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ABSTRACT: The coronavirus disease 2019 (COVID-19) pan-
demic has a significant impact on healthcare systems and our lives.
Vaccines against severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) provide protection against SARS-CoV-2. However,
mutations in the viral genome are common, raising concerns about
the effectiveness of existing vaccines for SARS-CoV-2. The
receptor-binding domain (RBD) of SARS-CoV-2 uses angioten-
sin-converting enzyme-2 (ACE-2) as a gateway to enter host cells.
Therefore, the ACE-2-RBD interaction may be targeted by
antiviral drugs. In this context, allosteric modulation of ACE-2
may offer a promising approach. It may lead to allosteric inhibition
of the interaction between ACE-2 and SARS-CoV-2.
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The World Health Organization (WHO) had declared the
COVID-19 pandemic on March 12, 2020. We are

currently observing COVID-19 infections primarily with new
variants of SARS-CoV-2. For example, recently, a new variant of
SARS-CoV-2 (B.1.1.529) was identified in South Africa, and on
November 26, 2021, the WHO named it Omicron, a variant of
concern.1 Many countries have meanwhile reported the
presence of Omicron infection cases. Fortunately, a large
portion of the human population in many countries has already
been vaccinated. But the worrying fact is that the Omicron
variant has many mutations in the spike protein and other areas
of its genome2 and the vaccines are less effective against this
variant.
SARS-CoV-2 that caused COVID-19 uses membrane-bound

angiotensin-converting enzyme-2 (ACE-2) together with an
auxiliary receptor, transmembrane protease serine 2
(TMPRSS2), to enter into the host cells.3 At present, most
targets against SARS-CoV-2 are focused on the viral RNA-
dependent RNA polymerase (RdRp), the main viral protease
(Mpro), the spike protein, and the receptor-binding domain
(RBD, e.g., fusion inhibitors, ACE-2 contact inhibitors).4

Vaccines designed using the spike protein of SARS-CoV-2
offer a proactive immune option that produces monoclonal
antibodies against the spike protein of SARS-CoV-2. However,
mutations are present in the spike protein, for instance, in the
delta and omicron variants of SARS-CoV-2.5 The mutations in
the spike protein raise questions about the effectiveness of the
SARS-CoV-2 vaccination program. On the other hand,
medications administered after a confirmed SARS-CoV-2
infection are usually administrated after a few days of illness.

At this stage of the COVID-19 disease, inhibiting viral
communication with the ACE-2 receptor may still be beneficial.
ACE-2 is a hydrolase, and it is classed as a carboxypeptidase.

There are two types of ACE-2: soluble ACE-2 and membrane-
bound ACE-2, which SARS-CoV-2 utilizes as a gateway of the
host cell.6 The physiological role of ACE-2 is mainly to convert
angiotensin-I into angiotensin (1−9) and to convert angioten-
sin-II to angiotensin (1−7). Both angiotensin (1−7) and
angiotensin (1−9) bind with Mas receptors and prevent
vasoconstriction, inflammation, oxidation, proliferation, and
fibrosis. In the absence of ACE-2, angiotensin-I and angiotensin-
II interact with the angiotensin II type 1 (AT1) receptor and
increase vasoconstriction, inflammation, oxidation, prolifera-
tion, and fibrosis.7 Likewise, SARS-CoV-2 infection also
compromises endothelial function through the downregulation
of ACE-2, which leads to lung injury.8 Moreover, among other
pathophysiological aspects of COVID-19, stress on the renin-
angiotensin system also plays a role in disease development and
severity.9 But, it is not clear at which stage of COVID-19 disease
ACE-2 gets downregulated (e.g., early, late-early, mid ormidlate,
etc.). It is also imperative to keep in mind the downregulation
fact, probably because an allosteric drug may be beneficial at the
early stage.
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In general, there are two types of pharmaceutical targets
available when an enzyme plays a critical role in a particular
disease, i.e., an orthosteric site and an allosteric site of an
enzyme.10 Pharmaceuticals that are designed for the orthosteric
site usually bind to the active site of the enzyme via competitive,
uncompetitive, or noncompetitive inhibitions.11 Drugs for
allosteric sites bind to sites other than the active site of the
enzyme and often alter the shape of the active site;10 that is, they
can allosterically alter the conformation of the protein. Evidence
indicates that the known ACE-2 orthosteric (active site)
blockers fail to stop the progression of the SARS-CoV-2
infection.12 A previous study showed that critical amino acid
residues in the orthosteric site of ACE-2 are H345, H505, and
R27313 located in the center of ACE-2.
However, the allosteric property of the human ACE-2 is not

well-studied. But nevertheless, research indicates allosteric sites
can be identified by using AlloFinder, CAVER Analyst, etc.
Therefore, allosteric sites 1−3 of ACE-2 were identified using
AlloFinder14 and CAVER Analyst.15 The allosteric site 1 (AS1)
of ACE-2 is located just below its orthosteric site. Allosteric site-
2 (AS2) and -3 (AS3) are found in close proximity to the
interacting amino acid residues,16 that are usually participating
in hydrogen bonding with the receptor-binding domain (RBD)
of SARS-CoV-2 (Figure 1). Recent work by Wang et al. also
indicates that an allosteric site of ACE-2 is located in close
proximity to the active site.17 The surrounding amino acid
residues of the AS1 are F428, P289, R288, N290, E430, L418,
P415, I291, T434, E435, N437, K541, T414, M366, F438, L439,
K441, Y279, A413, H540, C542, A412, L539, Y587, Q442,
L410, L370, and Q526 with a cavity volume of 448.4 Å3 (Table
1). Furthermore, according to the AlloFinder algorithm, AS1 has
an AlloScore of 8.18, suggesting it could be druggable.
The biophysical properties of ACE-2 play an important role

because they are essential for interactions between ACE-2 and
the viral RBD.4 Altering the biophysical properties of ACE-2 has
a strong effect on the biophysical interactions between ACE-2
and the viral RBD. In other words, due to altered biophysical
properties of the ACE-2 receptor, the viral RBD may lose or
improve the degree of affinity toward the ACE-2 receptor. For
example, a recent study indicates that an ACE-2 mutant (with
altered biophysical properties) has a 100-fold greater binding
affinity for the RBD due to improved hydrophobic packing and
hydrogen-bonding geometry at the interface.18 Recently, the
allosteric interactions and communication pathways in the
SARS-CoV-2 spike protein with ACE-2 have been highlighted.19

The allosteric sites of ACE-2 have been overlooked. Allosteric
drugs can alter the biophysical properties of an enzyme.20 In
addition, some allosteric drugs act as molecular switches,
whereby a slight structural change (altered biophysical proper-
ties) disturbs the mechanism of protein−protein interaction.21

Similarly, alteration of the biophysical properties of the ACE-
2 receptor could be possible upon binding of an allosteric drug,
whichmay disrupt the interactions between ACE-2 and the RBD
of SARS-CoV-2. In particular, binding of a drug at the allosteric
site of the ACE-2 receptor may decrease biophysical interactions
(e.g., electrostatic, hydrogen bonding) between ACE-2 and the
viral RBD. A recent study by Wang et al. showed that
dexamethasone (DEX), chloroquine (CQ), and telmisartan
(TLS) disrupt the interactions between the SARS-CoV-2 spike
protein and human ACE-2 through binding to an allosteric site
by a conformational shift of the ACE-2.17 And modulating the
conformation of ACE2 may limit SARS-CoV-2 invasion owing
to unfavored poses for spike protein binding.17 However, the

Figure 1. Allosteric sites of angiotensin-converting enzyme 2. (a)
Cartoon presentation of the human angiotensin-converting enzyme 2
(3SCJ). Potential allosteric areas are highlighted by different black
shapes. (b) Orthosteric site of ACE-2 is highlighted by a yellow square.
Important amino acid residues are H345, H505, and R273. (c)
Allosteric site 1 (red), and amino acid residues (blue) of ACE-2
participating in hydrogen bonding (H-bond) with the receptor-binding
domain (RBD) of SARS-CoV-2.
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binding of a drug at an allosteric site of ACE-2 may also reduce
the enzymatic substrate conversion of angiotensin-I and -II. In
addition, an allosteric drug for the ACE-2 receptor may probably
be beneficial to reduce the stress on the renin-angiotensin
system and to inhibit SARS-CoV-2 induced impaired
endothelial function. This would have to be explored by detailed
future research.
It is hypothesized that SARS-CoV-2 may lose the ability to

infect new host cells due to allosterically impaired interaction
between the ACE-2 receptor and the viral RBD. Thus, altering
the biophysical properties of the ACE-2 receptor by modulating
an allosteric site of ACE-2 may be a promising strategy against
COVID-19.
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