
fnmol-15-976388 September 10, 2022 Time: 16:14 # 1

TYPE Review
PUBLISHED 15 September 2022
DOI 10.3389/fnmol.2022.976388

OPEN ACCESS

EDITED BY

Zuhong He,
Wuhan University, China

REVIEWED BY

Kai Xu,
Huazhong University of Science
and Technology, China
Esperanza Bas Infante,
University of Miami, United States

*CORRESPONDENCE

Shule Hou
houshule8562@xinhuamed.com.cn
Jun Yang
yangjun@xinhuamed.com.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Methods and Model Organisms,
a section of the journal
Frontiers in Molecular Neuroscience

RECEIVED 23 June 2022
ACCEPTED 11 August 2022
PUBLISHED 15 September 2022

CITATION

Chen P, Wu W, Zhang J, Chen J, Li Y,
Sun L, Hou S and Yang J (2022)
Pathological mechanisms
of connexin26-related hearing loss:
Potassium recycling, ATP-calcium
signaling, or energy supply?
Front. Mol. Neurosci. 15:976388.
doi: 10.3389/fnmol.2022.976388

COPYRIGHT

© 2022 Chen, Wu, Zhang, Chen, Li,
Sun, Hou and Yang. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Pathological mechanisms of
connexin26-related hearing
loss: Potassium recycling,
ATP-calcium signaling, or
energy supply?
Penghui Chen1,2,3†, Wenjin Wu1,2,3†, Jifang Zhang1,2,3†,
Junmin Chen1,2,3, Yue Li1,2,3, Lianhua Sun1,2,3, Shule Hou1,2,3*
and Jun Yang1,2,3*
1Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China, 2Ear Institute, Shanghai Jiaotong University School
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Hereditary deafness is one of the most common human birth defects.

GJB2 gene mutation is the most genetic etiology. Gap junction protein 26

(connexin26, Cx26) encoded by the GJB2 gene, which is responsible for

intercellular substance transfer and signal communication, plays a critical

role in hearing acquisition and maintenance. The auditory character of

different Connexin26 transgenic mice models can be classified into two

types: profound congenital deafness and late-onset progressive hearing loss.

Recent studies demonstrated that there are pathological changes including

endocochlear potential reduction, active cochlear amplification impairment,

cochlear developmental disorders, and so on, in connexin26 deficiency mice.

Here, this review summarizes three main hypotheses to explain pathological

mechanisms of connexin26-related hearing loss: potassium recycling

disruption, adenosine-triphosphate-calcium signaling propagation disruption,

and energy supply dysfunction. Elucidating pathological mechanisms

underlying connexin26-related hearing loss can help develop new protective

and therapeutic strategies for this common deafness. It is worthy of further

study on the detailed cellular and molecular upstream mechanisms to modify

connexin (channel) function.
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Introduction

Up to now, 21 human genes and 20 mouse genes
encoding connexin (Cx) have been identified, of which
19 are considered homologous pairs (Söhl and Willecke,
2003). All Cxs are considered to share the same topology,
with cytoplasmic amino and carboxyl terminals, and four
transmembrane domains are connected by two extracellular
rings and one cytoplasmic ring (Beyer and Berthoud, 2018).
In the cochlea, there are varieties of Cxs including Cx26,
Cx29, Cx30, Cx31, Cx32, Cx43, and Cx45, which are
named according to their molecular weight size (Lautermann
et al., 1998; Ahmad et al., 2003; Buniello et al., 2004).
Different connexins have distinct distribution and expression
characteristics during the development of cochlea (Forge,
1984). Cx26 and Cx30 are the prevailing Cxs in the
developing and mature rodent cochlea (Tsutsui et al., 1976;
Kikuchi et al., 1995; Zhao and Yu, 2006). Six connexins
can combine into one single junctional hemichannel, and
two hemichannels between two adjacent cells form a gap
junction (GJ) (Sáez and Leybaert, 2014). The GJ which
is composed of the same connexin protein is known as
homomeric gap junction, while the GJ which is composed
of heteromeric connexin is also known as heterotrimeric
gap junction (Kumar and Gilula, 1996). GJ channels and
hemichannels generally allow the passage of ions (K+), some
second messengers [adenosine-triphosphate (ATP) and inositol-
1,4,5-trisphosphate (IP3)],(Niessen et al., 2000; Beltramello
et al., 2005; Bedner et al., 2006; Hernandez et al., 2007) and
metabolites (glycolytic intermediates, vitamins, amino acids,
and nucleotides) (Zou et al., 2005; Chang et al., 2008; Kanaporis
et al., 2008) of molecular weight less than 1.4 kDa molecular
weight or diameter less than 1.5 nm (Leybaert et al., 2017).
The hemichannel is mainly maintained in a closed state,
and its opening and closing are mainly regulated by (1)
extracellular Ca2+ and Mg2+ concentrations (Verselis and
Srinivas, 2008; Bennett et al., 2016), (2) membrane potential
(Verselis et al., 1994), and (3) post-translational modifications
of proteins (e.g., phosphorylation) (Moreno, 2005; Aasen et al.,
2018).

Mammalian cochlear inter-cellular connections are divided
into two main cellular network systems, namely the epithelial
gap junction system (E-sys) and the connective tissue gap
junction system (C-sys) (Kikuchi et al., 1995). In mammals,
the E-sys forms around embryo day 19 (E19) and is
well developed by postnatal day5 (P5). E-sys is located in
supporting cells around the organ of Corti, the bordering
epithelial cells of the inner sulcus and outer sulcus, the
interdental cells of the spiral limbus, and the root cells
(Jagger and Forge, 2013) that extend their process into the
spiral ligament. C-sys develops around P0 and is further
divided into two systems, (1) fibrocytes of the spiral limbus;
(2) fibroblasts, basal cells, and intermediate cells of the

stria vascularis (SVs), fibroblasts of the suprastrial region,
mesenchymal cells of the vestibular scala, and dark cells
(Kikuchi et al., 2000).

The maintenance of normal function of the
inner ear depends on the homeostasis of three fluid
environments—the perilymph fluid (cerebrospinal fluid),
the endolymphatic fluid, and the intracellular fluid.
Furthermore, the maintenance of the fluid environment
homeostasis depends on the cellular network system
of substance exchange and signaling transmission
which is formed by intercellular GJ channels and
extracellular hemichannels.

Gap junction protein 26 (connexin26, Cx26) encodes
by the GJB2 gene. GJB2 mutations cause about 50%
of non-syndromic hearing loss. There are more than
340 mutations of GJB2 (Mammano, 2019), including
missense mutation, nonsense mutation, frameshift
mutation, insertion mutation, deletion mutation, and so
on. Most GJB2 mutations cause recessive non-syndromic
deafness (DFNB1A, OMIM: 220290). GJB2 mutations
affect the following: (1) the protein expression level
(Thönnissen et al., 2002); (2) their transport to the plasma
membrane; (3) their channel biological characteristics
(voltage gated, chemical gated, and channel permeability)
(Gerido et al., 2007).

Cx26 is the most common and harmful deafness gene.
Cx26 is responsible for intercellular substance transfer
and signal communication and plays a critical role in
hearing acquisition and maintenance. Cx26 mutations can
not only cause congenital deafness but also cause delayed
deafness. The deafness mechanism caused by Cx26 mutation
is not clear. Mouse models are widely used in hearing
and deafness mechanism research (Leibovici et al., 2008).
Benefit from the development of transgenic technologies
such as the Cre-loxP system and the establishment of the
Cx26 conditional knockout mouse model has promoted
the study of the mechanism of Cx26 mutation deafness
(Gridley and Murray, 2022). This paper reviews the
research progress of congenital deafness and delayed
deafness caused by Cx26 mutation in recent years and
tries to find the underlying pathological mechanisms of
connexin26-related hearing loss.

Mouse models of connexin 26
deficiency

Given the complex phenotype and mutation in Cx26-
related hearing loss, it is difficult to explore the underlying
pathogenesis mechanism. More and more Cx26 transgenic
mice have been used to study pathogenesis mechanisms.
We summarized and classified Cx26 transgenic mice into
two major types based on the deafness phenotype: profound
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congenital deafness model mice and late-onset progressive
deafness model mice. Profound congenital deafness model
mice include Gjb2loxP/loxP; Otog-Cre, Gjb2loxP/loxP; Sox10-
Cre, Gjb2loxP/loxP; Pax2-Cre, Gjb2loxP/loxP; Foxg1-Cre,
Gjb2loxP/loxP; Rosa26-Cre, Gjb2loxP/loxP; Prox1-CreERT2,
and Gjb2loxP/loxP; Rosa26cre-ER injected with tamoxifen at E19
or P1 (Sun et al., 2009; Wang et al., 2009; Chang et al., 2015).
The common pathological changes of these mice are the
failure of the opening of the tunnel of Corti at P6, serious
hair cell loss from the middle turn after P14, and the
secondary loss of spiral ganglion neurons (Cohen-Salmon
et al., 2002; Sun et al., 2009; Wang et al., 2009). Obviously,
in Cx26 deficiency mice, the sensory epithelial cell injury
precedes hearing loss. The failure of the tunnel of Corti
to open is a landmark event (Lin et al., 2013). Since
the tunnel of Corti and Nuel’s space are not developed,
perilymph failed to infiltrate around the outer hair cell
body, resulting in an effective K+ potential difference
(endocochlear potential, EP), and cochlear amplifier function
fail to form (Wang et al., 2009). Researchers found that
the reduction of microtubules in inner and outer column
cells is likely the reason that the tunnel of Corti failed
to open (Lin et al., 2013; Xie et al., 2019). Cx26 plays a
crucial role in the early development of the cochlea. The
developmental disorder of supporting cells may be the
main mechanism of congenital profound deafness caused by
Cx26 deficiency.

Cx26 model mice that present late-onset progressive
deafness mainly include p.V37I homozygous mutant mice,
Cx26± mice, and Gjb2loxP/loxP; Rosa26cre ER mice which
received injection with tamoxifen at P5, P8, and later
(Zhu et al., 2015; Chen et al., 2016; Lin et al., 2019).
All these mice acquire normal hearing function and show
normal cochlear development without hair cell loss at P30
(Chang et al., 2015). However, with aging, progressive hearing
loss first started only at high frequency and gradually
extended to full frequencies (Chang et al., 2015; Xie et al.,
2019). It is like the phenotype of DFNA3 or DFNB1.
The common pathophysiological alterations of these model
mice are the active cochlear amplification impairment which
showed that distortion product otoacoustic emission (DPOAE)
failed to evoke at an early stage (Chen et al., 2021).
With aging, hair cells at the basal turn first start to
damage and then gradually expand to the middle and
apic turns (Fetoni et al., 2018). This pathological change
pattern is like the pattern of noise-induced deafness and
age-related deafness (Zhou et al., 2016). This kind of mice
model further proves that Cx26 plays an essential role in
maintaining hearing function, especially in maintaining the
active amplification of the cochlea. The rest of the cochlear
blood supply depends on two vascular networks, one serving the
spiral limbus, and another serving the spiral ligaments and SVs
(Figure 2).

Pathological mechanisms of
connexin26-related hearing loss

Cx26 mutation leads to disruption of
potassium recycling in cochlear lymph

In 1983, Santos-Sacchi and Dallos proposed the hypothesis
of the GJ function in potassium recycling (Santos-Sacchi and
Dallos, 1983). The cochlear GJ is a specific potassium ion
channel. By GJ, expelled potassium ions from hair cells are
sunken into supporting cells and are eventually transported back
to the endolymph.

Potassium recycling is such a process that potassium flows
through ion channels in the cochlear GJ system from the
perilymph into the endolymph, participating in the formation
of hair cell receptor potentials and stable endocochlear potential
(EP), finally returning to the perilymph (Lv et al., 2021;
Figure 1). Potassium recycling is thought to be critical for
maintaining high endolymphatic potassium concentrations and
EP (Chen et al., 2021).

The cochlea is filled with endolymph and perilymph of
unique and different ionic environments. The ionic composition
of endolymph is different from that of perilymph. Such as, the
potassium concentration in the endolymph is 30 times higher
than that of the perilymph, in contrast, Na+ concentration in
the perilymph is 10 times higher than that in the endolymph.
This leads to the potential difference between different parts
of the cochlea in the resting state. EP is the positive voltage
(+80 mV) of cochlear endolymph in scale media at the
resting state. Once acoustic stimulation, the positively charged
EP becomes the driving force to promote potassium ions of
endolymph in the scala media to pass through the mechano-
transduction channel in the top of hair cells and generates
auditory receptor current and potential. Thus, the positive
EP is necessary for hearing maintenance (Chen and Zhao,
2014; Chen et al., 2021). Gap junction coupling is required to
produce positive EP. Loss of Cx26 expression in the cochlea
can lead to decreased EP (Chen et al., 2014). Compared with
WT mice, Cx26 KO mice had about a 50% reduction in EP
(Cohen-Salmon et al., 2002).

The EP reduction attenuates the potassium inflow driving
force into hair cell stereocilia and weakens outer hair cell (OHC)
electromotility. OHC electromotility serves as a major source of
active cochlear amplification in mammals (Ashmore, 2008; Liu
et al., 2019). Active cochlear amplification can increase hearing
sensitivity and frequency selectivity (Dallos, 2008; Zheng et al.,
2021). Therefore, Cx26 deficiency in the cochlear supporting
cells can impair active cochlear amplification with DPOAE
reduction (Lin et al., 2019).

Based on GJ functions in the cochlea, researchers have
hypothesized that the pathological mechanism of deafness
caused by Cx26 mutations may be due to dysfunction of
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FIGURE 1

Schematic diagrams of Cx expression, potassium recycling, and ATP-Ca2+ signaling in the inner ear.

GJ, leading to impair potassium recycling in the cochlea.
They hypothesized that GJB2 mutations produce functionally
defective or non-functional Cx26 proteins that affect the
permeability of the cochlear GJ, impairing GJ coupling
and disrupting potassium recycling, and also (1) leading to
potassium excessive accumulation in extracellular space near
hair cell, generating cell toxicity and eventually damaging
the hair cells (Salt and Ohyama, 1993; Teubner et al., 2003;
Wangemann, 2006; Zhao, 2017); (2) leading to EP reduction;
and (3) leading to impair active cochlear amplification (Kamiya
et al., 2014; Chang et al., 2015).

The potassium recycling dysfunction hypothesis can explain
the pathogenesis of most of the GJ-related hearing loss including
profound congenital hearing loss and late-onset progressive
hearing loss. However, there has been no direct evidence found
to support this hypothesis so far. Moreover, more and more
model mice have been studied, and the theory of potassium
recycling has been challenged and questioned in many ways
(Zhu et al., 2015). For example, many mutations do not affect the
ion permeability of the GJ but still cause deafness (Beltramello
et al., 2005); R75W mutant mice exhibit severe deafness but
have normal EP (Inoshita et al., 2008), and so on. Therefore,
in our opinion, the Cx26 mutation causing impaired potassium

recycling may not be its main pathogenic mechanism. The
hypothesis of potassium recycling defect cannot explain that
Cx26 deficiency can lead to congenital deafness and delayed
deafness. The congenital deafness caused by Cx26 mutation
is not due to the degeneration of cells and the reduction of
cochlear potential but may be due to the developmental disorder
of the cochlea itself.

Critical role of ATP triggered
intercellular Ca2+ signaling in
cochlear development

As an intercellular channel, GJ also plays an important
role in intercellular Ca2+ signaling transduction (Sirko et al.,
2019). Calcium signaling is involved in a variety of cell
pathophysiological processes, which is not only the main driving
force of cell proliferation and growth but also closely related to
cell death (Sirko et al., 2019).

The spread of intercellular Ca2+ waves can be realized
through transmitting second messengers (Ca2+ and IP3 by
GJ channels, or ATP and IP3 by hemichannels). During
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FIGURE 2

Schematic diagrams of glucose transport in the stria vascularis and spiral ligament of the cochlea.

cochlear development, supporting cells of the Kölliker’s organ
can spontaneously and rhythmically release ATP to the
endolymphatic surface via hemichannels, as well as to adjacent
supporting cells via GJ channels (Mese et al., 2011; Sellitto
et al., 2021). Then, ATP can activate the G protein-coupled
P2 purinergic receptor (P2R) of the adjacent cells, producing
phospholipase C (PLC)-dependent IP3, which activates the
endoplasmic reticulum IP3 receptor and promotes endoplasmic
reticulum calcium release, thereby inducing Ca2+ signaling
(Piazza et al., 2007). Initially, intracellular Ca2+ release from
supporting cells usually starts from a small group of cells (2–
4) and then passes rapidly through gap junction channels,
synchronizing the entire Kölliker’so rgan syncytium, causing
cumulative ATP release, and eventually activating the P2Rs on
adjacent inner hair cells (IHC), which again leads to causing
depolarization of IHCs and the release of calcium-dependent
glutamate from ribbon synapses, activating spiral ganglion
neurons (SGNs) to generate action potentials(Ceriani et al.,
2016). This process is called as the ATP-triggered intercellular
Ca2+ signaling pathway or sound-independent spontaneous
electrical activity, which is a key transient physiological activity
during auditory development (Ceriani et al., 2016). With the
disappearance of Kölliker’s organ, mature synapses of hair cells
start to be established for chemical-electrical connection with
postsynaptic afferent nerves, and the abovementioned transient

physiological activity ends. Thus, ATP triggered intercellular
Ca2+ signaling pathway plays a critical role in promoting
the maturation of hair cells and SGNs and the refinement of
synapses and nerve fibers.

In addition, the propagation of the intercellular Ca2+

wave activates and opens TMEM16A (a Ca2+-activated
chloride channel), causing osmotic cell contraction and wrinkle
movement of tall columnar cells of Kölliker’s organ (Tritsch
et al., 2007). TMEM16A is highly expressed in columnar
supporting cells near IHC. The wrinkle movement of columnar
cells will also depolarize IHC and increase the frequency
of spontaneous Ca2+ action potentials (APs) of IHC at the
prehearing stage, thus triggering synaptic vesicle exocytosis and
promoting the development and maturation of IHC and SGN at
prehearing stage (Wang et al., 2015).

Connexin, as the core of ATP-triggered intercellular Ca2+

signaling pathway, and its defect will lead to the disruption
of calcium signal transmission. Both Gjb2loxP/loxP; Sox10-Cre
mice and Gjb6−/− mice showed that Ca2+ waves failed to
propagate in the Kölliker’s organ (Ortolano et al., 2008; Crispino
et al., 2011), and consequently failed to acquire normal hearing
(Sun et al., 2022). On the contrary, P2rx7 and Panx1, as
alternative parts for ATP-triggered intercellular Ca2+ signaling,
P2rx7−/− (MGI:3606250) and Panx1−/− (MGI:3606250) mice,
showed that normal Ca2+ waves spread in Kölliker’s organ and
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normal hearing phenotype (Suadicani et al., 2006). Moreover,
overexpression of Cx30 by transduction in vivo with BAAV
(bovine adeno-associated virus) vectors encoding Cx30 via
canalostomy at P4 not only restored calcium wave transmission
in Gjb6−/− mice but also partially and significantly improved
hearing threshold around P30 (Crispino et al., 2011).

Although IHCs and OHCs do not express GJs, the Ribbon
synapse of IHC retained immature morphology in Gjb2loxP/loxP;
Sox10-Cre mice and Gjb6−/− mice under transmission electron
microscopy observation (Johnson et al., 2017). And patch clamp
experiments also showed membrane currents and exocytosis
capability of IHC retained at the prehearing stage (Johnson et al.,
2017). The impaired synapse and nerve innervation of OHC also
have been found in Cx26 deficiency mice (Johnson et al., 2017).

In conclusion, these results demonstrated that Cx-
dependent ATP-triggered intercellular Ca2+ signaling pathway
plays a key role in postnatal auditory development. Some
scholars proposed the hypothesis that the disrupted Ca2+

signaling of developing cochlear epithelium prevents hearing
acquisition in Cx26 deficiency mice (Ceriani et al., 2016;
Johnson et al., 2017; Sun et al., 2022). However, the disrupted
Ca2+ signaling hypothesis cannot explain the abnormal
development of cochlear support cells, such as the failure of
the tunnel of Corti to open and the failure of inner and outer
column cells to differentiate and mature.

Energy supply of the cochlear
supporting cell via gap
junction-mediated glucose
transport pathway

The mammalian cochlear sensory epithelium is basically
an avascular structure. With one exception, there is only one
capillary, the spiral vessel, that traverses the sensory epithelium
beneath the tunnel of Corti. The rest of the cochlear blood
supply depends on two vascular networks, one serving the spiral
limbus and another serving the spiral ligaments and SVs. The
spiral ligament vessel, which is embedded in the fibrocytes
forming part of the C-sys, crosses SVs and divides into many
fine capillaries in the SVs.

Glucose transport is divided into two types, the family
of glucose transporters (GLUT) that promote glucose
diffusion along concentration gradient and sodium-dependent
glucose transporters (SGLTs) that transport glucose against
a concentration gradient (Mueckler and Thorens, 2013;
Deng and Yan, 2016). Blood glucose is mainly transported
along a concentration gradient, which does not require
energy, but requires a carrier. In rats, the concentration
of glucose in the perilymph of vestibular scala and media
scala is only about 50% of that in blood plasma, while the
glucose concentration in the endolymph is less than 10%.

In 1983, Santos-Sacchi and Dallos discovered that GJs can
help transport glucose and other metabolic substances to
adjacent cells of the sensory epithelium (Santos-Sacchi and
Dallos, 1983). Using a fluorescent glucose tracer (2-NBDG)
which can monitor the ability of glucose uptake in living
cells, it has been shown that glucose transport is through
the intercellular GJs network system (Zou et al., 2005).
Also in astrocytes, the network of GJs can transport energy
and nutrients from the vascular zone to distant neurons in
the avascular zone.

During cochlear development, both hair cells and
supporting cells require a large amount of energy for
differentiation and maturation. The insufficient energy
supply will disturb normal development. Autophagy provides
important energy for early development, and the deletion
of autophagy-related molecules can be lethal to mouse
embryos (He et al., 2017; Liu et al., 2021). Similarly,
complete knockout of Cx26 mice has embryonic lethality,
which is related to impaired transplacental glucose uptake
(Bakirtzis et al., 2003). Interference with autophagy in
early development also disrupts cochlear sensory epithelial
development (Bu et al., 2022). In adult mice, the normal
OHC electromotility activity also requires a large amount of
energy, and the concertina movements of OHCs can reach
10,000 Hz frequency, and such a high frequency of cellular
concertina movements must be accompanied by a large
consumption of energy (Zhu et al., 2013). However, OHC
electromotility does not depend on ATP but probably on
the constant uptake of glucose from the cortilymph by the
glucose transporters in the lateral walls of OHCs. Glucose
of cortilymph may come from the hemichannel secretion of
supporting cells.

Mutations in Cx26 reduce the coupling of CJs, which
limits the transport of nutrients, especially glucose from distal
vessels to avascular sensory epithelium. The glucose transport
pathway mediated by GJs is critical for the differentiation
and maturation of supporting cells, especially the inner and
outer column cells of the tunnel of Corti during early
development (Xie et al., 2019). Limited energy supply may
hinder the formation of microtubules of inner and outer
column cells, leading to failure to open the tunnel of Corti,
which can explain the developmental disorder in congenitally
profound deafness model mice (Lin et al., 2013; Xie et al.,
2019). The lack of nutrients such as glucose affects ATP
production, leading to reactive oxygen species (ROS) overload
and cell apoptosis (Wang et al., 2016; Fetoni et al., 2018).
This provides a mechanism to explain the massive loss of
OHCs due to their high elevated levels of mitochondrial
metabolism, making them more susceptible to intracellular
ATP deprivation (Wang et al., 2022). Considering that
OHCs in the high-frequency region require more energy,
it could not only explain that Cx26 defect model mice
with delayed progressive hearing loss that usually start to
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hearing impairment at the high frequencies but also explain that
Cx26-related delayed hearing loss has noise susceptibility and
age-related characteristics (Fetoni et al., 2018; Lin et al., 2019).

Summary and outlook

Cx26 plays a critical role for hearing acquisition and
maintenance. Cx26 mutations can induce congenital deafness
and late-onset hearing loss. Cx26 is responsible for intercellular
substance transfer and signal communication. GJ channels and
hemichannels generally allow the passage of potassium, ATP-
calcium signaling, and glucose. Potassium recycling is critical
for maintaining EP and OHC electromotility. Therefore, Cx26
mutation can disrupt potassium recycling in cochlea lymph,
leading to EP reduction and active cochlear amplification
impairment. ATP-triggered intercellular Ca2+ signaling is
critical for cochlear development. Cx26 mutation can lead to
cochlear IHC development disorder. Cochlear development
for hearing acquisition and OHC electromotility for hearing
maintenance require sufficient energy supply, which depends on
the cochlear supporting cell by GJ-mediated glucose transport
pathway. Thus, energy deprivation at different periods due to
Cx26 deficiency can cause cochlear non-sensory and sensory
epithelial cell development arrest or OHC electromotility
impairment with aging or noise.

Cx26 function has been studied for decades, most of which
focus on downstream function changes. Nowadays, there are
some advances in the treatment of GJB2 mutation-related
deafness. Yu et al. (2014) and Iizuka et al. (2015) used virally
mediated gene therapy to restore Cx26 expression in a mouse
model of Gjb2 deletion and improved the auditory responses
or development of the cochlear structure. Xu et al. (2022)
found that systemic administration of dexamethasone could
prevent OHCs loss and improve auditory responses at some
frequencies. Monoclonal antibodies developed in the last three
decades have become the most important class of therapeutic
biologicals (Buratto et al., 2021). Ziraldo et al. (2019) found
that a human-derived monoclonal antibody named abEC1.1
can selectively modulate hemichannel function and efficiently
inhibit hyperactive mutant Cx26 hemichannels implicated
in autosomal dominant non-syndromic hearing impairment
accompanied by keratitis and hystrix-like ichthyosis-deafness
(KID/HID) syndrome (Xu et al., 2017). So far, there is no

drug to prevent or treat Cx26 mutation-related hearing loss.
Post-translational modifications of proteins can regulate the
Cx26 protein life cycle and/or channel selective permeability
by the covalent addition of functional groups or proteins,
changing the hydrophilicity and spatial structure of Cx26. The
upstream molecular regulation mechanism of Cx26 deserves
further study to find more information for novel protective or
therapeutic strategies to prevent or treat hereditary deafness
caused by GJB2 mutation.
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