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The field of organ transplantation has undoubtedly made great strides in recent years. 
Despite the advances in donor–recipient histocompatibility testing, improvement in trans-
plantation procedures, and development of aggressive immunosuppressive regimens, 
graft-directed immune responses still pose a major problem to the long-term success 
of organ transplantation. Elicitation of immune responses detected as antibodies to 
mismatched donor antigens (alloantibodies) and tissue-restricted self-antigens (autoan-
tibodies) are two major risk factors for the development of graft rejection that ultimately 
lead to graft failure. In this review, we describe current understanding on genesis and 
pathogenesis of antibodies in two important clinical scenarios: lung transplantation and 
transplantation of islet of Langerhans. It is evident that when compared to any other 
clinical solid organ or cellular transplant, lung and islet transplants are more susceptible 
to rejection by combination of allo- and autoimmune responses.

Keywords: lung, islet of Langerhans, transplantation, antibody, graft rejection

iNTRODUCTiON

Solid organ transplantation is increasingly used as a clinical intervention to compensate for func-
tional loss of an organ and to maintain metabolic homeostasis. This palliative treatment option can 
extend the lifespan and improve the quality of life for recipients, but outcomes vary depending on 
which organ is transplanted. Lung transplantation (LTx) can be a life-saving measure for patients 
with many severe chronic lung diseases, including chronic obstructive pulmonary disease, idiopathic 
pulmonary fibrosis, cystic fibrosis, alpha-1 antitrypsin deficiency, pulmonary hypertension, intersti-
tial lung disease, and bronchiectasis. Unfortunately, LTx currently has the lowest long-term survival 
rate compared with survival rates associated with transplantation of other solid organs, its half-life 
(t1/2) being just 5 years. The primary reason for this low survival rate is chronic rejection, the clinical 
diagnosis for which is bronchiolitis obliterans syndrome (BOS).

Transplantation is not limited to solid organs. Allogeneic endocrine cell transplantation of islets 
of Langerhans is a treatment option for patients with autoimmune diabetes mellitus [i.e., type 1 
diabetes (T1D)]. Transplantation of these cells is a replacement therapy that augments production 
of endogenous insulin. Islet cells are often isolated from multiple cadaveric donors and recipients 
require a continuous immunosuppressive therapy. However, long-term sustained normoglycemia 
is exceedingly difficult to achieve from islet transplantation; the mechanisms that lead to destruc-
tion of the islet allografts will be discussed in this review. Autologous islet transplantation—which 
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also aims to restore endocrine pancreatic function after total 
 pancreatectomy—is not as susceptible to rejection and therefore 
will not be discussed in this review. Because transplantation 
depends upon available donor organs and cells, genetic mis-
matches between donor and recipient become the focal points 
of the recipient’s immunologic responses. Resultant T cell and 
antibody (Ab) responses have been known to influence, often 
negatively, both short- and long-term functioning of transplanted 
allografts, and such incidences frequently portend the unfavora-
ble consequences of graft loss (i.e., rejection).

In this review, we describe the spectrum of Ab responses 
observed in LTx and in transplantation of islets of Langerhans. 
LTx, whether unilateral or bilateral, involves surgical replacement 
of a diseased organ with normal and functioning lungs procured 
from a cadaveric donor. By contrast, allogeneic islet transplanta-
tion involves intrahepatic delivery of donor-isolated islet cells 
that supplement existing islet cells and insulin production result-
ing in normoglycemia. With recent increases in the prevalence 
of chronic obstructive pulmonary disease, cystic fibrosis, and 
T1D, the demand for transplantable lungs and pancreatic islets 
has increased. Since 2014, nearly 60,000 LTx procedures have 
been performed worldwide (both lungs-only and combined 
heart–lung transplantation; International Society for Heart 
and Lung Transplantation,1 accessed on July 25, 2016). As of 
2012, approximately 1,400 islet cell transplantations have been 
recorded (Collaborative Islet Transplant Registry,2 accessed on 
July 25, 2016). Additionally, combined transplantation of lungs 
and pancreatic islets is an effective treatment option to restore 
respiratory and pancreatic insufficiency in terminal cystic fibrosis 
(1). The global need for organ transplantation is rising steadily 
with more prospective transplant recipients added to active 
waitlists (both first-time transplantation and re-transplantation 
due to graft failure). Concurrently, an acute shortage persists on 
the availability of transplantable organs (Organ Procurement and 
Transplantation Network3).

ANTiBODieS iN LTx

Histocompatibility studies originated from the need to decipher 
mechanisms of graft rejection; these studies ultimately led to the 
identification of major histocompatibility complex (MHC) pro-
teins. The human counterpart of MHC is the human leukocyte 
antigen (HLA) system. From an immunologic perspective, the 
revelation of HLA was critical to the understanding of immune 
responses—not only as they affect graft rejection, but also how 
they impact infectious disease, autoimmunity, and tumor biol-
ogy. Notwithstanding the antigen presentation via peptide–MHC 
complexes that is central to T cell immune recognition and 
responses, MHC represents the bulk of steady state expres-
sion of surface proteins (up to 70,000 molecules per cell) (2). 
Class I MHC is ubiquitously expressed on every nucleated cell, 
whereas class II MHC is preferentially expressed on professional 

1 www.ishlt.org/registries/.
2 www.citregistry.org/.
3 https://optn.transplant.hrsa.gov.

antigen-presenting cells (e.g., dendritic cells, macrophages, and 
B cells).

With more than 200 loci identified, the polygenic nature of 
HLA combined with high allelic polymorphism (>14,000 alleles 
for HLA class I and II combined,4 assessed on November 17, 2016) 
confers great diversity to HLA molecules (3–6). Furthermore, 
codominant expression of HLA allows for simultaneous expres-
sion of both paternal and maternal HLA haplotypes, which 
further increases the diversity of the HLA repertoire expressed 
in a given individual. Because of the high preponderance of 
HLA class I on every type of cell (i.e., ciliated, non-ciliated, and 
secretory epithelial cells; endothelial cells; basal cells; and con-
nective tissue) and HLA class II on resident antigen-presenting 
cells (i.e., lung-resident macrophages and dendritic cells) and B 
cells, mismatched donor HLA molecules are easily recognized 
and quickly targeted by the recipient’s immune system after 
transplantation.

Although graft failure was long suspected to be a result of immu-
nological complications, the host-adaptive immune response to 
MHC antigens wasn’t confirmed until 1956, when immunization 
of malignant cells in mice induced de novo Abs against MHC 
molecules (7). In a clinical setting, the association of preexisting 
HLA Abs with graft failure was witnessed when a large number 
of kidney transplant recipients who experienced acute graft 
rejection had donor HLA Abs (i.e., positive crossmatch), whereas 
recipients who lacked anti-HLA (i.e., negative crossmatch) had 
significantly higher graft survival (8, 9). Since these landmark 
studies, preexisting and de novo donor-specific antibodies (DSA) 
to mismatched HLA have generated a tremendous amount of 
clinical interest and have been widely applied in the study of all 
solid organ transplantation (10). The posttransplant development 
of de novo DSA was first documented following LTx in 2002 (11). 
Since then, a strong clinical association of de novo DSA with 
acute and chronic lung allograft rejection has been confirmed by 
many independent studies (12–20). Significantly, an association 
between the extents of donor–recipient HLA mismatches and 
incidence of chronic rejection (i.e., BOS) has been established 
(21) indicating a role for anti-HLA immune responses in the 
post-LTx acceptance and performance of lung allografts.

The pathogenicity of MHC Abs has been demonstrated in our 
laboratory using a mouse model of obliterative airway disease 
(OAD), in which ligation of MHC by antibodies led to OAD and 
lung-restricted autoimmunity (22, 23). In this model, exogenous 
delivery of anti-MHC class I or anti-MHC class II to the lung 
microenvironment induced small airway occlusion and fibrosis, 
creating pathologic lesions similar to those observed in humans 
with chronic lung graft rejection. While the Ab repertoire associ-
ated with lung graft rejection is not fully characterized, de novo 
anti-HLA class I and II titers, even when non-persistent, signifi-
cantly predispose to chronic rejection (11, 15, 17, 19, 24–28). The 
alloimmune priming of HLA reactive B cells is believed to trigger 
loss of self-tolerance and development of cellular and humoral 
autoimmunity (26, 29). Owing to clinical significance, a num-
ber of transplant centers now routinely screen prospective LTx 

4 https://www.ebi.ac.uk/ipd/imgt/hla/stats.html.
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recipients for preexisting DSA for an immediate pretransplant 
desensitization and monitor for de novo DSA during post-
transplant period.

In addition to HLA, several non-HLA molecules have been 
targeted by immune responses after allogeneic transplantation, 
which can influence post-LTx outcomes. Abs to MHC class I 
chain A (MICA) were reported to develop after DSA and were 
significantly correlated with BOS development (30). Abs to 
mismatched HLA or MICA are suspected to induce immune 
responses to various tissue-restricted self-antigens (26, 30). 
Development of Abs to filamentous self-proteins such as Collagen 
V (Col V) and K-alpha1 tubulin (Kα1T) have been studied in LTx 
recipients with great interest (31), and in experimental mice with 
OAD (22, 23). Col V forms the core component of the fibrillar 
extracellular matrix (ECM) in the lungs, and Kα1T is a cytoskel-
etal protein involved in intracellular locomotion. Preexisting 
anti-Col V and anti-Kα1T have also been associated with 
primary lung graft dysfunction (32, 33), which predisposes LTx 
recipients to development of both acute rejection (34) and BOS 
(35). Furthermore, role of anti-Col V and anti-Kα1T has been 
demonstrated in murine orthotopic LTx model where exogenous 
Ab administration disrupted an established lung graft tolerance 
resulting in fibrotic lesions in small airways and elicited lung-
directed cellular autoimmunity (36). Despite the current focus on 
these two tissue-associated self-antigens (i.e., Col V and Kα1T) as 
a measure of lung-restricted autoimmunity, it is likely that a larger 
antigenic repertoire participates in lung graft-directed immune 
responses and rejection. Further analysis of these putative anti-
gens may help delineate the pathogenic processes and facilitate 
development of new therapeutic strategies.

intricacy of B Cell Targets
Terasaki proposed a “humoral theory” to explain the basis of Abs 
influencing allograft rejection (37). This theory, formulated after 
in-depth analysis of kidney, heart, lung, and liver transplants, 
states that detection of graft-specific Abs is a reliable measure of 
humoral sensitization and an early indicator of graft rejection. 
The humoral theory gained credence when anti-donor humoral 
response was established to be the major factor in hyperacute 
and chronic graft rejection (10, 38). B cell sensitization against 
mismatched donor HLA may readily occur as they are non-self 
proteins and, by virtue of their cell-surface expression, are 
amenable to B cells. Further, an indirect antigen presentation 
pathway has been established in which a recipient’s antigen-
presenting cells acquire the donor antigens, activating antigen-
specific CD4 T cells that provide necessary costimulation for 
B cell priming (39). An intercellular antigen transfer has also 
been described in LTx, wherein recipient’s antigen-presenting 
cells acquire and cross-present donor antigens via a “semidirect” 
pathway (40).

The generation of Ab to sub-surface non-HLA antigens 
(including various tissue-restricted self-antigens) is poorly 
understood. Col V is an important component of heterotopic 
collagen fibers, as it initiates the fibril assembly by serving as 
a nucleator to Collagen I and regulates the number and length 
of fibrils (41). Col V is a minor component (constituting nearly 
2–5% of total collagen in most tissue) and remains buried in the 

healthy collagen fibers, while Kα1T is a polymerized cytoskeletal 
protein of the microtubule. Given their intracellular sequestra-
tion, it is intriguing that Col V and Kα1T become targets and 
driving forces for immunopathogenesis of lung allograft rejec-
tion. In order for this self-antigen-directed reactivity to proceed, 
two significant immunologic requisites must be fulfilled: (1) Col 
V and Kα1T must be available to the immune system since B cell 
receptors can recognize native or linear epitopes, and the buried 
or “cryptic” antigens (i.e., Col V and Kα1T) must be accessible to 
the circulating B cells during post-LTx sensitization; and (2) the 
repertoire of Col V and Kα1T specific B cells must be intact and 
functional.

Mechanisms and modality of how the sequestered lung-
restricted antigens may become bioavailable has generated 
significant clinical interests. Metalloproteases produced during 
transplant-related ischemic reperfusion injury to the lungs 
structurally impair fiber integrity and strip the collagen fibers, 
thereby exposing the core Col V fibers (42, 43). In addition, frag-
ments of Col V are released into bronchoalveolar lavage fluid after 
allogeneic LTx (44). It is possible that during this immunologic 
assault (which may result in cell death), cytoskeletal components 
may become available for B cell priming. Nevertheless, the notion 
of a circulating pool of Col V and Kα1T reactive B cells requires 
thoughtful analysis and experimentation. Notwithstanding the 
ubiquitous expression of Col V and Kα1T, lack of a deletional 
tolerance may introduce risk of autoimmunity. The possible 
escape of Col V- and Kα1T-reactive B cells may be due to an 
incomplete clonal deletion, or the immune response directed 
toward altered/neo-epitopes on Col V and Kα1T generated by 
posttranscriptional modifications. Recent study strongly suggests 
that the breakdown of peripheral tolerance via T regulatory cell 
populations may affect the development of immune responses 
to these fibrillar proteins (45). Nonetheless, clonal tolerance 
has been successfully achieved in a rat LTx model, in which 
oral administration of Col V induced protection from chronic  
rejection (46, 47).

While several possible routes may exist by which donor anti-
gens become available to immune priming, our laboratory and 
others’ have recently demonstrated a long-term persistence of 
donor-derived alveolar macrophage (AM) in transplanted lungs 
(48, 49). The donor AMs act as a reservoir of donor HLA and are 
available for stimulating graft-infiltrating B cells. We have also 
shown that mismatched MHC present on AM is sufficient to elicit 
anti-donor T cells and Abs. Therefore, the donor AM may initiate 
and/or contribute to the post-LTx DSA responses. At the instance 
of a matched HLA class II allele between donor and recipient, 
donor AMs can participate in direct presentation of endogenous 
antigens (donor-derived) to the recipient’s CD4 T cells.

In order to define the spread of alloantigenic immune responses 
in to tissue-restricted autoimmune response, we recently 
characterized exosomes isolated from serum samples from LTx 
recipients (50). Exosomes are membrane-bound nano-vesicles 
involved in cell-to-cell communication. In our study, exosomes 
from patients with acute rejection and with BOS contained 
donor HLA, Col V and Kα1T, and various immunostimulatory 
microRNAs. Exosomes from stable LTx recipients, however, 
contained neither Col V nor Kα1T and featured a profile of 
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immunoregulatoy microRNAs. It is hypothesized that exosomes 
in patients with graft rejection are immunogenic and that these 
exosomes can essentially traffic and deliver their antigenic cargo 
toward priming of allogeneic donor HLA and lung-restricted 
autoantigen specific of CD4 T cells (50). The role of exosomes 
has also been recognized in other solid organ transplantations 
(51). Whether or not exosomes participate in the antigen pres-
entation by semidirect pathway has not been established, and 
their contribution to the indirect and direct pathways of antigen 
presentations remains to be validated.

Analysis of ECM, as a potential source of lung-restricted self-
antigens, in small airway inflammation and fibrosis associated 
with BOS is unconventional. Biochemically, ECM is a complex 
adduct of glycoproteins, collagens, and polysaccharides and is 
responsible for homeostatic maintenance of the lungs, including 
their development, maturation, and post-injury tissue repair 
(52, 53). In patients with fibrotic lung diseases or who develop 
BOS after LTx, aberrant ECM deposition leads to permanent tis-
sue scarring. An alloimmune reaction directed at the lung graft 
generates “redox hotspots” with surplus reactive oxygen species. 
Redox reactions in the lungs are known to modulate signaling and 
composition of ECM (54), pericellular localization, and extracel-
lular focal plaque formation (55). The inflammatory nature of 
ECM, particularly with regards to ECM-infiltrating immune cells 
and composition of the fibrotic scars, may indicate the role of 
ECM as an antigen reservoir and initiator of inflammation that 
prompts lung-directed autoimmune responses.

With regards to small airway epithelial cells, club cells may 
play an important role in the elicitation and/or amplification of 
lung graft-directed immune responses. Club cell secretory protein 
(CCSP) is an important component of the pulmonary surfactant 
that has an anti-inflammatory function (56–60). A significant 
reduction in bronchoalveolar CCSP and club cells has been 
reported in LTx recipients who develop BOS compared to stable 
LTx recipients (61). These results suggest that declining CCSP 
may augment both the innate and adaptive immune responses 
that lead to lung allograft rejection.

Pathogenesis
The tenets of Terasaki’s humoral theory (10, 37, 38) on the pri-
mary role of HLA Abs in solid organ rejection remain generally 
undisputed, and the development of Abs and their correlation 
with lung graft rejection has been increasingly reported across 
transplant centers. Because adaptive cellular and humoral effec-
tors work in tandem in the elicitation of graft-directed immune 
responses, it is difficult to ascribe a dominant role for one over 
the other. With respect to immunologic factors associated with 
allograft rejection, Terasaki and Cai suggested that: (1) Abs play 
a causative role in the pathogenesis of graft rejection and (2) acute 
cellular rejection (ACR) can be of humoral origin (38).

Antibody-mediated rejection (AMR) of a lung graft results 
in three primary, interdependent manifestations: (1) hyperacute 
rejection, (2) acute humoral rejection, and (3) chronic lung 
allograft dysfunction (CLAD). Although AMR lesions are well 
defined in renal and cardiac allografts, the criteria for assess-
ment of lung AMR are continuously changing based on varying 
immunopathology observed in pulmonary biopsies. The recent 

International Society for Heart and Lung Transplantation grad-
ing criteria for evaluating lung graft rejection define pulmonary 
AMR as presence of donor-HLA-specific Abs and characteristic 
lung histology that may or may not be accompanied by comple-
ment deposition in the graft (62). Furthermore, AMR may persist 
subclinically—that is, without being detected. Occurrence of 
preformed, sometimes-low-titer Abs to donor-HLA, Col V or 
Kα1T pre-LTx have been shown to increase risk of graft rejec-
tion (33, 63). Delivery of exogenous anti-Col V and anti-Kα1T 
produced AMR in experimental murine LTx (32, 64). ACR is 
a common but reversible immune reaction, with characteristic 
perivascular or peribronchiolar mononuclear infiltrations. AMR, 
on the other hand, is difficult to diagnose and may accompany 
local activation of complements caused by DSA (65–67).

Higher frequency and high grade of AMR are risk factors for 
development of HLA Abs and BOS (34, 68), but AMR exhibits 
a strong association with de novo development of anti-HLA, 
significantly increasing the risk of BOS (24). BOS continues to 
be the major cause of posttransplant morbidity and mortality, 
affecting approximately 50% of patients with transplanted lungs 
within 5 years of LTx (69). It clinically manifests with progres-
sive, irreversible loss of respiratory function (>20% of baseline) 
that is unresponsive to any immunosuppressive regimen (70). 
A large body of work has established a strong humoral link that 
predisposes for development of BOS after LTx. DSA directed to 
MHC class I and II proteins, even when detected only transiently, 
poses significant and independent risks for BOS develop-
ment and influences its onset kinetics, severity, and mortality  
(11, 15, 17, 19, 24–28, 71).

In addition to BOS, restrictive allograft syndrome (RAS) has 
been recently described as another form of CLAD after human 
LTx (72). RAS is an airway-restrictive phenotype and is more 
aggressive than BOS, with median survival of just 6–18 months 
after diagnosis (73–76). The alloimmune priming of donor-HLA 
reactive B cells is believed to trigger loss of self-tolerance and 
intermolecular epitope spreading, eliciting cellular and humoral 
responses directed to Col V and Kα1T. Therefore, a functional 
interplay has been proposed in which donor-directed alloim-
munity leads to development of tissue-restricted autoimmunity 
to self-antigens (26, 29, 77).

The immunodominant role of DSA in chronic rejection has 
been recognized by three distinct observations: (1) de novo DSA 
is associated with recurrent and high-grade cellular rejection 
and lymphocytic bronchiolitis (11, 15), (2) development of DSA 
often precedes de novo Col V- and Kα1T-specific Abs (26), and 
(3) depletion of the circulating Abs by Ab-directed therapy offers 
protection from BOS with a lower hazard ratio and enhanced 
pulmonary function (25, 27, 78–80). Preexisting Abs to Col V and 
Kα1T have been found in different terminal lung diseases pre-
LTx, and such pretransplant autoantibodies were significantly 
correlated with poor outcomes, including development of DSA 
and BOS (33, 81). Moreover, the absence of preexisting Abs to lung 
self-antigens was correlated with freedom from de  novo MHC 
class I and class II DSA and with lower incidence of BOS (33). 
Preformed antibodies to lung-restricted self-antigens without 
measurable DSA have also been associated with BOS develop-
ment after human LTx (24). In summary, the current consensus is 
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that both DSA and Abs to lung-restricted self-antigens (whether 
preformed or de novo) are significant risk factors for all forms 
of lung allograft rejection and limit both short- and long-term 
success of LTx.

Diagnosis
Sensitive detection and measurement of graft-specific Abs have 
been closely linked with the evolution of allogeneic organ trans-
plantation, often serving as a designation of success in solid organ 
transplantation. With outcomes being dependent on the extent of 
antigenic mismatches between donor and recipient, optimization 
of matching strategies has been the subject of much discussion. 
A consensus guideline has been formulated for Ab testing in 
transplantation (82). Crossmatching was an early test in which 
recipient’s serum was mixed with donor’s cells to detect presence 
of anti-donor Abs. A negative crossmatch—first applied in renal 
transplantation—was effective in minimizing graft failure (9). 
The development of the complement-dependent cytotoxicity test 
utilized complement fixation and mixing of donor lymphocytes 
with recipient’s serum in the presence of complement. This assay 
was further refined when antiglobulin was added to augment the 
reaction (83).

More recently, however, flow cytometry has been the test 
of choice to define crossmatch compatibility, given its high 
sensitivity. A shortcoming of crossmatching is the amount of 
time it takes—it was difficult to perform prospectively and it 
increased cold ischemic time of the organ. Currently, a virtual 
crossmatch is preferred, especially for lung and heart transplan-
tation procedures. The development of the “HLA/Teraski plate” 
was a crucial step in the commercialization of assay reagents, as 
it enabled testing for presence and specificity of panel-reactive 
antibodies (PRAs). Recently, solid-phase immune assays such 
as FlowPRA (OneLambda, Canoga Park, CA, USA), LABScreen 
(OneLambda, Canoga Park, CA, USA) and Lifecodes LifeScreen 
(Immucor, Peachtree Corners, GA, USA) were developed. 
FlowPRA is a flow cytometry-based immunoassay for rapid 
detection of HLA class I and class II Abs in human serum. Using 
a unique set of recombinant HLA protein adsorbed fluorescent 
microbeads binding of specific Abs in serum is detected by flow 
cytometry. LABScreen and LifeScreen, on the other hand, allow 
precise determination of allelic HLA and/or MICA on a Luminex 
(Luminex Corporation, Austin, TX, USA) platform. Currently, 
assays such as LABscreen and FlowPRA are standard and are 
routinely conducted for testing of PRAs at HLA laboratories. 
These assays can successfully assign antigenic specificities to 
perform virtual crossmatching.

In stark contrast to the advancements in immunologic detec-
tion of HLA Abs, progression of methods to identify and charac-
terize Abs to tissue-restricted self-antigens is in its infancy. The 
diversity of tissue-restricted self-antigens involved in allograft 
rejection is still being investigated, and there are no validated 
kits commercially available for detecting immune responses to 
self-antigens. In addition, a possibility of low titer circulating 
Abs (below detection limit) as the graft undergoing rejection 
may already sequester them further complicates the detection 
issue. A  solid-phase protein microarray has been employed to 
screen targets of humoral autoimmunity following LTx (84). 

Given the nature of nuanced B cell antigenic determinants 
(i.e., conformational vs linear; continuous vs discontinuous), 
cellular localization (i.e., surface-bound, cytosolic, or nuclear), 
and posttranscriptional modifications, the results obtained from 
solid-phase assays are limited in their capacity to gauge the spread 
of humoral autoimmunity. This prevents full realization of the Ab 
repertoire and limits researchers’ ability to identify novel targets. 
Currently, home-grown enzyme-linked immunosorbent assays 
are the most commonly used procedures for detecting Abs to 
various tissue-restricted self-antigens (31, 32).

CLiNiCAL PANCReATiC iSLeT 
TRANSPLANTATiON

Transplantation of whole pancreas or isolated pancreatic islets 
are two effective treatment options for brittle (i.e., severe) T1D 
patients, as both procedures replace the depleted β-cell mass lost 
due to autoimmunity. Islet transplantation has the advantage of 
being a minimally invasive procedure compared to transplanta-
tion of pancreas. Most of T1D patients receive exogenous insulin 
therapy to control blood glucose levels, but this often results in 
severe and recurrent of hypoglycemia (85). Many patients who 
undergo islet transplantation achieve normoglycemia and experi-
ence freedom from the life-threatening consequences of severe 
hypoglycemic episodes. Despite significant advances in the islet 
isolation protocol, islets isolated from more than one donor 
pancreas are often required to achieve insulin-independent status 
(86), and a majority of islet transplant recipients return to some 
form of exogenous insulin usage within a few years of transplan-
tation due to chronic rejection (87).

According to the Collaborative Islet Transplant Registry (See 
text footnote 2) data collected from the islet transplant centers 
around the world indicate 1- and 5-year insulin-independence 
rates after final islet infusion at 50% and 23%, respectively. 
Majority of the procedures performed in North America are 
islet transplant alone where as a higher number of procedures 
performed at European centers are simultaneous islet-kidney 
allograft (SIK) transplantation or islet after kidney allograft (IAK) 
transplantation. The SIK/IAK rate in North America is 10% were as 
that in European centers are >35%. A small number of islets after 
LTx have been successfully performed at the GRAGIL (Groupe 
Rhin-Rhône-Alpes-Genève pour la Transplantation d’Ilots de 
Langerhans) consortium (1). This combined transplantation was 
particularly beneficial for patients with end-stage cystic fibrosis 
and severe cystic fibrosis-related diabetes. Long-term follow-up 
on transplant recipients resulted in persistent improvement of 
glycemic control with normalized glycated hemoglobin (HbA1c) 
in conjunction with significant (50%) reduction in the daily exog-
enous insulin requirement. The normoglycemia was durable and 
was preserved for a durable period of 15 years in these lung-islet 
combined transplant recipients.

Multiple factors contribute to loss of islet grafts, including 
poor islet quality, posttransplant inflammation, immunosup-
pressive drug-induced toxicity, recurrent autoimmunity, β-cell 
exhaustion, and alloimmune responses (88). Primary causes 
of islet allograft rejection are thought to be incidences of β-cell 
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directed autoimmunity in combination with the alloimmune 
response to multiple mismatched HLA antigens that significantly 
impact long-term islet cell function.

Alloimmunity against islet Grafts
Introduction of allogeneic tissue into the body during solid 
organ or cellular transplantation is known to produce de novo 
anti-HLA, which plays a major role in acute and/or chronic 
graft failure. Rejection due to alloimmunity after islet trans-
plantation is mainly due to the Abs against donor-specific HLA 
class I and II molecules (89, 90). Moreover, the requirement of 
multiple islet infusions to achieve insulin independence exposes 
transplant recipients to an unusually high number of HLA 
mismatches, resulting in elevated risk for a broader spectrum of 
donor-specific HLA Abs (88). Our group researched a possible 
role for HLA Abs in the rejection of islet  allografts (91). This 
report was followed by a comprehensive analysis of both cel-
lular and humoral responses against donor-specific antigens in 
seven islet transplant recipients, and a clear association of flow 
cytometry-detected and immunospot-detected T cells with islet 
graft failure was revealed (92). Of these seven patients, three 
with positive donor-specific responses rejected islet allografts, 
either acutely or chronically. A concurrent report by Rickels 
et al. reported islet graft failure in two of six patients with detect-
able HLA class I and II antibodies (93). Cardani et al. analyzed 
HLA sensitization in 66 patients who underwent islet transplan-
tation at a single center between 1985 and 2006 and reported 
no significant correlation between positive PRA and islet graft 
transplantation outcome (94). However, loss of islet graft func-
tion was associated with positive PRA after immunosuppression 
tapering or infection. The study by Cardani et al. also revealed 
that 24% patients developed PRA after immunosuppression was 
discontinued.

The Edmonton group revealed its findings on the role of 
anti-donor HLA in the islet allograft rejection in a large patient 
cohort, screening posttransplant HLA Abs in 98 patients. In their 
cohort, 29 patients (30%) developed DSA, including 23 recipients 
(23.5%) who developed DSA while still on immunosuppression. 
Ten of the fourteen patients (71%) who discontinued immuno-
suppression developed extensive amounts of PRA. This report 
documented posttransplant HLA sensitization among patients 
who had negative PRA prior to transplantation. Importantly, 
the fasting C-peptide, which is an indicator of islet graft func-
tion, was significantly lower in sensitized recipients compared 
to non-sensitized recipients (95). Another study showed that 
pretransplant detection of PRA to MHC class I and II (>15%) 
among recipients was associated with increased need for insulin 
post-transplant (96).

The Collaborative Islet Transplant Registry offered a compre-
hensive analysis of 308 patients who received islet transplantation 
at different centers between 1999 and 2008. They found that HLA 
class I sensitization both pre- and posttransplant was correlated 
with islet graft failure. Unlike any other type of organ transplan-
tation, allogeneic islet recipients could be exposed to a total of 
9–25 HLA class I and II antigen mismatches. This extraordinar-
ily high number of mismatches was likely due to the multiple 

HLA-mismatched pancreas donors used for islet isolation, and 
also possibly the result of increased risk of patients receiving any 
future transplants (88). A significant increase in the level of HLA 
Abs was seen, even when patients adhered to an immunosuppres-
sion regimen. It would be beneficial if islet transplants could be 
performed with single-donor islet infusion, as it would minimize 
the risk of broad sensitization.

Despite clinical studies reporting a possible association 
between HLA sensitization and islet graft failure, causality has 
still not been definitively established. Previous in vivo studies have 
indicated an association between DSA and islet transplantation 
survival. Using a congenic rat islet transplant model, Bittscheidt 
and colleagues have reported that graft survival was significantly 
influenced by the degree of donor-recipient MHC matching as 
well as recipient presensitization (97).

Other reports have shown that the presence of pretransplant 
autoreactive T cells and de novo donor-specific cytotoxic CD4 T 
cells resulted in poor outcomes after islet transplantation (92, 98, 
99). In fact, the preformed auto- and alloreactive Abs were con-
sidered to be negative indicators for survival of the islet graft (96, 
98, 100). Thus, the adaptive immune system plays essential role 
in long-term islet graft survival and influences clinical outcomes. 
The allosensitization triggered by donor antigens likely elicits 
the interferon-γ- and interleukin (IL)-2-mediated T helper1 
response, which is destructive for the function of the transplanted 
islets (92). An in vitro study of mixed islet leukocyte reaction by 
Bouwman et al. showed induction of direct T cell response with 
augmented responses in cases with two or more mismatches of 
HLA class II (101).

A recent contrasting report showed that 11/18 islet trans-
plant recipients (61.1%) had preexisting anti-HLA, including 6 
patients (33%) who developed de novo DSA against the HLA of 
the transplanted islets (90). Remarkably, no significant associa-
tion existed between the newly developed DSA after islet trans-
plantation and clinical characteristics such as recipient gender, 
age, number of post-transplant infections, HLA class I/II eplet 
mismatch, and immunosuppression protocol. Furthermore, the 
de novo DSA was not associated with reduced graft survival 
or function. Interestingly, the newly formed posttransplant 
anti-HLA class II Abs were related to the Predicted Indirectly 
Recognizable HLA Epitopes (PIRCHE-II5), specific to the T 
helper epitopes.

Long-term survival of an allogeneic islet transplant faces a 
greater challenge than solid organ or other cellular transplants 
due to the preexisting islet-specific autoimmunity and the likely 
scenario of multiple HLA-mismatched islet infusions. In a recent 
analysis of 59 consecutive islet transplant recipients, 39 (66%) 
experienced de novo titer increase in both DSA and autoantibod-
ies (96). Patients with increased Ab titers had significantly lower 
graft survival. Furthermore, newly developed DSA was associ-
ated with MHC class II (HLA-DR) mismatches and preexisting  
PRA (96).

The expression of MHC class II in the endocrine tissue of 
freshly isolated pancreatic islets is nearly undetectable. However, 

5 http://company.pirche.org/.
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posttransplant infection or the presence of proinflammatory 
cytokines can induce the expression of MHC class II. Such induced 
expression of MHC class II has been demonstrated in vitro and 
has been associated with development of donor-specific HLA 
class II Ab production after islet transplantation (91).

Autoimmunity against islet Grafts
Because pancreatic islet transplantation is often performed in 
patients with T1D, the existence of preformed autoantibodies 
against major islet-specific antigens is an inherent issue for most 
recipients. Autoantibodies in the circulation are formed during the 
pathogenesis of T1D prior to islet transplantation. Autoantibodies 
against pancreatic islets that are deemed clinically significant 
include anti-glutamate decarboxylase 65 (GAD65), anti-insulin 
autoantibody, anti-zinc transporter ZnT8, anti-islet cell autoanti-
body, and anti-tyrosine phosphatase autoantibody (IA-2) (102). 
Some of the earlier reports of posttransplant immune responses 
in islet transplant recipients suggested that no correlation existed 
between preexisting autoantibodies and islet graft failure (96, 98). 
Similar claims were made about the role of autoantibodies in 
clinical outcomes of whole pancreas transplants (103). However, 
preformed autoantibodies in islet recipients have indeed been 
associated with graft failure compared with recipients who did not 
have autoantibodies (104). Compared to preformed autoantibod-
ies, the elevated recurrences of autoantibodies specific to ZnT8A, 
GAD65, and IA-2 in the posttransplant period were predictive 
of graft failure in islet transplantation (96) and foretold an 80% 
chance of graft failure in transplanted whole pancreas (105). In 
spite of the early notion of a non-association between preexisting 
autoantibodies and graft loss, analysis of these autoantibodies 
may be clinically useful in helping health practitioners anticipate 
recurrences of autoimmune graft rejection. A number of factors 
may affect reappearance of autoantibody, for example, suboptimal 
immunosuppression protocols that include CD25 antagonism 
or inhibition of mechanistic target of rapamycin (mTOR) by 
rapamycin. Antithymocyte globulin (ATG) and mycophenolate 
mofetil (MMF), meanwhile, decrease the risk of autoantibody 
recurrence (96).

An early study considered seven islet  allograft recipients to 
determine the significance of autoreactivity in islet transplant 
outcomes (106). In this study, three out of seven recipients under 
ATG induction immunosuppression retained comprehensive 
islet function more than 1 year post-transplant, with less autore-
activity and with no alloreactivities. The remaining four patients 
received no ATG in their immunosuppression treatment. Of 
these, three patients lost islet function within 3 weeks, and one 
patient demonstrated hyper-autoreactivity without alloreactivity 
and experienced a delayed loss of islet function around 33 weeks, 
with recurrence of autoimmunity (106). This group later studied 
the incidence of allo- and autoimmunity in 29 islet transplant 
recipients 1  year after islet transplantation. Repeat analysis 
included modification in the immunosuppression regimen. ATG 
was a part of induction, and tacrolimus with MMF were included 
in the maintenance immunosuppression protocol. The outcomes 
of this study demonstrated that pre- and posttransplant autoim-
munity were associated with delayed insulin non-requirement 
and autoimmunity was directly proportional to the recipients’ 

circulating C-peptide 1  year post-transplant. Moreover, seven 
out of eight recipients who had no history of pretransplant 
autoreactivity achieved insulin independence while none of the 
four recipients who had preformed autoreactivity, predomi-
nantly against GAD and IA-2, achieved insulin independence 
(107). These analyses suggest that including ATG in the induc-
tion immunosuppression may help control autoreactivity and 
improve islet graft function.

The association between a recipient’s pre- and posttransplant 
autoreactivity and clinical outcomes are often highly variable 
from center to center. A previous report (106) asserted that no 
correlation exists between recipients’ autoimmunity and graft 
function posttransplant, but others have stated that 60% of islet 
transplantation recipients with fewer autoreactive circulating 
GAD65 T cells achieved long-term insulin independence, 
whereas the 40% of patients with elevated levels of autoreactive 
GAD65-specific T cells producing proinflammatory cytokines 
and did not achieve long-term insulin independence (108). 
The findings of Chujo et  al. are supported by another report, 
in which pretransplant GAD65 and IA-2 autoreactive T cells 
affected the 1-year insulin-independence rate of alloislet trans-
plant recipients (107).

Allogeneic graft rejection and autoimmune recurrence make a 
critical contribution to long-term outcomes after islet transplan-
tation, and CD4+ and CD8+ T cells are vital in the pathogenesis 
of graft rejection. Moreover, T1D recipients have an increase 
in autoreactive memory T cells (109). Donor-specific MHC 
molecules likewise play an important role in activation of immu-
nogenic T cells in the recipients, affecting islet graft outcomes. 
Huurman et al. analyzed islet transplantation recipients’ cellular 
responses to donor-specific MHC class II antigens and measured 
the expansion of alloreactive CD4+ T cells by 3H-thymidine 
incorporation (110). They also measured release of pro- and 
anti-inflammatory cytokines in the culture supernatant in vitro. 
Recipients who achieved long-term insulin independence 
expressed greater IL-10 release and regulatory T cells compared 
to recipients with failed allografts, who showed more IL-2 release 
in the supernatant (110).

Autoreactive CD8+ T cells are thought to play an active role 
in the destruction of alloislet graft. Memory autoreactive T cells 
have a longer half-life, are preserved in the circulation for a long 
time and expand after exposure to the specific autoantigens 
posttransplantation. Velthuis et al. analyzed frequency of CD8+ 
T cells in T1D patients and islet transplant recipients and demon-
strated that T cells reacting to insulin and pre-proinsulin epitopes 
increased after transplantation (111). Further, the presence of 
some alloreactive CD8+ T cells possibly due to donor/recipient 
MHC mismatch induced expansion of cytotoxic T cells causing 
acute islet graft rejection (99).

immunosuppression in  
islet Transplantation
Understanding the role of islet-specific alloimmune responses 
and autoimmunity in islet graft function has been useful in 
designing effective immunosuppression regimens that can control 
graft failure. Most immunosuppression drugs commonly used 
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TABLe 1 | immunosuppression strategies in clinical pancreatic islet transplantation.

induction iS Maintenance iS No. of recipients Type of transplant ii achieved Year/reference

ATG + Bela Sir + MMF  5 ITA 5 2010/(125)
ATG + Efa/ Sir + MMF  5 ITA 5 2010/(125)
ATG + ETA + Ana/ Tac/MMF  3 ITA 3 2011/(126)
Dac/ Tac/Sir  3 ITA 3 2011/(126)
ATG + Tep or ATG + TCDAb + TNFi Tac or CsA/Sir or CsA/Sir or Eve  29 ITA 15 2012/(124)
TCDAb + TNFi Tac or CsA/Sir or Eve  20 ITA 10 2012/(124)
TCDAb Tac or CsA/Sir or Eve  43 ITA N/A 2012/(124)
Dac Tac or CsA/Sir or Eve 177 ITA 35 2012/(124)
ATG Sir  12 ITA 5 2014/(127)
ATG Tac + MMF  48 ITA N/A 2014/(128)
ATG or Dac or Bas Tac or Sir  38 SIK/IAK 4 2015/(129)
ATG or Bas Sir + Tac  48 ITA 25 2016/(85)
ATG or Bas Ste or Tac + Aza  18 ITA/SIK/IAL/SILL 9 2016/(90)

Ale, alemtuzumab; Ana, anakinra; ATG, antithymocyte globulin; Aza, azathioprine; Bas, basiliximab; Bela, belatacept; CsA, cyclosporine A; Dac, daclizumab; Efa, efalizumab; Eta, 
etanercept; Eve, everolimus; Exe, exenatide; IAK, islet after kidney transplantation; IAL, islet after lung or liver transplantation; II, insulin independence achieved in no. of patients; 
Inf, infliximab; IS, immunosuppression; ITA, islet transplantation alone; MMF, mycophenolate mofetil; N/A, not available; SIK, simultaneous islet-kidney transplantation; SILL, 
simultaneous islet-liver-lung transplantation; Sir, sirolimus; Ste, steroids; Tac, tacrolimus; TCDAb, T cell depleting antibodies; TNFi, tumor necrosis factor-α inhibition.
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in whole organ transplantation are either lethal to transplanted 
islets or induce diabetes in the recipients. For recipients of islet 
transplantations, azathioprine, cyclosporine, and corticosteroids 
are usually included in the immunosuppression regimen in the 
immediate posttransplant period. Most islet transplants are 
performed after renal or simultaneously with renal transplanta-
tion. Application of these immunosuppression regimens has 
produced variable posttransplant outcomes in islet transplanta-
tion (112–114). Cyclosporine sparing immunosuppression is 
preferred based on several in vitro studies that have documented 
its β-cell toxicity (112, 115, 116).

The outstanding posttransplant result achieved with 
the Edmonton protocol (i.e., seven out of seven patients 
became insulin-independent) was partly due to a modified 
immunosuppression regimen, which included no steroids, 
and included induction with daclizumab and maintenance 
with low-dose tacrolimus and sirolimus (117). Impaired graft 
function and β-cell proliferation were reported with sirolimus 
(118, 119); however, no clinically significant adverse effects or 
decrease in islet engraftment were reported (120). In spite of 
its diabetogenic property, inclusion of low-dose tacrolimus 
in the immunosuppression maintenance protocol effectively 
improved short-term islet graft function (121). For long-term 
islet graft function, however, the Edmonton protocol was not 
effective. Among 47 patients who achieved insulin independ-
ence, only four (8.5%) retained the insulin-independent status 
at 5 years (122).

Recent improvement in the immunosuppression protocol has 
significantly enhanced the clinical islet transplant outcomes as 
illustrated in Table 1. Long-term islet transplant outcomes were 
improved with the use of humanized anti-CD3 Ab (OKT3γ1 
Ala-Ala) for induction that depletes mature T cells followed by 
administration of calcineurin and mTOR inhibitors. The same 
group later effectively used T cell depletion with ATG along 
with antitumor necrosis factor α in the induction regimen and 
achieved superior long-term insulin independence in 50% (4/8) 
of the recipients (123, 124).

The Clinical Islet Transplantation Consortium6 recently 
reported encouraging results in 48 patients who underwent islet 
transplantation. All 48 T1D patients experienced severe hypo-
glycemic episodes and impaired awareness of hypoglycemia pre-
transplant, and all maintained a regimen of ATG or basiliximab 
for induction and sirolimus with low-dose tacrolimus for immu-
nosuppressive maintenance (85). In this study, the primary end 
point fixed was the accomplishment of HbA1c < 7.0% (53 mmol/
mol) at 1 year and freedom from severe hypoglycemic episodes 
from day 28 to day 365 after initial transplant. The primary end 
point was effectively met by 42/48 patients (87.5%) at one and by 
34/48 patients (71%) at two posttransplant years. Hypoglycemia 
awareness was significantly restored (p > 0.0001), with marked 
improvement in Clarke and HYPO scores in all patients in the 
study (85).

A major obstacle to successful islet engraftment is the activation 
of an innate immune response, called “instant blood-mediated 
inflammatory response” (IBMIR). This reaction is characterized 
by release of proinflammatory cytokines, infiltration of innate 
immune cells, and activation of coagulation pathways (130). 
IBMIR has been documented in all three forms of islet transplanta-
tion (i.e., autologous, allogenous, and xenogenous). It is estimated 
that roughly 50% of transplanted islets are irreversibly damaged 
during the peri-transplant period, usually within hours to days. 
Following islet transplantation, release of proinflammatory 
cytokines and chemokines has been reported (131). These soluble 
molecules include tissue factor, high-mobility group protein B1, 
cytokines and chemokines such as chemokine (C-C motif) ligand 
2, chemokine (C-X-C motif) ligand (CXCL) 12, tumor necrosis 
factor (TNF) α, IL-1β, IL-6, and CXCL8/IL-8. Introduction of two 
anti-inflammatory compounds that inhibit TNF-α (etanercept), 
IL-1β (anakinra) has been shown to improve islet allograft func-
tion (126). However, a direct link between the control of IBMIR 
and development autoimmune and alloimmune responses has 

6 www.citisletstudy.org.
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not been established in allogenic islet transplantation and will 
undoubtedly be the focus of future studies.

CONCLUSiON

In this review, we have synthesized the published reports on 
immune responses to alloantigens encoded by HLA loci and 
non-HLA tissue-restricted self-antigens in the pathogenesis 
of graft rejection after human lung and islet transplantation. 
Much work has been done to determine the role of HLA Abs 
in allograft rejection, but consideration of immune responses 
to non-HLA antigens (including tissue-restricted self-antigens) 
is still a new territory. Many recent studies have suggested that 
tissue-restricted self-antigens direct immune responses and 
play a meaningful role in allograft rejection. Nevertheless, it 
remains unclear how these tissue-restricted immune responses 
initiate and perpetuate graft rejection, how tolerance to these 
tissue-restricted self-antigens are broken, and what role alloim-
munity plays in the pathogenesis of chronic rejection despite 
immunosuppressive regimens.

Current work would suggest a crosstalk between allo- and 
autoimmunity in both lung and islet transplantation. It is pos-
sible that, once initiated, immune responses to tissue-restricted 
self-antigens are not suppressed by the immunosuppressive 
regimen, and this smoldering immune reaction contributes to 

the onset and progression of chronic allograft dysfunction. In 
experimental models, there is evidence that Abs to both MHC 
and to tissue-restricted self-antigens can break established toler-
ance, suggesting that Abs are the driving force in the induction 
of chronic allograft dysfunction. Therefore, there is an urgent 
need to develop new diagnostic and/or therapeutic approaches 
to prevent Abs and to treat chronic allograft dysfunction.
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