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Abstract: Increased permeability of the epithelial and endothelial cell layers results in the onset of
pathogenic mechanisms. In both cell types, cell–cell connections play a regulatory role in altering
membrane permeability. The aim of this study was to investigate the modulating effect of anthocyanin-
rich extract (AC) on TJ proteins in inflammatory Caco-2 and HUVEC monolayers. Distribution of
Occludin and zonula occludens-1 (ZO-1) were investigated by immunohistochemical staining and
the protein levels were measured by flow cytometry. The mRNA expression was determined by
quantitative real-time PCR. The transepithelial electrical resistance (TEER) values were measured
during a permeability assay on HUVEC cell culture. As a result of inflammatory induction by TNF-α,
redistribution of proteins was observed in Caco-2 cell culture, which was reduced by AC treatment.
In HUVEC cell culture, the decrease in protein and mRNA expression was more dominant during
inflammatory induction, which was compensated for by the AC treatment. Overall, AC positively
affected the expression of the examined cell-binding structures forming the membrane on both
cell types.

Keywords: tight junction (TJ); zonula occludens-1 (ZO-1); occludin; Caco-2; HUVEC

1. Introduction

The intestinal epithelium represents a protective physical barrier and actively con-
tributes to the mucosal immune system [1]. Vascular endothelial cells form a continuous
monolayer, which constitutes a dynamic and highly effective cellular barrier between the
vessel wall and bloodstream; they are also actively involved in the functioning of the
immune system [2]. Epithelial cells and endothelial cells are directly adjacent, indicat-
ing active inter-barrier communication. These cells are associated with each other via
intercellular junctions that differ in their morphological appearance, composition, and
function. One manifestation of connectivity is the appearance of tight junctions (TJs) on the
cell membrane [3,4].

TJs are intercellular permeability seals, which regulate diffusion of particles with
size and charge selectivity, and thereby play a crucial role in determining paracellular
permeability. Epithelial and endothelial TJs are the key regulators of paracellular transport
of macromolecules [5]. Many molecular components of tight junctions have now been
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identified [6]. Occludin is one type of transmembrane domain-containing protein, which
is incorporated into, or localized very close to, the claudin base tight junction strands.
Occludin and claudins are linked to a number of cytoplasmic scaffolding and regulatory
proteins ZO-1, ZO-2, ZO-3 and cingulin [7].

TJs plays a crucial role as a physical and functional barrier against the paracellular
penetration of dangerous substances present in the lumen (including bacteria, bacterial
toxins, digestive enzymes, degraded food products, bacterial byproducts) [8–11]. Epithelial
TJs maintain the intestinal barrier while regulating permeability of nutrients, ions, and
water. Endothelial TJs have a key role in vascular permeability and leukocyte extravasa-
tion [12]. The modification of function and paracellular permeability of the TJ barrier results
in barrier disruption of TJs and increased paracellular permeability, leading to sustained
inflammation and tissue damage [5]. Furthermore, polarized basolateral intestinal secretion
of inflammatory mediators, followed by activation of different inflammatory pathways in
endothelial cells, effectively induces neutrophil extravasation from the vascular system,
thereby contributing to the maintenance of intestinal inflammation [2,13].

The cytokine network plays a very important role in the regulation of inflammation, of
which tumor necrosis factor-α (TNF-α) is a key player. The importance of TNF-α has been
highlighted for the last decade, through both experiments on mouse models of intestinal
inflammation and pivotal human therapeutic trials with the chimeric monoclonal antibody
to TNF-α: Infliximab [14,15]. TNF-α has been shown to increase permeability in several
epithelial models. Studies on human colon carcinoma cell line (Caco-2) have shown that
the effects of TNF-α on altered tight junction permeability are regulated through NF-
κB activation [16,17]. It has been stated that TNF-α regulates intestinal permeability by
modulating signaling pathways, mainly NF-κB, affecting the structure and functionality of
the tight junctions [18–20]. In our previous study, the activation of the NF-κB pathway was
confirmed in this context [21].

There is evidence that TJs rearrange and modify their transcription in epithelial and en-
dothelial cells due to inflammation, resulting in increased paracellular permeability [22,23].
However, it has been shown, that many natural substances can be able to moderate the TJ
rearrangements and decreasing in permeability due to inflammation [24,25].

In our previous studies, we demonstrated the beneficial effects of anthocyanins isolated
from Hungarian sour cherries, in both in vitro and in vivo investigations [26–32]. In this
study we show that the anthocyanin-rich sour cherry extract (AC) exerts a pleiotropic effect,
including anti-oxidative, anti-inflammatory, hemostatic and vasoactive effects, indicating
that this substance could be protective in inflammatory bowel diseases and inflammatory
endothelial dysfunction. Anthocyanins are considered one of the flavonoids; however, they
have a positive charge at the oxygen atom of the C-ring of anthocyanidin structure, it is
called flavylium ion. The colored pigments of anthocyanin, from blackcurrants, berries,
and other types of red or blue fruits, have strong antioxidant effects. The most common
anthocyanidins are cyanidin, delphinidin, malvidin, petunidin, peonidin and pelargonidin,
the glycosylated form of each being distributed in different percentages in each plant [33,34].

Previously, we induced inflammation using a combination of 25 ng/mL IL-1β and
50 ng/mL TNF-α and we applied 50 µM AC for 24 h to investigate the barrier function
of the Caco-2 cell monolayer. We observed that this induction cocktail caused significant
IL-6 and IL-8 release into apical compartments; however, AC pre-treatment led to reduced
levels of the abovementioned cytokines. In permeability and NF-κB-related experiments,
we found that 50 µM AC extract inhibited the effects of cytokine-induction [21]. However,
we did not investigate the barrier-modulation effect of AC.

Human umbilical vein endothelial cell (HUVEC) and Caco-2 cultures are widely
used barrier models for the investigation of inflammatory processes in various chronic
diseases. The effects of anthocyanins on barrier function have been the subject of intensive
research. In our study, we focused on Occludin and ZO-1 which are the main compo-
nents of TJ strands in Caco-2 and HUVEC. The proteins expressions were investigated
using immunofluorescence and their mRNA expressions were determined by quantitative
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real-time PCR. The TEER was measured, and apparent permeability coefficients (Papp)
were determined in HUVEC and compared to our previous result on Caco-2 cell culture.
Knowing the above, the barrier-modulation effect of anthocyanin-rich sour cherry extract
(AC) was investigated, using an in vitro model system of TNF-α induced inflammation in
endothelial and Caco-2 cells.

2. Results
2.1. Real-Time Monitoring of Cell Index (RTCA) in HUVEC

In our previous studies, a non-cytotoxic concentration of AC in HUVEC was deter-
mined using MTT-assay and fluorescent labelling with: DilC1(5) (examination of apoptosis);
and SYTOX Green (investigation of necrosis) dyes. These tests showed that up to 170 µM
AC does not show significant cytotoxic effects [31]. In addition, similar to Caco-2 cells,
three different concentrations of AC were also checked by RTCA method on the HUVEC
monolayer. After the cell layer reached the maximum cell index (CI), wells were treated
with different concentrations of AC. Compared to the control, the 85 and 170 µM concentra-
tions of AC treatment did not result in a decrease in CI, rather, a slight increase (Figure 1).
Nevertheless, a reversible decrease in the CI curve was observed with the treatment of
850 µM AC concentration. Thus, the two lower AC concentrations did not cause cytotoxic-
ity in HUVEC and were found to be safe to use. Therefore, treatment with a concentration
of 85 µM was applied in our further studies.
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Figure 1. Impedance measurements with real time cell analyzer (RTCA), XCelligence system. Kinetics
of epithelial cell response to treatment was monitored using cell index (CI). At the beginning of the
plateau phase of growth, cells were treated with AC, at 85; 170; 850 µM concentrations. The Cis were
normalized at the time of AC treatment.

2.2. Permeability Assay on HUVECs

HUVECs were seeded and grown on Corning Transwell® polycarbonate filters. TEER
values were checked from day 14; values did not change significantly in the third week and
remained between 250 and 450 Ω*cm2. The values of the control Papp on the HUVECs were
of the order of 10−5, which is one order of magnitude higher than the values determined on
the Caco-2 in our previous study [21]. In the case of TNF-α induction, Papp values did not
change significantly, as in the combination-treated (AC + TNF-α) samples (see Figure 2),
compared to the control.
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Figure 2. Apparent permeability coefficients (Papp) on HUVEC. Human umbilical vein endothelial
cells (HUVECs) were pre-treated with TNF-α (10 ng/mL) and 85 µM AC + TNF-α (10 ng/mL) 24 h
before permeability assay was performed. Permeability values were not significantly different;
analysed by ANOVA.

2.3. Immunofluorescence
2.3.1. Immunohistochemical Staining of Occludin and ZO-1

On untreated Caco-2 cells, Occludin showed a peripheral arrangement, as did ZO-
1. However, with an inflammatory inducer (TNF-α), the arrangement of Occludin and
ZO-1 became characteristic zigzag patterns, compared to the control. In the presence of
inflammatory inducer, AC treatment was able to moderate the development of the zigzag
pattern. In the case of Occludin, the combined treatment also resulted in a stronger, thicker
pattern (Figure 3).
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Figure 3. Effects of Anthocyanin (AC) and/or Tumor necrosis factor-α (TNF-α) treatment on
junctional morphology of Caco-2 cells. Cells were treated for 24 h with culture medium (C),
50 ng/mL TNF-α, 100 µM AC or in combination of 100 µM AC (pretreatment) and 50 ng/mL TNF-α
(AC + TNF-α). Immunostaining for Occludin and zonula occludens-1 (ZO-1) junctional proteins.
Green color: immunostaining for Occludin, ZO-1. Blue color: staining of cell nuclei. Bar = 20 µm.



Int. J. Mol. Sci. 2022, 23, 9036 5 of 13

Immunohistochemical staining of TJ proteins in HUVEC cells showed significantly
different, central plasma localization, compared to Caco-2 cells. ZO-1 expression was
significantly decreased after TNF-α treatment in HUVECs (Figure 4).
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Figure 4. The effects of anthocyanin sour cherry extract on TNF-α induced ZO-1 and Occludin protein
level. Human umbilical vein endothelial cells (HUVECs) were treated with TNF-α (10 ng/mL) and
85 µM AC + TNF-α (10 ng/mL) for 24 h. The protein level of ZO-1 and Occludin (A) were determined
by immunostaining for Occludin and zonula occludens-1 (ZO-1) junctional proteins. Green color:
immunostaining for ZO-1. Red color: immunostaining for Occludin. Blue color: staining of cell
nucleus. Bar = 20 µm. The relative protein level of ZO-1 (B) and Occludin (C) were determined by
mean gray value from immunostaining pictures. The means were normalized to untreated control.
Data are presented as mean ± SEMs. n = 3. The significance of differences between sets of data was
calculated by ANOVA. * p < 0.05, *** p < 0.001. The white circles indicate the regions that were not
taken into account due to dye aggregation.

In contrast, the fluorescent intensity of Alexa Fluor 647-labeled Occludin was signifi-
cantly increased, compared to the control. AC treatment was able to compensate for this
change in the cause of inflammation, to a significant extent, for both markers.

2.3.2. Immunofluorescence Determination of Occludin and ZO-1 Proteins by
Flow Cytometry

The levels of TJ proteins Occludin and ZO-1 in Caco-2 cell cultures were determined
in the absence or presence of AC and TNF-α, by flow cytometry. The presence of TNF-α
significantly decreased the expression of ZO-1. A similar tendency could be observed in
the presence of AC in the culture media. A combination treatment of TNF-α and AC led to
a lower expression level, compared to the control cells; however, the highest expression level
of ZO-1 could be measured in the presence of inflammatory cytokine and AC combined, in
contrast with TNF-α-treated cells, which showed the lowest level of expression (Figure 5A).

Examination of Occludin expression by flow cytometry revealed that no significant
changes were shown as a result of TNF-α or AC alone, although significant Occludin
expression could be observed due to AC + TNF-α treatment, compared to TNF-α treatment
alone (Figure 5B).

Similar to Caco-2 cells, expressions of Occludin and ZO-1 proteins were evaluated in
HUVECs in the absence or presence of AC and TNF-α by flow cytometry. Interestingly,
TNF-α treatment significantly reduced the expression levels of both markers, in contrast
to the results of microscopic studies. Nevertheless, as in the case of the Caco-2 cells, this
decrease was significantly positively influenced by the combined treatment of TNF-α and
AC in HUVECs (Figure 6).
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Figure 5. The effects of anthocyanin sour cherry extract on TNF-α induced ZO-1 and Occludin
protein levels. Caco-2 were treated with TNF-α (50 ng/mL) and 100 µM AC + TNF-α (50 ng/mL)
for 24 h. The protein levels of ZO-1 (A) and Occludin (B) were determined by Flow Cytometry and
the means were normalized to un-treated control. Data are presented as mean ± SEMs. n = 3. The
significance of differences between sets of data was calculated by ANOVA. **** p < 0.0001.
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Figure 6. The effects of anthocyanin sour cherry extract on TNF-α induced ZO-1 and Occludin
protein level. HUVECs were treated with TNF-α (10 ng/mL) and 85 µM AC + TNF-α (10 ng/mL)
for 24 h. The protein level of ZO-1 (A) and Occludin (B) were determined by Flow Cytometry and
the means were normalized to untreated control. Data are presented as mean ± SEMs. n = 3. The
significance of differences between sets of data was calculated by ANOVA. * p < 0.05, *** p < 0.001.

2.4. Quantitative Real-Time PCR (qPCR)

Expression values of ZO-1 and Occludin genes were measured in untreated (C), in-
flammatory cytokine-treated (TNF-α) and AC + TNF-α-treated Caco-2 cells. Real-time
quantitative PCR showed a significantly reduced level of ZO-1 mRNA induced by TNF-α.
The AC + TNF-α combination cocktail resulted in significantly increased ZO-1 mRNA
expression, compared to TNF-α induced cells. (Figure 7A). The mRNA level of Occludin
significantly decreased after induction with TNF-α. However, we could observe upregu-
lation of Occludin gene after 24 h combination treatment of AC and TNF-α, compared to
TNF-α treated cells. (Figure 7B).

The genes of ZO-1 and Occludin were assessed by qPCR in HUVECs. As we expected,
the mRNA levels of the investigated tight junctions were significantly reduced in the
presence of TNF-α. AC treatment was able to elevate the observed decrease, in both
markers, to the level of control (Figure 8A,B). Based on our observations, the changes in the
expression of ZO-1 and Occludin genes observed in HUVECs are consistent with the flow
cytometry results of the protein assays.
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expression on HUVECs. Cell cultures were treated with TNF-α (10 ng/mL) and 85 µM AC + TNF-α
(10 ng/mL) for 24 h. The mRNA level of ZO-1 (A) and Occludin (B) were determined by RT-qPCR
and target genes were normalized to GAPDH and Control. Data are presented as mean ± SDs. n = 3.
The significance of differences between sets of data was calculated by ANOVA. *** p < 0.001.

3. Discussion

In our previous study, we investigated the protective effects of the pure sour cherry an-
thocyanin extract under inflammation conditions on HUVEC and Caco-2 cell cultures [21].
We tested the cytotoxicity effect of AC by RTCA and verified that it has no toxicity effect on
Caco-2 cell culture in the applied concentration range. We found no significant concentra-
tion dependence (500, 50, 5, 0.5 µM) of AC, however the highest concentration (500 µM)
of AC treatment led to a significantly decreased cell index, compared to the control curve.
Although this reduction was even less than the positive control, we demonstrated the safety
of application of AC in the abovementioned concentrations.

The endothelial cells are more sensitive to different stimuli (cytokine, neurotransmit-
ters, toxins, hypoxia) because these modify the organization of TJ proteins. The disruption
of the endothelial barrier causes leakage, and this is reflected in the decrease in TEER and
CI [4,35]. Thus, the same concentration cannot be used on Caco-2 and HUVEC cultures.
In our previous studies, we showed that AC extract, up to 100 µg/mL, does not show
significant cytotoxic effects [36]. In our current study we confirmed these results by using
real time cell analysis (RTCA). At the higher concentration (850 µM), the extract temporarily
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destabilized the monolayer, so it was not used in tests. In our further studies, HUVEC cells
were treated with 85 µM AC.

The TEER value, measured on the confluent monolayer, and the permeability studies
are important indicators of the membrane barrier function [37,38]. Thus, the analysis of
these parameters, in addition to the study of TJ proteins, is unavoidable. Studies examining
the barrier function of Caco-2 and HUVEC monolayers confirm the close relationship
between these two parameters and Occludin expression [39]. In our previous study, we
reported the protective effects of AC on membrane permeability, in an inflamed Caco-2
monolayer [21]. The TEER values were measured 24 h after induction with 25 ng/mL
IL-1 and 50 ng/mL TNF-α in a basolateral compartment. Compared to the untreated
control, significantly decreased TEER values were measured in cytokine treated wells,
however with AC pre-treated samples, the AC moderated the cytokine-induced TEER
value decrease. In the present study, paracellular transport was investigated in HUVECs.
Development of the HUVEC monolayer was controlled by measuring the TEER 10 days
after the seeding of cells. However, checking the TEER at 2 days showed that the values
had not significantly increased. The TEER values increased between 250 and 450 on day
21 and then the permeability assay was performed. Figure 2 shows the Papp values; there
were no significant differences in the permeability values of the different groups, compared
to the untreated control. However, control Papp values in the HUVECs were one order
of magnitude higher than previous Papp control values in Caco-2, possibly indicating
a difference in the strength of the two monolayers’ closing relationships.

Following preliminary experiments, immunohistochemical staining was performed,
and different localizations of TJ proteins were investigated on Caco-2 and HUVEC cells. In
the control group of Caco-2 culture, cell–cell attachments in the monolayers were continu-
ous, without gaps. In cytokine (TNF-α) treated cells, the pattern of the staining changed:
intercellular gaps, fragmented junctional staining and cytoplasmic redistribution of junc-
tional proteins were observed. The immunostaining pattern of TJ proteins in Caco-2 cells
treated with AC + TNF-α was similar to that seen in the control group: zipper-like irreg-
ularities were reduced in the presence of AC. In the Caco-2 monolayer, we found mainly
morphological features, supporting the previous studies’ findings that the TJ and AJ pro-
teins of epithelial cells show a higher order than those observed in endothelial cells [35,40].

One of the transmembrane representatives of TJ proteins that appears closer to the
apical surface of cells is Occludin [41]. Occludin plays an important role in the regulation
of paracellular transport and in the formation of cell–cell connections in both epithelial and
endothelial cells. In immunohistochemical staining, a definite pattern around Caco-2 cells
indicates this dominance, which is less apparent in HUVEC cells [40]. This may be due to
the different origins of the cells, as the Caco-2 cell line is immortalized and the HUVEC
is a primary isolated cell culture. TJ proteins are dynamically organized according to the
proliferation rate of the cell type, thus a different staining pattern was observed in the
different cell cultures [42].

For the induction of inflammation in the case of Occludin, the zipper-like pattern on
Caco-2 cells was reduced with AC treatment. This may indicate the effective intervention
of AC in the phosphorylation-dephosphorylation process of Occludin [43].

Nevertheless, the staining intensity of Occludin and the change in cytometric Oc-
cludin concentrations are much more informative in HUVEC cell culture. TNF-α, as an
inflammatory inducer, decreases Occludin concentration, which was confirmed by lighter
immunostaining. A similar trend was observed in the study in which HUVECs were
induced by LPS and the presence of Occludin was examined by Western blot [39].

In the case of HUVEC, the localization of ZO-1 is not limited to the cell membrane
but is scattered in the cytoplasm. TNF-α treatment decreased the amount of Occludin
expressed in the culture, indicating an increase in endothelial monolayer fenestration. This
phenomenon was significantly reduced by AC treatment.

In summary, endothelial and intestinal epithelial TJs play an essential role in vascular
and intestinal homeostasis and disease, and targeting TJ-related biochemical and signaling
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pathways by AC might be a new therapeutic strategy for the treatment of a broad spectrum
of human diseases in the near future. However, of course, further in vivo and human
studies are needed, regarding the medical utility of AC.

4. Materials and Methods

All chemicals were from Sigma-Aldrich (Budapest, Hungary) unless stated other-
wise. Pure sour cherry anthocyanin extract was provided by the Department of Feed
and Food Biotechnology, University of Debrecen (Hungary), as described previously
(Homoki JR et al., 2016).

4.1. Cell Culture

Human White colon adenocarcinoma (Caco-2) cells (European Collection of Cell
Cultures (ECACC, UK) were isolated from a primary colonic tumor in a 72-year-old White
male using the explant culture technique. During routine subculture, cells were grown
in Dulbecco’s modified Eagle’s medium (DMEM) with the supplementation of 10% fetal
bovine serum (FBS), 1% non-essential amino acid and penicillin–streptomycin solution, at
37 ◦C, in an incubator containing 5% CO2. The passage number of Caco-2 cells was 25–40
in the study.

HUVEC/TERT 2 was obtained from ATCC (ATCC, Manassas, VA, USA). The cell
line was isolated from the vascular endothelium of a White female patient. Cells were
maintained in M199 with the supplementation of 10% heat-inactivated FBS, 1% peni-
cillin/streptomycin, 1% amphotericin B, 2 mM glutamine (Biosera, Nuaille, France), and
Endothelial Cell Growth Medium-2 (Lonza, Basel, Switzerland), at 37 ◦C, in a Galaxy 170R
incubator under 5% CO2 (Eppendorf, Hamburg, Germany). Adhesion of the cells was
support with a 0.1% gelatin solution.

4.2. Permeability Assay on HUVECs

HUVECs were seeded at a density of 200,000 cells/well on Corning Transwell® poly-
carbonate filters. Culture medium was replaced with fresh medium every two or three days
in the Transwell® inserts. TEER value of samples were checked from day 14, but the values
were not significantly increased in the third week. Thus, the assay was performed at
21 days. Confluent and differentiated cell layers were pre-treated in the upper compart-
ment, with 85 µM anthocyanin extract dissolved in cell culture medium, for 24 h. A total of
10 ng/mL TNF-α was added into the medium and the plates were incubated at 37 ◦C in
an incubator with 5% CO2 for 20 h. HUVEC monolayers were washed and pre-incubated
with Hanks’ balanced salt solution (HBSS) for 20 min, at 37 ◦C, and then incubated with
50 µg/mL Lucifer yellow (LY) dissolved in HBSS, in the upper compartment. Samples
(100 µL) were collected from the lower compartment at 60, 90 and 120 min and the volume
was supplemented with HBSS. Concentration of Lucifer yellow was determined by a flu-
orescence multiwell plate reader (Fluostar Optima, BMG Labtechnologies, Germany) at
450 nm excitation and 520 nm emission wavelength. The apparent permeability coefficients
(Papp) were calculated by the following equation:

Papp =
dQ
dt
· 1
(C0 · A)

(1)

Papp: apparent permeability coefficient (cm/s); dQ/dt: permeability rate of substances
(mol/s); C0: initial concentration of the substances in the upper compartment (mol/mL); A:
surface area of membrane (cm2).

4.3. Immunofluorescence

For the differentiation experiments, cells were seeded onto sterile microscope slides
at a density of 50,000 cells per slide. The investigation was designed as follows: Caco-2
and HUVEC cells were divided into four groups, in accordance with the stimulants. The
first group of slide cultures was un-treated and served as a negative control. The second
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group of cells was stimulated with 50 ng/mL tumor necrosis factor-alpha (TNF-α), which
is a pro-inflammatory cytokine, for 24 h. The third group was pretreated with TNF-α in
combination with anthocyanin (AC). AC was administered, at 100 µM concentration, to the
cells for 24 h.

Morphological changes were monitored by immunostaining for zonula occludens
protein-1 (ZO-1) and Occludin plasma-membrane protein. After AC + TNF-α treatments,
cell layers were washed with PBS and fixed with 1:1 mixture of cold methanol and ac-etone
for 10 min. After a washing step, cells were blocked with 3% bovine serum albumin in PBS
and incubated for 30 min.

In the Caco-2, the next step was to add the primary antibodies: rabbit anti-ZO-1
and rabbit Occludin to the cells. Incubation, with Alexa Fluor-488 anti-rabbit secondary
antibodies (Life Technologies, Invitrogen, Waltham, MA, USA), lasted for 1 h. Bisbenzimide
dye (Hoechst 33342, Sigma-Aldrich, St. Louis, MO, USA) was used to stain cell nuclei. The
sample staining was visualized by a Zeiss Axio Scope, A1 fluorescent microscope (HBO
100 lamp) (Carl Zeiss Microimaging GmhH, Göttingen, Germany). Images were analyzed
with ZEN 2012 v.1.1.0.0 software (Carl Zeiss Microscopy GmbH, Göttingen, Germany).

In both HUVEC and Caco-2, for the next step, primary labeled anti-ZO-1, tagged with
FITC, and Alexa Fluor 647-labeled Occludin primary antibodies were added to the cells for
1 h. DAPI (4′,6-diamidino-2-phenylindole) was used to stain the HUVEC cells’ nuclei. The
sample labeling was visualized by a Zeiss fluorescent microscope (Zeiss LSM 880 confocal
microscope Göttingen, Germany). Images were analyzed with ZEN 2012 v.1.1.0.0 software
(Carl Zeiss Microscopy GmbH, Göttingen, Germany). The staining intensity was measured
using the mean gray value corrected for background, with imageJ FIJI 1.53c software.

4.4. Flow Cytometry

Flow cytometry experiments were used to quantify the expression of ZO-1 and Oc-
cludin. For these experiments, both cell types were trypsinized with 0.05% trypsin-EDTA
solution, washed twice with Hank’s balanced salt solution (HBSS) and suspended in a cell
concentration of 1 × 106 cells/mL. Cells were fixed in 3.7% formaldehyde in HBSS. After
a washing step, cells were permeabilized with 0.1% Tween-20-containing Hanks balanced
salt solution, as a permeabilization buffer, for 30 min at room temperature (22–25 ◦C).
After this incubation, cells were incubated with 10% FBS for at least 30 min at 37 ◦C to
block the nonspecific binding sites. Then cells were incubated with 2 µg/mL primary
anti-ZO-1/Occludin antibody for 1 h at 37 ◦C.

Cells were washed twice with HBSS and incubated with 5 µg/mL secondary antibody
for 1 h at 37 ◦C in dark place. After incubation, cells were washed three times and divided
into a 96-well plate. Cells were analyzed by Guava Easy Cyte 6HT-2L flow cytometer
(Merck Ltd., Darmstadt, Germany) in four independent experiments.

4.5. Real-Time Monitoring of Cell Index (RTCA)

Kinetics of epithelial cell reaction to AC + TNF-α treatment was monitored by impedance
measurement with real time cell analyser (RTCA), XCelligence system. RTCA presents
a non-invasive, real time and label-free method which linearly correlates with growth,
adherence and viability of cells. For background measurements, 100 µL cell culture medium
was added to the wells, then cells were seeded—at a density of 2 × 104 cells/well—into the
coated 16-well plates, with integrated gold electrodes. Before seeding of the HUVECs, wells
were coated with collagen. Then HUVECs were cultured for 6 days in a CO2 incubator, at
37 ◦C, and monitored every 30 min until the end of the experiment. When the CI reached
the maximum value in each well, cells were treated with 85, 170, or 850 µM AC, except for
control wells, in which only the medium was renewed.

4.6. qPCR

The messenger RNA (mRNA) expressions (ZO-1, Occludin), in response to the treat-
ment with AC + TNF-α, were determined by quantitative PCR experiments. Caco-2 cells
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were pretreated with AC + TNF-α for 24 h before the experiments. Total RNA was isolated
by Extrazol (BLIRT, Pomorskie, Poland). cDNA was reverse transcribed from 1 µg of total
RNA using LunaScript RT SuperMix Kit (PCR Biosystems, London, UK). The reaction was
implemented using the Luna Universal Probe qPCR Master Mix (PCR Biosystems, London,
UK) with glyceraldehyde-3-phosphate dehydrogenase as an internal control. Q-PCR was
performed on a Roche LightCycler 480 System (Roche, Basel, Switzerland) using the 5′

nuclease assay. The results were expressed relative to 100% of the control group.
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