake in the Oreo
group increased to the levels seen in the group receiving chow following the suspension
of patterned HPF feeding. Finally, DA levels in the nucleus accumbens were significantly
greater, whereas its metabolite (DOPAC) levels were lower in the Oreo group compared to
the chow controls. Surprisingly, 5-HT levels remained unaltered in all tested brain areas.
Together, these data suggest that HPF-associated increased DA availability and reduced
DA turnover within mesocorticolimbic circuitry may regulate alcohol drinking following
patterned HPF feeding.

Keywords: alcohol use disorder, high-sugar/fat diet, palatable diet, alcohol drinking, dopamine, nucleus
accumbens

INTRODUCTION

Problematic caloric intake is not only a core component of some eating disorders but also is
linked to several public health concerns. For example, binge eating disorder, characterized by
consuming a large amount of food in a short period with a behavioral loss of control over
eating, can significantly impact overall health, quality of life, and healthcare costs (Ágh et al., 2016).
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Hyper-palatable foods (HPF), rich in sugar and fat, are the
typically preferred foods consumed during these episodes (Leigh
et al., 2018) and data suggest that individuals who engage in such
problematic eating behavior are at higher risk for developing
substance abuse, overweight/obesity, and worsening depressive
symptoms (Ross and Ivis, 1999; Swanson et al., 2011; Skinner
et al., 2012; Mehlig et al., 2018). Furthermore, substance use
disorder frequently co-occurs with eating disorders (Bulik et al.,
2004; Harrop and Marlatt, 2010), and a significant proportion
of the college-aged population has been reported to engage
in episodes of dysregulated drinking/eating, an experience that
could trigger alcohol/drug abuse and numerous health concerns
(Callas et al., 2004; Ferriter and Ray, 2011; Kelly-Weeder, 2011).

Converging research evidence suggests common
neurochemical, behavioral, and physiological determinants
of maladaptive eating and alcohol drinking (Fortuna, 2010;
Morganstern et al., 2011; Nogueiras et al., 2012). For instance,
feeding peptides, traditionally known for controlling appetite
and energy metabolism, also regulate the intake and reinforcing
properties of alcohol (Vadnie et al., 2014). It is also becoming
apparent that hyper-palatable foods can interact with brain
reward circuitry (Volkow et al., 2012), and changes in several
of these neurochemical systems have been reported following
HPF and alcohol intake (Barson et al., 2011; Volkow et al.,
2012, 2017). For example, both food and drug reward stimulate
DA release in the nucleus accumbens (NAc; Hernandez and
Hoebel, 1988; Yoshimoto et al., 1992; Rada et al., 2005; Liang
et al., 2006), and alterations in DA turnover and DA receptors
gene expression have been reported following prolonged alcohol
and HPF exposure (Hajnal and Norgren, 2002; Vasconcelos
et al., 2003; Davis et al., 2008; Villavasso et al., 2019). Similarly,
serotonergic (5-HT) neurotransmission is also implicated in
mediating behavioral and emotional impairments following
chronic exposure to alcohol and high-calorie diets (Kurhe and
Mahesh, 2015; Zemdegs et al., 2016; Li et al., 2020; Popova et al.,
2020). Together, these studies suggest that both hypercaloric
foods and alcohol may affect central monoaminergic systems,
and neuroadaptations in the mesocorticolimbic circuitry could
mediate the effects of chronic HPF and alcohol exposure.

Impaired emotional status resulting from chronic alcohol
exposure has been shown to promote escalated alcohol intake
(Kissler et al., 2014). Considering that prolonged dysregulated
eating of HPFs is capable of triggering negative emotional
states (Cottone et al., 2009; Iemolo et al., 2012), excessive
consumption of hyper-palatable food and resultant changes in
neuroendocrine signaling along with negative affective states
could trigger alcohol use disorder (AUD). Interestingly, some
studies have suggested a bidirectional positive link between HPF
intake and alcohol drinking (Pekkanen et al., 1978; Mitchell et al.,
1985; Krahn and Gosnell, 1991; Avena et al., 2004; Carrillo et al.,
2004). However, studies have also demonstrated reduced alcohol
drinking following both sugar- and fat-rich palatable diets
exposure (Yung et al., 1983; DiBattista and Joachim, 1999; Stickel
et al., 2016; Takase et al., 2016; Cook et al., 2017; Gelineau et al.,
2017; Sirohi et al., 2017b; Villavasso et al., 2019; Shah et al., 2020).
It is important to note that several procedural/experimental
differences among these studies could explain the differential

impact of palatable diets on alcohol drinking and have been
reviewed recently (Brutman et al., 2020). Briefly, some studies
reported increased alcohol intake provided palatable diets in
the acute or chronic manner and assessed alcohol drinking
following palatable diets suspension (Pekkanen et al., 1978;
Carrillo et al., 2004). On the other hand, studies from our
lab provided intermittent access and evaluated alcohol drinking
while rats were still maintained on intermittent palatable diet
cycling (Sirohi et al., 2017b; Villavasso et al., 2019). Furthermore,
hedonic fat or sugar consumption has been suggested to produce
fundamentally different behavioral states (Avena et al., 2009). In
this regard, a decrease in anxiety-like behavior has been reported
by studies providing intermittent access to the high-fat diet in a
non-consecutive manner (Mon, Wed, Fri; Sirohi et al., 2017b),
whereas when a high-sugar diet was provided in an intermittent
but on two consecutive days in a week, increase in anxiogenic
behavior was reported (Cottone et al., 2009). In short, how hyper-
palatable food overconsumption impact behavioral processes
that regulate alcohol drinking is poorly understood.

While most of these studies provided rodent’s purified diets
high in sugar or fat, typical dysregulated feeding episodes in
the real-world involve hyper-palatable food rich in both fat and
sweet. Therefore, the present study evaluated patterned feeding
of real-world hyper-palatable food (Oreo double stuffed cookies)
on alcohol drinking and monoamines (DA and 5-HT) levels in
rat’s corticolimbic areas. Previously, we have shown that a 2-week
of patterned high-fat diet pre-exposure is sufficient to reduce
alcohol drinking in rats (Villavasso et al., 2019). Considering
that the length and exposure history of a calorie-rich food can
produce fundamentally different behavioral outcomes (Tracy
et al., 2015; Krishna et al., 2016), alcohol drinking in the present
study was evaluated following extended (three times a week for
10-weeks), patterned HPF administration. It was hypothesized
that patterned feeding of hyper-palatable food would increase
alcohol drinking by associated changes in the monoamines
content in the brain reward circuitry.

MATERIALS AND METHODS

Animals
Male Long Evans rats (Envigo RMS, Inc, Indianapolis, IN)
initially weighing ∼300 g were used. Animals were individually
housed in a temperature (∼70◦F) and humidity (∼60%)
controlled vivarium on a standard 12 h reverse light-dark cycle
(lights on at 1:00 AM and off at 1:00 PM). Upon arrival, animals
were gently handled before any experimental manipulation,
and baseline body weight, food intake, and water intakes were
recorded. Cage cleaning and changes occurred every Monday
∼10:30 AM. All procedures were approved by the Institutional
Animal Care and Use Committee guidelines at the Xavier
University of Louisiana.

Diet
All animals received ad libitum access to standard rodent chow
(Tekland-Envigo Diets #2020X, 3.1 kcal/g with 16% Calories
from fat and 60% Calories from carbohydrates) and water. Rats
in the experimental group also received intermittent access to
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Double Stuff Oreo cookies (Walmart, 4.83 kcal/g with 24%
Calories from fat and 72% Calories from carbohydrates, of
which 45% Calories were derived from sugar). Other test diets
used in the study were high-fat diet (HFD; Research Diets
#D03082706, 4.5 kcal/g with 40% Calories from fat and 46%
Calories from carbohydrates, of which 7.9% Calories were
derived from sugar) and high-sugar diet (HSD; Research Diets
#D10001, 3.9 kcal/g with 11.5% Calories from fat and 67.7%
Calories from carbohydrates, of which 51%Calories were derived
from sugar).

General Experimental Procedure
Male Long Evans rats (n = 5/group) with no significant between-
group difference in body weight, food intake, and water intake
were randomly divided into control (Chow) and hyper-palatable
food (HPF/Oreo) groups. All rats had ad libitum access to
standard rodent chow and water for the entire duration of the
experiment. Rats in the HPF group also received intermittent
(Mon, Tues, and Wed) access to Double Stuff Oreos cookies
(3.0 cookies/session) ∼2.0 h into the dark cycle. The control
group received chow during this period. Standard chow was
available to all rats for the rest of the week, as shown in Figure 1A.
Food intake was manually recorded every 24 h, and body weight
was measured every Monday and Thursday. Any leftover cookie
crumbs were recovered from the cage at the end of HPF access.
Following an initial 8 weeks of patterned HPF feeding, a series of
tests (Figure 1B), as described below, were conducted while the
animals still maintained on a patterned feeding schedule, unless
noted otherwise. Rats were weighed simultaneously just before
respective food/fluid presentation.

We first examined the impact of withdrawal from patterned
feeding of an HPF exposure on high fat or high-sugar diet
preference. In the 9th week, ∼24 h following termination of
HPF patterned feeding cycle, both control and the experimental
groups received eight pellets of HFD and HSD (11:00 AM),
and hourly food intake was recorded for 4 h. HFD and HSD
testing occurred over a period around light dark switch so that
food intake could be captured at least 2 h before and 2 h after
this switch. These time points were chosen as rodents typically
consume their biggest meals around this switch. Also, since the
goal of the manuscript was to assess the effects of withdrawal
from hyper-palatable food, 2 h post switch testing time point was
chosen as it was ∼24 time period following Oreo cookies access
was suspended. All rats resumed patternedHPF cycling following
this testing.

In the 10th week, alcohol drinking was evaluated on
chow-only days (Thu, Fri, Sat) in a two-bottle choice paradigm,
as explained below. Alcohol (20% v/v) and water bottles were
provided in the rat’s home cages (∼2.0 h into the dark cycle),
and alcohol intake was manually recorded 2 or 24 h following
administration. Alcohol testing was conducted for 5 weeks on
chow-only days (Thu, Fri, and Sat) while patterned HPF cycling
continued. Next, we examined alcohol drinking once dietary
manipulations were released. For this, patterned HPF cycling
was suspended (Mon, Tue, and Wed), and all animals received
alcohol in a similar manner on regular chow only days. Following

the conclusion of alcohol drinking studies, intermittent HPF
cycling was reinitiated until animals were euthanized.

Finally, all animals were euthanized on chow access day
(∼24 h after the last patterned HPF cycle), and their brains
were immediately snap-frozen. The medial prefrontal cortex
(mPFC), orbitofrontal cortex (OFC), nucleus accumbens (NAc),
and amygdala (Amyg) were micro- dissected and prepped for
dopamine (DA), serotonin (5-HT), and their metabolites content
analysis.

Alcohol Drinking Procedure
Alcohol testing occurred using a two-bottle choice paradigm, as
done previously (Sirohi et al., 2017b; Villavasso et al., 2019). On
alcohol testing days, rats were given 20% v/v unsweetened alcohol
and water bottles. The position of alcohol and water bottles was
switched in each session to reduce and minimize conditioning
effects on alcohol intake. Body weight and weight of alcohol
and water bottles were manually recorded on testing days. Data
represents 15 separate alcohol drinking sessions where 2 or 24 h
alcohol intake was measured. Alcohol preference was calculated
as alcohol intake/water intake.

Brain Neurotransmitters Analysis
Brain tissue samples (n = 3–5/brain region) from the mPFC,
OFC, NAc, and Amyg were collected using tissue punches
and were weighed for wet weight. Tissue samples were then
homogenized in 0.2 M Perchloric acid (1 ml EDTA, 10 ml
60% HClO4, filled to 500 ml with ultrapure water) using
sonication. Homogenized samples were centrifuged for 15 min
at 12,000 rpm and 4◦C (Sorvall Legend Micro 21R Centrifuge;
Thermo Scientific; WalthamMA). The supernatant was collected
for analysis and the pellet was discarded. Samples were analyzed
using high-performance liquid chromatography (HPLC). The
mobile phase consisted of the following composition: 8%
acetonitrile, 100 mM phosphoric acid, 100 mM citric acid,
0.1 mM EDTA.Na2, 600 mg/L octanesulfonic acid sodium
salt, pH = 3.0. All chemicals used were HPLC grade and
dissolved in 18.0 MΩ purity water. A sample volume of 5 µl
sample was injected for analyses using an autosampler (AS
110, Antec, Zoeterwoude, Netherlands). Standards of known
concentrations of dopamine and, 3,4-Dihydroxyphenylacetic
acid (DOPAC), homovanillic acid (HVA), serotonin, and
5-HIAA were used to quantify concentrations of the respective
monoamines and their metabolites in the brain samples. An
ALEXYS Neurotransmitter Analyzer (Antec, Zoeterwoude, the
Netherlands) consisting of a stationary phase C18 column
(Acquity UPLC BEH, 1.7 µm diameter, and 1 × 100 mm length)
and a DECADE Elite electrochemical detector (senCell 2 mmGC
sb, Antec, Zoeterwoude, Netherlands). Clarity software (Prague,
The Czech Republic) was used for quantifying neurotransmitter
concentrations. Data are expressed as nM/mg of tissue weight.

Statistical Analysis
A mixed-model two-way ANOVA analyzed body weight, food
intake, and alcohol drinking data, with appropriate post hoc
(Sidak) analysis. The within subject variable was time intervals,
and the between-group variable was diet exposure. HFD/HSD
testing data were analyzed by the two-way repeated measure of
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ANOVA, followed by post hoc analysis (Turkey). A Student’s
t-test was also used wherever applicable, particularly for
brain monoamine data analysis. Statistical comparisons were
conducted at 0.05 α level using GraphPad Prism 7.05 (GraphPad
Software Inc).

RESULTS

HPF Patterned Feeding: Body Weight
A mixed-model two-way ANOVA identified a main effect of
time (F15,120 = 575.1, p < 0.0001) and a significant HPF
exposure × time interaction (F15,120 = 5.79, p < 0.0001) during
8 weeks initial intermittent HPF exposure compared to the chow
controls. However, no significant (p > 0.05) between-group
body weight differences existed during this period (Figure 1C).
Similarly, no significant (p > 0.05) between group body
weight differences existed during any of the testing time points
(Figure 1D).

HPF Patterned Feeding: Food Intake
Intermittent HPF exposure induced a patterned feeding cycle,
in which rats in the Oreo group overconsumed on HPF
access days, whereas underconsumption was observed on chow
only days (Figures 2A–C). A mixed-model two-way ANOVA
identified a main effect of time (F38,304 = 25.11, p < 0.0001),
a significant HPF exposure × time interaction (F38,304 = 24.01,
p < 0.0001) and a significant between-group effect (F1,8 = 42.49,
p < 0.001). On the other hand, the caloric intake of rats in
the chow group was consistently similar during this period.
Food intake was also measured on two separate weekends only
and no significant between-group difference existed these days.
Furthermore, significant (p < 0.0001) caloric overconsumption
(∼93% of kcal from Oreo cookies) occurred within 0–2 h of
the presentation, whereas a significant (p < 0.0001) caloric
underconsumption occurred 2–18 h following the suspension of
HPF (Figures 2D,E). The caloric intake at other time points was
identical in both groups.

FIGURE 1 | Schematic representation of patterned feeding paradigm and associated body-weight changes. (A) During the feeding paradigm, experimental group
of rats (n = 5/group) received 24 h intermittent access (Mon, Tue, and Wed) to Double Stuff Oreo cookies whereas control group of rats received chow. (B) A timeline
showing a series of behavioral and biochemical testing following initial 8 weeks of patterned feeding. All rats had ad libitum access to chow and water. Mean (± SEM)
body weight readings during (C) initial 8 weeks of pre-exposure and (D) subsequent testing sessions. There was no significant difference between body weights of
the control and the experimental group at any time point.
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FIGURE 2 | Energy intake during the 8-weeks of patterned HPF feeding. Data compare mean (± SEM) 24 h food intake (kcal) between chow and HPF group. (A)
Rats in the HPF group followed a pattern where they significantly overconsumed on HPF access days (i.e., Mon, Tue, and Wed) and under-consumed on chow-only
access days. ***p < 0.001 main effect of diet exposure. HPF group of rats significantly overconsumed and under-consumed on Oreo-access days and chow-access
days respectively when data were compared as indicated by the average of daily food intake (B) and overall food intake during the exposure period (C). *p < 0.05,
***p < 0.001, ****p < 0.0001 compared to chow controls. Food intake (kcal) was also measured at different timepoints after initiation and suspension of HPF
respectively. Data represents (± SEM) hourly (D) and cumulative (E) food intake at these time-points. HPF rats significantly overconsumed during the first 2 h (0–2 h)
on the Oreo days, and significantly under-consumed during the 2–18 h timeframe on Chow days. ττττp < 0.0001 compared to chow controls. ***p < 0.001,
****p < 0.0001 main effect of diet exposure. HPF, hyper-palatable food.
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HPF Patterned Feeding: HFD/HSD
Preference
HFD/HSD preference data were analyzed by a two-way repeated
measure ANOVA. In the rats receiving chow only, there was
a main effect of time (F3,12 = 20.98, p < 0.0001), a significant
diet × time interaction (F6,24 = 20.51, p < 0.0001) and
a significant between-diets effect (F2,8 = 73.9, p < 0.0001;
Figure 3A). Similar results were obtained in the rats receiving
intermittent access to Oreo, where there was a main effect of time
(F3,12 = 15.07, p < 0.001), a significant diet × time interaction
(F6,24 = 7.679, p < 0.001) and a significant between-diets effect
(F2,8 = 98.2, p < 0.0001; Figure 3B). While the HFD intake in
both Chow (p < 0.0001) and Oreo (p < 0.01) group of rats was
significantly elevated compared to the chow and HSD intake,
HSD intake was not significantly different compared to chow
intake in either group (Figures 3C,D). Furthermore, HFD/HSD
intake was not significantly (p > 0.05) different between the
Chow and Oreo group of rats. These data suggest that while both
the Chow and the Oreo group of rats preferred HFD over chow
and HSD, this preference was not impacted by 8 weeks patterned
HPF feeding.

HPF Patterned Feeding: Alcohol Drinking
Alcohol drinking data were analyzed by a mixed-model two-way
ANOVA, which identified a main effect of time (F14,112 = 2.74,
p < 0.01), a significant diet × time interaction (F14,112 = 2.628,
p < 0.01) and a non-significant trend between-group effect
(F1,8 = 4.774, p = 0.06; Figure 4A). While alcohol drinking
was not significantly different between groups in the first week,
further analysis revealed a gradual reduction in alcohol drinking
behavior over 5 weeks of testing. A significant between-group
difference in alcohol drinking was observed on fourth (F1,8=
10.01, p = 0.01, power = 0.79) and fifth (F1,8= 13.12, p = 0.0068,
power = 0.89) alcohol testing week. Interestingly, rats in the chow
group repeatedly displayed escalated alcohol intake on renewed
alcohol access (on Thursday), an effect reduced over the next
testing days each week. To examine if alcohol drinking differed
on testing days, we compared each alcohol drinking day (Thu,
Fri, and Sat) across 5 weeks of alcohol testing in both chow and
Oreo groups. In the chow group, a repeated measure two-way
ANOVA identified a main effect of testing days (F2,8 = 40.36,
p < 0.05) but no significant week’s effect (Figure 4B). Post-hoc
analysis further revealed that alcohol intake on Thursday was
significantly elevated compared to Friday (p< 0.01) and Saturday
(p < 0.0001). In addition, Friday alcohol drinking was also
elevated compared to Saturday (p < 0.05). On the other hand,
in the case of Oreo group, a repeated measure two-way ANOVA
identified a main effect of the week (F4,16 = 3.671, p < 0.05) but
no significant testing day effect (Figure 4C). Post hoc analysis
further revealed that alcohol intake in the 4th (p < 0.05) and
the 5th (p < 0.01) week was significantly reduced compared
to the 1st week in the Oreo group. Two-hour alcohol intake
was also evaluated on Thu and Fri and a mixed-model two-way
ANOVA identified the main effect of time (F9,72 = 5.458,
p < 0.0001), a significant food × time interaction (F9,72 = 2.163,
p < 0.05), and a significant between-group effect (F1,8 = 6.414,
p < 0.05; Figure 4D). Similar to 24 h alcohol intake data,

alcohol drinking in the chow group significantly escalated on
renewed alcohol access, an effect absent in the Oreo group of
rats. Total fluid intake was also not significantly different between
groups.

A mixed-model ANOVA also evaluated water (Figure 5A)
and total fluid (Figure 5B) intake data over 5 weeks of
alcohol testing period and found no significant between-group
differences. Since alcohol drinking in the Oreo group gradually
reduced over 5 weeks and it became only significant towards
the last weeks, we evaluated changes in water and total fluid
intake during the last 3 weeks. A repeated measure one-way
ANOVA revealed that from week 3–5, average weekly alcohol
intake remained unchanged in the chow group, whereas alcohol
drinking in the Oreo group of rats gradually reduced significantly
(F1.415,5.659 = 6.202, p < 0.05; Figure 5C). While water
intake in the chow group remained unchanged, it significantly
(F1.729,6.915 = 14.91, p < 0.01) escalated in the Oreo group of
rats (Figure 5D). Total fluid intake did not change under these
conditions in either group (Figure 5E). These data suggest that
the Oreo group of rats gradually increased their water intake
during the same time when their alcohol intake was reducing and
together, their fluid intake remained unchanged during the last
alcohol testing weeks. These data also suggest reduced alcohol
preference in the Oreo group of rats, which was supported by the
repeated measure one-way ANOVA (Figure 5F) to be significant
(F1.369,5.477 = 8.224, p < 0.05), whereas alcohol preference
remained unchanged during this testing period for chow group
of rats.

Next, we evaluated alcohol drinking following the suspension
of intermittent HPF cycling. Compared to the alcohol drinking
(week 5 in Figure 4) before suspension (Figure 6A), alcohol
intake in the Oreo group was not significantly different and
returned to the chow controls drinking level (Figure 6B).

HPF Patterned Feeding Selectively
Affected Dopamine in the NAc
The mesolimbic and mesocortical dopamine system is highly
implicated in reward processing and affect. Given our behavioral
data showing decreased ethanol intake in rats exposed to HPF
patterned feeding, we quantified dopamine tissue content in
regions receiving dopamine inputs from the VTA, namely, the
NAc, mPFC, OFC, and amygdala. Dopamine content in the
NAc (Figure 7A) was significantly greater in Oreo group of rats
compared to the chow control rats (t(8) = 3.146; p = 0.0137).
We also evaluated DA metabolites in the NAc and found that
DOPACwas significantly (t(8) = 4.275; p = 0.0027) reduced in the
Oreo group of rats compared to the chow controls (Figure 7B).
NAcHVA content was not significantly different between groups
(Figure 7C). No significant (p> 0.05) between-group differences
in dopamine or its metabolites content were observed in other
brain regions (Table 1). Since the above-mentioned regions also
receive serotonin inputs from the dorsal raphe, we assessed the
impact of ethanol and HPF patterned feeding on serotonin levels
in these regions. Serotonin or its metabolite content was not
significantly (p > 0.05) different in any of the brain regions
examined (Table 2).
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FIGURE 3 | HFD/HSD preference during acute withdrawal from patterned HPF feeding. In the 9th week, 24 h after the termination of intermittent HPF access, rats
were tested for their HFD/HSD preference. Data represent mean (± SEM) hourly and average food intake from each diet (chow, HFD, and HSD). A significant
between-diet effect was noted in the hourly food intake in both Chow (A) and Oreo (B) groups. ****p < 0.0001 between diet effect. A significant preference of HFD
over both HSD and chow was noted in both Chow (C) and Oreo (D) groups. However, no significant between diet type differences in HFD or HSD intake were
evident. There was no significant preference for HSD compared to chow in either group. **p < 0.01, ***p < 0.001 compared to chow. τp < 0.05,
ττp < 0.01 compared to HSD. HFD, high-fat diet; HSD, high-sugar diet.

DISCUSSION

The present study’s goal was to evaluate the impact of prolonged
patterned feeding of hyper-palatable real-world food (Oreo
double stuffed cookies) on alcohol drinking and alterations in
the central monoamine levels. We found that HPF intermittent
access induced patterned feeding and reduced alcohol drinking
in rats. In addition, dopamine concentration was significantly

elevated in the NAc of rats receiving patterned feeding of
HPF compared to the chow controls. These data collectively
suggest that patterned feeding of HPF reduces alcohol drinking,
potentially by modulating dopaminergic neurotransmission in
the brain reward circuitry in rats.

We and others have utilized an intermittent palatable
diet access model to induce sustained bouts of caloric
overconsumption and underconsumption, a hallmark of
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FIGURE 4 | Alcohol drinking following patterned feeding of HPF. Alcohol (20% v/v) was provided, and intake was recorded on chow-only days (Thr, Fri, Sat) for
5 weeks. (A) Mean (±SEM) % of baseline (day 1) alcohol intake is plotted. While there was no significant difference in alcohol intake between groups in the first week,
alcohol drinking was gradually reduced in the case of the Oreo group. During the 4th and the 5th week/session, the difference markedly increased with HPF rats
significantly consuming less alcohol than the chow controls. τp = 0.01, ττp = 0.0068 main effect of diet. κp < 0.05, κκp < 0.01, κκκp < 0.001 compared to chow
controls. Furthermore, alcohol consumption on each testing day was compared across the 5 weeks. (B) In chow group, a significant difference in alcohol
consumption was noted among testing days, a decreasing order from Thursday to Saturday. No significant week’s effect was noted. ****p < 0.0001 main effects of
testing days. (C) In the Oreo group, there was no difference in alcohol consumption over different testing days; however, there was a significant decrease in alcohol
intake across the weekly testing sessions. *p < 0.05 effect of the week. (D) Similar to 24-h alcohol intake, 2-h alcohol intake in the Oreo group was significantly lower
as compared to the chow controls. *p < 0.05 main effect of diet.
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FIGURE 5 | Water, total fluid intake, and alcohol preference following suspension of patterned HPF cycling. Data compares the mean (± SEM) (A) water and (B)
total fluid intake (ml/kg) between chow and HPF groups and no significant between group effects were observed. As noted earlier that significantly reduced alcohol
drinking behavior only emerged towards last weeks of the alcohol testing period, we evaluated average (C) alcohol, (D) water, and (E) total fluid intakes during the
last 3 weeks along with (F) alcohol preference. In the Oreo group, alcohol drinking and alcohol preference was reduced, water intake was increased but the total fluid
intake did not change. On the other hand, no such changes were observed in the chow group of rats. **p < 0.01, *p < 0.05 main effect of time.

dysregulated/binge-like feeding behavior (Davis et al., 2007;
Corwin and Babbs, 2012; Sirohi et al., 2017b; Villavasso et al.,
2019). It is important to note that our intermittent feeding

paradigm is distinct from ad libitum protocols that induce acute
bouts of caloric overconsumption, which are not sustained
and lead to an increase in body weight. In our paradigm, rats
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FIGURE 6 | Alcohol intake following suspension of patterned HPF cycling. Data compares the mean (± SEM) alcohol intake (g/kg) between (A) the 5th week of
regular alcohol testing and (B) after a week of patterned HPF cycling suspension. While the Oreo group had a significantly reduced alcohol consumption as
compared to chow in the 5th week, they returned to the chow controls drinking level when the patterned HPF cycling was suspended. τp < 0.05 main effect of diet.
*p < 0.05, **p < 0.01 compared to chow controls.

FIGURE 7 | Effect of patterned feeding of HPF on dopamine levels in the NAc. Data represent mean (± SEM) concentrations (nM/mg of tissue wt) of (A) DA, (B)
DOPAC and (C) HVA in the nucleus accumbens (NAc). DA levels were significantly elevated, whereas DOPAC levels were significantly reduced in the NAc of the Oreo
group of rats compared to the chow controls. HVA levels were not significantly different between groups. *p < 0.05, **p < 0.01 compared to chow. DA, dopamine;
DOPAC, 3,4-Dihydroxyphenylacetic acid.

display sustained bouts of hyperphagia but no body weight gain;
therefore, our results are not confounded by the presence of
an obese phenotype. In the present study also, rats receiving
intermittent access to Oreo cookies developed a feeding pattern
of overconsumption on HPF access days (Mon, Tue, and Wed)
and underconsumption on chow only access days (Thu and Fri;
Figures 2A–E). It is possible that restricting access to palatable
food could facilitate overconsumption of palatable food intake
(Fisher and Birch, 1999); in fact, a previous study utilizing a
similar approach reported an escalation in overconsumption
following renewed access to a palatable diet over a 5 weeks period
(Cottone et al., 2009). While the caloric intake in the present

study was significantly higher on the first day of renewed HPF
access compared to the second and third days, no escalation
in this feeding behavior was seen over a period of 8 weeks
(Figures 2A,B). We also evaluated average weekly caloric intake
on Oreo access days across 8 weeks and found no evidence of
escalated feeding behavior.

Preference for a high-sugar or high-fat diet under acute
abstinence conditions (24 h following termination of HPF
cycling) was also examined. While HFD was preferred over
HSD by both chow and Oreo groups, there was no between-
group difference in caloric intake (Figures 3A–D), suggesting
that HPF’s patterned feeding did not induce a compulsive
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TABLE 1 | Effect of patterned feeding of HPF on dopamine, DOPAC, and HVA
levels in the brain reward circuitry.

Brain region Chow Oreo p-value

DOPAMINE
mPFC 2.13 (± 0.29) 2.18 (± 0.06) 0.87
OFC 3.14 (± 0.10) 4.85 (± 0.96) 0.15
NAc 59.71 (± 3.06) 104.93 (± 14.04) 0.03∗

Amyg 3.06 (± 0.85) 4.32 (± 1.62) 0.57
DOPAC
mPFC 2.94 (± 1.11) 2.33 (± 0.33) 0.62
OFC 6.09 (± 0.62) 25.19 (± 12.52) 0.20
NAc 127.64 (± 2.70) 110.32 (± 3.02) 0.003∗∗

Amyg 27.29 (± 13.79) 5.03 (± 0.88) 0.21
HVA
mPFC 9.05 (± 2.01) 8.26 (± 1.52) 0.76
OFC 5.05 (± 1.16) 5.96 (± 0.99) 0.58
NAc 4.23 (± 0.48) 4.18 (± 0.47) 0.94
Amyg 14.11 (± 0.69) 20.03 (± 3.00) 0.14

Data represent mean (± SEM) dopamine and its metabolites (DOPAC and HVA)
concentrations (nM/mg of tissue wt) in the medial prefrontal cortex (mPFC), orbitofrontal
cortex (OFC), nucleus accumbens (NAc), and amygdala (Amyg) of Chow and Oreo group
of rats. ∗p < 0.05, ∗∗p < 0.01 compared to chow. HPF, hyper-palatable food; DOPAC,
3,4-Dihydroxyphenylacetic acid; HVA, homovanillic acid.

feeding phenotype. In the present study, rats in the experimental
group had a choice between chow and Oreo cookies, which
was not the case in Cottone et al. (2009) where animals in
the intermittent access group had access to a palatable diet
only during binge episodes and displayed compulsive feeding
behavior. It is important to note that free choice palatable diet
accessmimics real-world situations tomodel neurobiological and
behavioral consequences of overconsumption of palatable diets,
which could differ if the palatable diet is provided as the only
choice (Slomp et al., 2019).

Both animals and human studies have shown that disordered
eating behavior shares many similarities and neurobiological
characteristics of alcohol and substance use disorders (Cottone
et al., 2009; Gearhardt et al., 2009; Volkow et al., 2012)
and individuals who engage in such problematic eating
behavior are at higher risk for developing alcohol use disorder,
overweight/obesity, and worsening depressive symptoms (Ross
and Ivis, 1999; Swanson et al., 2011; Skinner et al., 2012;

TABLE 2 | Effect of patterned feeding of HPF on 5-HT and 5-HIAA levels in the
brain reward circuitry.

Brain region Chow Oreo p-value

5-HT
mPFC 1.19 (± 0.19) 1.22 (± 0.09) 0.89
OFC 10.98 (± 0.83) 10.70 (± 0.52) 0.78
NAc 4.69 (± 0.70) 4.64 (± 0.31) 0.96
Amyg 0.88 (± 0.17) 1.04 (± 0.03) 0.44
5-HIAA
mPFC 60.41 (± 8.81) 59.58 (± 3.16) 0.93
OFC 64.21 (± 2.88) 61.34 (± 2.27) 0.47
NAc 102.21 (± 6.22) 89.76 (± 7.98) 0.25
Amyg 70.10 (± 9.21) 65.19 (± 4.38) 0.65

Data represent mean (± SEM) serotonin (5-HT) and its metabolite (5-HIAA)
concentrations (nM/mg of tissue wt) in the medial prefrontal cortex (mPFC), orbitofrontal
cortex (OFC), nucleus accumbens (NAc), and amygdala (Amyg) of Chow and Oreo group
of rats.

Mehlig et al., 2018). Considering that hyper-palatable food is
typically consumed during dysregulated eating episodes and
activate similar brain reward circuitry as of drugs of abuse,
including alcohol, several studies have examined the impact
of overconsumption of palatable diets on alcohol (Pekkanen
et al., 1978; Yung et al., 1983; Mitchell et al., 1985; Krahn and
Gosnell, 1991; DiBattista and Joachim, 1999; Avena et al., 2004;
Carrillo et al., 2004; Stickel et al., 2016; Takase et al., 2016; Cook
et al., 2017; Gelineau et al., 2017; Sirohi et al., 2017b; Villavasso
et al., 2019). While still unclear, many studies have observed a
reduction in alcohol drinking (Pekkanen et al., 1978; Forsander
and Sinclair, 1988; DiBattista and Joachim, 1999; Takase et al.,
2016; Cook et al., 2017; Gelineau et al., 2017; Sirohi et al., 2017a,b;
Constant et al., 2018; Villavasso et al., 2019; Shah et al., 2020).
Paradoxical effects of HPF feeding on alcohol drinking could
be attributed to palatable diets with different macronutrient
compositions (high-fat or high-sugar), palatable diets exposure
duration (acute, intermittent, or chronic), and alcohol testing
conditions (Brutman et al., 2020). It is important to note that
majority of these studies utilized commercially available purified
diets high in sugar or fat. Therefore, the impact of binge-like
intake of a real-world hyper-palatable food on alcohol drinking
remained to be investigated and was the primary goal of the
present manuscript.

In order to examine the impact of withdrawal from
an extended intermittent palatable diet exposure on alcohol
drinking, alcohol intake was evaluated on chow access days
following 10 weeks of patterned HPF feeding. Interestingly,
rats in the chow group displayed acute deprivation-induced
escalated alcohol drinking (24 h) on renewed access to alcohol
(Thursday), which gradually reduced to baseline levels over
3 days (Figures 4A,B). On the other hand, rats in the Oreo
group were not only protected from this effect but also their
24 h alcohol intake gradually decreased, with significantly
decreased alcohol drinking observed on the 4th and 5th week
of alcohol testing (Figures 4A,C). Furthermore, 2 h alcohol
intake (Figures 4D) was also significantly reduced in the
Oreo group of rats accompanied by gradually reduced alcohol
preference (Figure 5F). While we predicted that such prolonged
cycling of HPF would increase alcohol drinking, surprisingly,
alcohol drinking was significantly gradually reduced in the Oreo
group of rats. These data are consistent with previous studies
from our lab in which reduced alcohol drinking was observed
following patterned feeding of a high-fat diet (Sirohi et al.,
2017b; Villavasso et al., 2019). While blood alcohol levels were
not assessed in the present study, a previously published study
(Sirohi et al., 2017b) from our lab using Long Evans rats reported
pharmacologically relevant blood alcohol levels (∼25 mg/dl)
following similar alcohol intake.

It has been suggested that withdrawal from fat and sugar
produce fundamentally different behavioral states (Avena et al.,
2009). On macronutrient levels, Oreo cookies are composed of
24% Calories from fat and 72% Calories from carbohydrates,
of which 45% Calories were derived from sugar. On the
other hand, high-fat diet previously used in our paradigm
consisted of 40% Calories from fat and 46% Calories from
carbohydrates, of which 7.9% Calories are derived from
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sugar (Sirohi et al., 2017a,b; Villavasso et al., 2019; Shah
et al., 2020). Surprisingly reduced alcohol drinking behavior
following patterned feeding to both Oreo cookies and high-fat
diet suggests a role of palatability rather than macronutrient
composition in reduced alcohol drinking following patterned
feeding of HPF as reported by a recent study from our lab
(Shah et al., 2020).

While reduced alcohol drinking was observed at least until
72 h following the suspension of the HPF, it was unclear
how long this effect would last. To address this question,
we suspended patterned HPF cycling and carried out alcohol
testing exactly as done earlier on chow only access days
(Thu, Fri, and Sat). Interestingly, alcohol drinking in the
Oreo group of rats increased compared to the last alcohol
drinking session and was not significantly different from
chow controls (Figure 6B). These data are similar to what
we had reported recently when alcohol drinking gradually
increased to the level of chow controls within a week following
intermittent high-fat diet suspension, suggesting that acute
availability of a palatable diet is critical to observe reduced
alcohol drinking behavior (Villavasso et al., 2019). In this
context, an alternative explanation of reduced alcohol drinking
following patterned feeding of a palatable diet could be the
caloric overload before alcohol testing as a contributing factor
in reduced alcohol drinking. However, previous studies from
our lab have repeatedly shown that reduced alcohol drinking
following patterned high-fat diet feeding is seen on days
when rats did not restrict calories voluntarily (Sirohi et al.,
2017b; Villavasso et al., 2019). On a similar note, alcohol
drinking was gradually reduced over 5 weeks on a patterned
HPF feeding cycle, whereas this behavior disappeared within
a week following HPF suspension. Importantly, when tested
under similar conditions, feeding peptides remained unchanged
following patterned feeding of a high-fat diet (Villavasso et al.,
2019). These data collectively suggest that energy homeostasis
mechanisms are less likely to drive reduced alcohol drinking
following patterned HPF feeding.

This notion also aligns with the data from a recent study from
our lab in which selective alterations in the neurotransmitter
receptors gene expression was observed in the brain reward
circuity compared to the brain region involved in energy
homeostasis following patterned feeding of a palatable diet
(Villavasso et al., 2019). Mesocorticolimbic dopamine neuronal
connectivity from VTA to NAc is highly implicated in food
and drug reward processing (Wise, 2006), and palatable foods
rich in fat and sugar increase extracellular dopamine in the
NAc similar to drugs of abuse (Hernandez and Hoebel,
1988; Rada et al., 2005; Liang et al., 2006). While studies
have reported blunted DA release following repeated/chronic
palatable food/solution exposure, limited/intermittent access to
sugar and fats repeatedly triggers increased DA release in the
NAc (Bassareo and Di Chiara, 1997; Rada et al., 2005; Liang
et al., 2006). Similarly, increased DA turnover and enhanced
behavioral responses to psychostimulants have been registered
following intermittent/restricted access to palatable diet (Hajnal
and Norgren, 2002, but see Moore et al. 2020). However,
prolonged intermittent or chronic access to palatable diets have

been shown to reduce extracellular DA levels in the NAc, referred
to as deficits in the mesolimbic dopamine neurotransmission
(Geiger et al., 2009; Fordahl et al., 2016). While their extracellular
DA levels were low, rats in the intermittent palatable diet
group display increased behavioral sensitization and a greater
increase in extracellular levels following the psychostimulants
challenge (Fordahl et al., 2016). These effects are hallmarks of a
hypodopaminergic state at baseline with an overactive dopamine
system in response to external stimuli—largely due to greater
dopamine availability as a result of enhanced synthesis (Mathews
et al., 2009; Karkhanis et al., 2016, 2019).

Although it is unclear if extracellular levels were different,
the present study found greater DA and attenuated DOPAC
levels selectively in the NAc homogenates of the Oreo
group compared to the chow controls rats (Figure 7A).
It is possible that increased NAc DA availability in the
Oreo group of rats promotes heightened sensitivity to the
intoxicating effects of alcohol in the Oreo group of rats,
thereby reducing the amount of alcohol needed to achieve a
state similar to the chow controls, a hypothesis that needs
further investigation. Since rats in the Oreo group were
voluntarily restricting calories on alcohol testing days, reduced
alcohol intake could reflect enhanced reward sensitivity. It
is important to note that brain sections were collected on
chow only access days ∼24 h following patterned palatable
food intake ended and >100 h following termination of
alcohol drinking. While animals had no access to alcohol on
that day, previous alcohol testing occurred under identical
conditions on the chow only access days. Since both alcohol
anticipation and ingestion increase extracellular DA levels in
the NAc (Weiss et al., 1993), increased DA content in the
NAc could reflect anticipation of alcohol reward. Future studies
are needed to precisely understand the role of mesolimbic DA
neurotransmission in regulating alcohol intake following this
paradigm. Future studies are also needed to identify any sex
differences in the impact of patterned feeding of HPF on alcohol
drinking.

In conclusion, the present study identifies that patterned
feeding of hyper-palatable food reduces alcohol drinking in rats,
and alterations in the dopaminergic neurotransmission within
mesolimbic circuitry could mediate reduced alcohol drinking
behavior following patterned feeding. These data are consistent
with previous studies from the lab and systematically replicates
reduced alcohol drinking following patterned feeding a palatable
high-fat diet and extend these observations to real-world food.
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