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Early nucleolar disorganization in Dictyostelium
cell death

MF Luciani1, Y Song1, A Sahrane1, A Kosta2 and P Golstein*,1

Cell death occurs in all eukaryotes, but it is still not known whether some core steps of the cell death process are conserved. We
investigated this using the protist Dictyostelium. The dissection of events in Dictyostelium vacuolar developmental cell death was
facilitated by the sequential requirement for two distinct exogenous signals. An initial exogenous signal (starvation and cAMP)
recruited some cells into clumps. Only within these clumps did subsequent cell death events take place. Contrary to our
expectations, already this initial signal provoked nucleolar disorganization and irreversible inhibition of rRNA and DNA synthesis,
reflecting marked cell dysfunction. The initial signal also primed clumped cells to respond to a second exogenous signal
(differentiation-inducing factor-1 or c-di-GMP), which led to vacuolization and synthesis of cellulose encasings. Thus, the latter
prominent hallmarks of developmental cell death were induced separately from initial cell dysfunction. We propose that (1) in
Dictyostelium vacuolization and cellulose encasings are late, organism-specific, hallmarks, and (2) on the basis of our
observations in this protist and of similar previous observations in some cases of mammalian cell death, early inhibition of rRNA
synthesis and nucleolar disorganization may be conserved in some eukaryotes to usher in developmental cell death.
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Developmental cell death has been observed in most if not all
multicellular eukaryotes where it has been looked for. This
ubiquity of developmental cell death in multicellular eukar-
yotes argues in favor of conserved core mechanisms.
Developmental cell death in different organisms can, however,
be of distinct morphological types. This polymorphism may
speak in favor of lineage-specific hallmarks, selected by
evolution as a function of the organism and circumstances.
How to reconcile possible conservation and polymorphism?
Which mechanism may be conserved? A convenient model to
study these questions is Dictyostelium, whose cell death
shows prominent hallmarks such as vacuolization and
cellulose encasing.
The protist Dictyostelium discoideum multiplies in rich

medium as a unicellular organism. Starvation triggers aggre-
gation and further morphogenesis, leading within 24 h to a
1–2 mm high mature fruiting body made of a mass of spores
on top of a stalk. This stalk is made of dead or dying cells
unable to re-grow in rich medium.1 Each of these stalk cells
shows a very large vacuole and cellulose encasing.2,3 The
resulting vacuolar pressure and cellulose wall counterpres-
sure mechanically reinforce the stalk, thus optimize spore
dissemination. Vacuoles and cellulose walls are therefore
considered to confer a selective advantage.
Dictyostelium cell death in stalks could be mimicked and

more easily studied in vitro in monolayers.4 Two signals were
required for full induction of this cell death. The initial signal
starvation plus cAMP led to the appearance of autophago-
somes and autophagolysosomes,5,6 thus of signs of autop-
hagy. Second signal exogenous differentiation-inducing

factor-1 (DIF-1)7 led to polarized ‘paddle cells’,8 which
rounded up, acquired a cellulose encasing and a large
vacuole that progressively occupied most of the cell
volume.8,9 The cyclic dinucleotide c-di-GMP was recently
found to be able to act as a second signal in vitro.10,11 Random
insertional mutagenesis has helped identify some of the
molecules involved in signaling byDIF-1 (refs 12,13) but not by
c-di-GMP.11 In cells where autophagy had been genetically
inhibited, addition of DIF-1 led to a shift from vacuolar to
necrotic cell death.14–16 Altogether, Dictyostelium cells in
monolayers offer a model of non-apoptotic, non-necrotic, two-
signal-induced cell death with vacuolization and cellulose
encasing.12

We show here that upon initial signaling, cells in clumps
were not only primed to respond to the second signal, but
already showed severe dysfunction. This appeared as
irreversible inhibition of rRNA and DNA synthesis and
depletion of nucleolar rRNA stores, together with nucleolar
disorganization and autophagy at the ultrastructural level,
without, however, immediate loss of membrane integrity. Thus,
the initial signal (starvation plus cAMP) led to both marked cell
dysfunction and priming for the second signal, and the second
signal (DIF-1 or c-di-GMP) induced hallmarks of death,
namely vacuolization and cellulose encasing. These results
may thus reflect a two-step process, a first step conserved in at
least some instances of eukaryotic cell death, followed by a
more organism-specific step, accounting for both ubiquity/
conservation and polymorphism. Also, together with similar
previous observations in some cases of mammalian cell
death, these results suggest that initial signal-induced
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inhibition of rRNA synthesis and nucleolar disorganization
may be conserved as early steps of developmental cell death
throughout eukaryotes.

Results

An initial signal led to clumped cells primed to respond
to second signals. To induce cell death, following a
standard protocol Dictyostelium cells were subjected to
starvation and cAMP as an initial signal, then to the inducers

DIF-1 or c-di-GMP as a second signal. Upon initial signaling
by starvation and cAMP, some cells either remained isolated
or formed clumps (Figure 1a, left column), recapitulating in
part previous results.4,8–12 These clumps appeared at the end
of an 8- h period in the presence of cAMP, became more
compact during subsequent incubation without cAMP and
then often showed bulges (Figures 1c and d). These bulges
were suggestive of morphogenetic initiation,17,18 without,
however, evolving into fruiting bodies or macrocysts. Each
cAMP-induced clump was surrounded by a calcofluor-positive

Figure 1 Dictyostelium cells in cAMP-induced clumps were primed for vacuolization and cellulose encasing upon second signaling. (a) Induction of cell death. DH1 cells
starved for 8 h in SB saline in the presence of cAMP were further incubated for the indicated times, either in SB alone, or in SB containing the inducers DIF-1, c-di-GMP, or DIF-1
and c-di-GMP. SB and cAMP led to enveloped clumps, and addition of inducers led to vacuolization. Note the integrity of c-d-GMP-treated enveloped clumps within which
vacuolization occurred. This pattern was found in each of close to 200 independent experiments including groups with or without c-di-GMP. From another point of view, each
LabTek chamber seeded with 3 × 105 cells showed about 100 clumps, each containing an average of 30 cells, thus only a minority of cells were recruited into clumps.
(b) Vacuolization in but not outside clumps. Cells were starved in the presence of cAMP for 8 h, further incubated for 16 h with c-di-GMP, and examined by confocal microscopy.
Isolated cells close to the glass substrate staid non-vacuolated, whereas cells in the enveloped clump vacuolized and acquired pericellular encasings. Extracted from a Z stack,
three slices 10 μm apart. (c) Periclump envelopes included cellulose. DH1 (upper) or mutant cellulose-less DH1.DcsA- cells (lower) were starved in the presence of cAMP for 8 h,
then further incubated for 40 h in SB and labeled with calcofluor. The DH1.DcsA- clump was negative for calcofluor fluorescence in spite of deliberate overexposure, confirming
that the parental DH1 periclump envelope included cellulose. In this and further experiments, at least five clumps were examined per group. (d) Calcofluor staining of periclump
envelopes and pericellular encasings. Cells were starved in the presence of cAMP for 8 h, further incubated for 16 h in SB in the absence (upper) or in the presence of c-di-GMP
(lower), stained with calcofluor, and examined by confocal microscopy. Slices were extracted from confocal videos. In the absence of c-di-GMP, cells clumped without
vacuolization and showed a calcofluor-positive periclump envelope. In the presence of c-di-GMP, cells clumped and vacuolized and showed calcofluor-positive periclump
envelopes and pericellular encasings. Scale bars, 10 μm
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envelope (Figures 1c and d). This was, however, not observed
for DcsA- cells mutated for the cellulose synthase gene
(Figure 1c), showing that periclump envelopes included
cellulose material. Although both starvation and exogenous
cAMP were required for clump formation, for simplicity we
shall refer below to cAMP-induced clumps.
In cAMP-induced clumps, second signaling by DIF-1 and/or

c-di-GMP led to two major alterations, namely cell vacuoliza-
tion (Figure 1a) and pericellular cellulose encasings
(Figure 1d). DIF-1 induced more clump dissociation than
c-di-GMP (Figure 1a). Thus, c-di-GMP preserved spatial
segregation between vacuolizing and non-vacuolizing cells,
which led us to use it as a second signal in most subsequent
experiments. Again, cells subjected to an initial signal and to
second signal c-di-GMP vacuolized and acquired a cellulose
encasing within clumps, but usually not outside clumps
(Figure 1b and see below). cAMP-induced clumps in which
c-di-GMP induced vacuolization were observed not only with
DH1 cells, but also with AX2 cells of slightly different derivation
(http://dictybase.org/strain_history.htm), showing that these
results were not restricted to the DH1 background. They were
also observed with DH1.DmtA- mutant cells (Figure 2) unable
to synthesize DIF-1,11,19,20 showing that initial signal-induced
clumps and priming did not require endogenous DIF-1.
After initial signaling, how long would the primed state

persist? DH1.DmtA- cells were primed by starvation and
cAMP for 8 h followed by 16 h of starvation. Then second

signal inducers were added either immediately (Figure 2,
upper row) or after a further 24- h incubation in SB (starvation
buffer) or HL5 (richmedium) (Figure 2, middle and lower rows).
In all cases, the second signal inducers led to vacuolization
and pericellular cellulose encasings, showing that priming
persisted even in rich medium for at least 24 h. Cells in cAMP-
induced clumps were thus stably primed to vacuolize and
acquire cellulose encasings.
Altogether, the initial signal starvation plus cAMP led to the

coexistence of isolated cells and clumped cells. The latter
were primed to the vacuolization-inducing effect of second
signals. In practice, when all cells in the very same
preparation, whether within or outside cAMP-induced clumps,
were subjected to the same exogenous second signal c-di-
GMP, only cells within clumps vacuolized. This made it easier
in further studies to distinguish primed from unprimed cells.

Cells in cAMP-induced clumps showed early and irre-
versible inhibition of rRNA synthesis. Click chemistry to
check the biosynthetic incorporation of the uridine analog 5-
ethynyluridine (EU) into newly transcribed RNA21 was
adapted to Dictyostelium cells. After 24 h of starvation,
incubation for 2 h in the presence of EU, paraformaldehyde
(PFA) fixation, permeabilization with triton, staining with
AlexaFluor-azide and counterstaining with DAPI, cells
showed EU-labeled bodies as yellow-white spots in DAPI-
labeled nuclei (Figure 3a and Supplementary Video 1). These

Figure 2 Cells in cAMP-induced clumps showed sustained priming. For these relatively long-term experiments, DH1.DmtA- cells were used, which did not synthesize
endogenous DIF-1 and thus did not show ‘spontaneous’ vacuolization. Using these cells required as second signal inducers, a mixture of c-di-GMP at the usual concentration of
10 μM and of DIF-1 at the low concentration of 10 nM.11 The priming state, as revealed by vacuolization and cellulose encasings only upon addition of inducers (compare left and
right panels), persisted even after a further incubation of 24 h in SB (middle row) or HL5 (bottom row) before adding these inducers. Scale bar, 10 μm

Nucleolus in cell death
MF Luciani et al

3

Cell Death and Disease

http://dictybase.org/strain_history.htm


bodies were most likely nucleoli, in agreement with the known
large proportion of rRNA among newly synthesized RNAs,
the localization of this newly synthesized rRNA in nucleoli
and the size, place and number of nucleoli in Dictyostelium
cells.22–26 Each cell showed one nucleolus with one or two
lobes, or two nucleoli, at the periphery of its DAPI-labeled
nucleus. Each EU-labeled nucleolus often corresponded to a
notch at the edge of the DAPI-stained zone in the nucleus
(Figure 3a and Supplementary Video 1).
After starvation for 24 h in SB, there was detectable labeling

upon incubation for 1 h with 2 mM EU, in HL5 as well as in SB.
That detectable rRNA synthesis could take place in SB only,
even after 24 h in SB, suggested that rRNA synthesis was a
priority even in a starving cell. The nucleoli seemed better
defined, with sharper edges, when labeling was in HL5 rather
than in SB. Incubation with 4 mM EU in HL5 for 24 h led to no
obvious toxicity as judged by cell morphology (data not
shown). We used as routine labeling conditions 3 mM EU in
HL5 for 2 h in most subsequent experiments.
We then checked RNA synthesis upon signaling for cell

death. As shown above, initial signal starvation plus cAMP led

to clumps. Clump-containing preparations were incubated
with EU. Although isolated cells outside clumps showed EU-
labeled nucleoli, cells within clumps showed no such labeling
(Figure 3b). Thiswas the case for DH1 cells (Figure 3b, left and
Supplementary Video 2) and also for DH1.DmtA- cells
(Figure 3b, right) ruling out a role for endogenous DIF-1 in
this inhibition of RNA synthesis. Cells outside clumps, which
had also been subjected to starvation plus cAMP, did not show
this inhibition. Thus, within the same preparations the
induction and detection methods used did not interfere with
the ability of EU Click-It to reveal EU labeling of nucleoli. Also,
the clumps themselves and their cellulose envelopes were
unlikely to prevent access to reagents, as all preparations
were PFA-fixed and triton-permeabilized, and as cAMP-
induced clumps of HMX44A cells forming only incomplete
cellulose envelopes also showed inhibition of RNA synthesis
(data not shown). From another point of view, we shall
consider below that clumping caused RNA synthesis inhibi-
tion, although the converse interpretation, that inhibition of
RNA synthesis caused cells to clump, was not formally
excluded. Altogether, initial signal starvation and cAMP led

Figure 3 rRNA synthesis in non-clumped cells and its inhibition in cells in cAMP-induced clumps. (a) rRNA synthesis in starved cells in the absence of cAMP. In all, 24 h-
starved DH1 cells were incubated with EU then fixed, permeabilized, treated with the Alexafluor 488 Click-It reagent, counterstained with DAPI and examined by confocal
microscopy. DAPI (pseudocolor blue) and Alexafluor 488 (pseudocolor yellow) pictures were merged. Nucleoli containing newly synthesized rRNA appeared as white bodies at
the edge of blue nuclei. Two slices 1.5 μm apart were extracted from the confocal Z stack of Supplementary Video 1, either at lower (close to substrate) or higher levels. White dots
in the upper slice, that is, nucleoli containing neo-synthesized rRNA, corresponded to indentations in the DAPI-labeled nuclei in the lower slice. This pattern was found in 17
separate experiments. (b) In a separate experiment, DH1 (left) and DH1.DmtA- cells (right) were starved in the presence of cAMP for 8 h, then without cAMP for a total of 24 h.
They were then processed as above. Isolated cells outside clumps, lying on the substrate thus best visible in the lower level slices, showed nucleoli labeled through RNA
synthesis. Cells in clumps, best visible in the upper level slices, showed no such labeled nucleoli. Upper and lower slices were 10 and 6 μm apart for DH1 cells and DH1.DmtA-
cells, respectively. For DH1 cells, slices were extracted from Supplementary Video 2. This pattern was found for each of a total of about 50 examined clumps in 14 (for DH1) and 3
(for DH1.DmtA-) separate experiments. In this and further experiments, nucleolus negativity of a clump usually means that each confocally visible cell in a clump showed no
stained nucleolus. Scale bars, 10 μm
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in nucleoli of clumped cells, but not of isolated cells, to
inhibition of EU incorporation, likely reflecting inhibition of
rRNA synthesis.
Is inhibition of RNA synthesis irreversible within the duration

of these experiments?We usually checked the absence of EU
labeling in clumped cells at 16 h after the 8-h cAMP incubation
period (Figure 3b). To assess whether this absence was
irreversible, we incubated such cells for a further 72 h in rich
HL5 medium. Cells in clumps did not regain the capability to
incorporate EU (Figure 4, left). Thus, cells in clumps, which at
16 h post-cAMP could not be labeled by EU in contrast to cells
outside clumps, were still not able to be labeled following a
further incubation of 72 h in HL5. This showed that in clumped
cells the rRNA synthesis machinery was irreversibly inhibited
at 16 h post-cAMP, ie at the time of addition of the second
signal or of HL5.
Not only RNA, but, perhaps as a consequence, also DNA

synthesis was irreversibly inhibited in clumped cells. This was
shown by checking EdU incorporation into replicating
DNA.27–29 After 72 h in HL5, DNA synthesis occurred in
isolated cells but not in clumps (Figure 4, right), showing that
cells outside clumps cycled, whereas cells within clumps were
unable to do so. Thus, cells in clumps were also irreversibly
unable to synthesize DNA. Altogether, cells in cAMP-induced
clumps were primed to respond to second signals by
vacuolizing and at the same time seemed already irreversibly
dysfunctional as to both RNA and DNA synthesis.

Cells in cAMP-induced clumps showed depletion of
rRNA stores. We wished to confirm independently the
inhibition of rRNA synthesis by checking remaining rRNA
stores rather than ongoing production of rRNA. We treated
Dictyostelium cells with SytoRNAselect, known to stain

preferentially nucleolar rRNA stores in animal cells (Mole-
cular Probes Handbook). In preliminary experiments, Dic-
tyostelium cells were starved for 24 h in SB, then fixed
and permeabilized as above, stained with SytoRNAselect
500 nM in SB for 2 h and counterstained with DAPI. This
resulted in clearcut labeling of nucleoli (Figure 5a and
Supplementary Video 3), which also showed that starvation
for 24 h did not lead by itself to massive degradation of rRNA.
We then checked rRNA stores in cAMP-induced clumps.

Clump-containing preparations were incubated with SytoR-
NAselect. As for EU incorporation above, isolated cells outside
clumps showed labeled nucleoli, cells within clumps showed
no such labeling, and this was the case for DH1 (Figure 5b, left
and Supplementary Video 4), as well as for DH1.DmtA- cells
(Figure 5b, right). Cells outside clumps, which had also been
subjected to starvation plus cAMP, still showed SytoRNAse-
lect staining. These and previous results strongly suggested
that, while in cells outside cAMP-induced clumps rRNA
nucleolus stores were continuously fed by ongoing rRNA
synthesis, in cells within clumps such stores were depleted
because of inhibition of rRNA synthesis and exhaustion of
previous rRNA stores. They showed, moreover that rRNA
stores in cells within cAMP-induced clumps persisted for
o24 h under these conditions, resulting in their absence at the
time of second signaling.

Cells in cAMP-induced clumps showed ultrastructural
disorganization of nucleoli. In view of the known relation-
ship between rRNA and structure of nucleoli (see Discussion
section), we wondered whether nucleoli would be altered in
Dictyostelium clumped cells showing inhibition of rRNA
synthesis. DH1.DmtA- cells, either vegetative and washed
in SB, or cAMP-induced 16-h clumps enriched by filtration,

Figure 4 Irreversible inhibition of rRNA and DNA synthesis in cAMP-induced clumps after a further 72- h incubation in rich medium. DH1 cells were starved in the presence of
cAMP for 8 h, then without cAMP for 16 h. The resulting clumps were filter-enriched (to avoid subsequent overgrowth in rich medium of too many isolated cells) and incubated for
72 h in rich HL5 medium. DH1 cells incubated with HL5 after the initial signal showed much less of the background vacuolization seen in SB because of some DIF-1 endogenous
production by these cells. Similar results were obtained with DH1.DmtA- cells that did not produce DIF-1. EU incorporation assessed rRNA synthesis (left) and EdU incorporation
assessed DNA synthesis (right). Isolated cells outside clumps, lying on the substrate thus best visible in the lower level slices, showed labeled nucleoli (left) or nuclei (right). Cells
in clumps showed no such labeling. Upper and lower level slices were 10 and 5 μm apart for the left and right panels, respectively. Similar results were obtained in two
independent experiments. Scale bar, 10 μm
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were processed for electron microscopy. Vegetative cells
showed prominent electron-dense nucleoli (Figure 6a). Cells
in cAMP-induced clumps showed barely visible nucleoli
(Figure 6b) and no other gross morphological lesions except
for the autophagosomes expected in these starving cells.
Altogether, and very likely in line with rRNA synthesis
inhibition, cAMP-induced clumped cells showed disorganiza-
tion of their nucleoli.

Discussion

Our current understanding of cell death events in Dictyoste-
lium, including the expanded consequences of initial signaling
described in this report, is schematized in Figure 7. The initial
signal (starvation and cAMP) induced clumps where cells
were not only primed for second-signaled vacuolization, but
also, most importantly, were already severely dysfunctional.
Indeed, upon initial signaling, nucleoli were disorganized and
rRNA and DNA synthesis were irreversibly inhibited. In the
absence of second signal, these clumped and dysfunctional
cells did not show immediate loss of membrane integrity (data
not shown). Upon second signaling, these very same cells
acquired cell death hallmarks such as vacuoles and cellulose
encasings. They must end up dying in the process, but we are
unable to decide when, in particular because of a lack of

unambiguous definition of the moment of cell death. For this
reason, we do not know whether the second signal only
induces cell death hallmarks or also contributes to death,
through these hallmarks or otherwise.
We found clearcut differences between cells within and

outside cAMP-induced clumps in terms of rRNA synthesis.
The proportion of cells within and outside clumps (or in similar
developmental situations) may therefore affect the results of
some transcriptomic analyses. Still, in spite of some possible
averaging and of markedly different experimental situations, in
line with the present results such analyses showed down-
regulation of transcription early upon development for genes
related to ribosome biogenesis.30 Similarly, the rate of rRNA
synthesis during Dictyostelium development (however, again
averaging all cell types) was previously found to be o15% of
that of growing cells.31 From another point of view, in initial
signal-induced clumps there was synthesis of periclump
cellulose envelopes and upon second signaling of pericellular
cellulose shells, implying the presence and activity of the
inducible Dictyostelium cellulose synthase,3 indicating that in
clumped cells RNA synthesis was not completely inhibited or
that these events were post-transcriptionally controlled.
In the present report, three different approaches, namely

studies of rRNA synthesis by EUClick It tests, of rRNA storage
by SytoRNAselect staining and of nucleolar morphology by

Figure 5 rRNA stores in non-clumped cells and their depletion in cells in cAMP-induced clumps. (a) rRNA stores in starved cells in the absence of cAMP. In all, 24 h-starved
DH1 cells were fixed, permeabilized, stained with SytoRNAselect and counterstained with DAPI. DAPI (pseudocolor blue) and SytoRNAselect (pseudocolor yellow) pictures were
merged. Nucleoli containing rRNA stores appeared as white bodies at the edge of blue nuclei. Lower (close to substrate) and upper slices, 2.5 μm apart, were extracted from
Supplementary Video 3. In a total of 10 such experiments, each of about 50 examined cells showed a labeled nucleolus. (b) In a separate experiment, DH1 (left) and DH1.DmtA-
cells (right) were starved in the presence of cAMP for 8 h, then without cAMP for a total of 24 h. They were then processed as above. Isolated cells outside clumps, lying on the
substrate thus best visible in the lower level slices, showed nucleoli labeled through their rRNA stores. Cells in clumps, best visible in the upper level slices, showed no such
labeled nucleoli. Upper and lower slices were 9 and 10 μm apart for DH1 cells and DH1.DmtA- cells, respectively. For DH1 cells, slices were extracted from Supplementary
Video 4. The same results were obtained for about 50 examined clumps in a total of 7 (for DH1) and 4 (for DH1.DmtA-) separate experiments. Scale bars, 10 μm
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electron microscopy, showed in cAMP-induced clumped cells
consistent inhibition of rRNA synthesis, depletion of rRNA
stores and nucleolar disorganization. These events seemed
causally related. The initial signal led to clumping and
inhibition of rRNA synthesis, which led to depletion of rRNA
stores and led to nucleolar disorganization as discussed more
in detail below. rRNA-related changes in the structure of
nucleoli likely reflected their status as rRNA-dependent
‘droplet organelles’.32,33 In experiments not shown, we
investigated whether, for priming, inhibition of RNA synthesis
(and subsequent rRNA store depletion and nucleolus dis-
organization) could replace the initial signal. Starving vegeta-
tive cells were subjected to actinomycin D. In some
experiments, clump supernate was also added. Even then,
subsequent addition of DIF-1 and/or c-di-GMP led to no
vacuolization, showing that RNA synthesis inhibition, even
together with starvation and clump supernate, was not
sufficient for priming. We do not know which soluble
substances acting at short distance and/or cell contacts may
(also) be required for priming in cAMP-induced clumps.

To our knowledge, there is only one report of alterations of
nucleoli in Dictyostelium cell death, induced by exocytotic
vesicles purified from starved Dictyostelium cells.34 A relation-
ship between rRNA synthesis, assembly of ribosomes
and nucleoli was observed in Dictyostelium cells22,23,35

where nucleolar subcompartments could be evidenced.26

Changes in the structure of nucleoli were described upon
development24,25,36 and upon actinomycin D-induced inhibi-
tion of RNA synthesis.22,24,35

In animal cells, synthesis of rRNA and pre-assembly of
ribosomes were shown to take place in nucleoli (reviewed in
Pederson37), and inhibition of rRNA synthesis by actinomycin
D38–43 or CX-5461 (refs 44–47) led to nucleolar disorganiza-
tion and, interestingly, eventually apoptosis.
More specifically in mammalian cells, the nucleolus was

identified as a sensor of stress and an executor of resulting
lesions.48–52 Stress activated JNK, leading to inactivation of
the TIF-1A transcription factor,53 which normally regulated the
activity of RNA polymerase 1 toward transcribing rRNA.
Inactivation of TIF-1A thus led to inhibition of rRNA synthesis
and consequently to nucleolar disorganization. In turn,
nucleolar disorganization resulted in loss of sequestration in
nucleoli of ribosomal proteins, which were released in the
cytosol, formed complexes with MDM2 and thus prevented it
from ubiquitinylating p53. The latter could then induce
apoptosis.54–60 Interestingly, nucleolar stress and its conse-
quences could also occur in cells lacking MDM2 or p53.61 Of
note, JNK could be activated not only by stress, but also by
BMP signaling, which was required for interdigital62,63 and
other instances of developmental cell death (Pachori et al.64

and references therein).
RNA synthesis inhibition and nucleolar alterations were

indeed noted in early apoptosis papers. For instance, in rat
thymocytes treated with glucocorticoids, early in apoptosis
‘nucleolar constituents underwent segregation and dispersal’ 65

and there waso5% of the rate of incorporation of uridine seen
in control cells.66 While in Dictyostelium cell death nucleolar
disorganization occurred in the absence of early DNA
fragmentation9 and of caspases,67,68 nucleolar changes upon
apoptosis have been attributed to cleavage of DNA by
endonucleases65 or to caspase-dependent proteolysis.69

Altogether, diverse instances of animal cell death including
developmental apoptosis included nucleolar disorganization.
The results reported here on early nucleolar disorganization

in non-apoptotic developmental cell death in a protist and
previous similar observations in animal apoptotic cell death
suggested the following hypothesis. In some cases of
eukaryotic cell death a first, early stage would encompass
nucleolar disorganization and priming. This stage may show a
degree of conservation between some types of cell death
throughout eukaryotes, and may thus be in line with ubiquity of
cell death. A second stage, triggered by an exogenous second
signal in Dictyostelium but also perhaps in other eukaryotes
could follow less conserved mechanisms, show aspects
dependent on local mechanical constraints and expression
of, for example, given proteases,70 and thus lead to various
morphological types of cell death. Second signal-induced
pathways and resulting morphological types could thus be
specific to organism. This hypothesis would reconcile, in at
least some instances of eukaryotic developmental cell death,

Figure 6 Nucleoli prominent in vegetative cells were disorganized in cells in
cAMP-induced clumps. (a) Ultrastructural morphology of a representative vegetative
cell in rich medium. Scale bar, 2 μm. The higher magnification shows the nucleus with
its more electron-dense nucleolus. This was the case for each of 10 examined
vegetative cells. G, Golgi; Mi, mitochondria; N, nucleus; nu, nucleolus. Scale bar,
0.5 μm. (b) Ultrastructural morphology of a representative cAMP-induced cell clump.
Scale bar, 5 μm. The higher magnification shows the nucleus of one cell in the clump,
with no identifiable nucleolus. This was the case for every cell in each of five examined
clumps. Au, probable autophagosomes. Scale bar, 0.5 μm
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conservation of some initial stages of cell death with
polymorphism at later stages.

Materials and Methods
Induction of cell death in monolayers. Dictyostelium cells were DH1
(initially obtained from RH Kessin, Columbia University, New York, NY, USA) unless
stated otherwise. DH1 cells mutated for the cellulose synthase DcsA (DH1.DcsA-)
(this report) or the methyltransferase DmtA (DH1.DmtA-)11 were also used.
Vegetative cells were collected in log phase from cells grown in Falcon flasks in HL5
culture medium, washed twice in phophate-buffered saline (Sörensen buffer, SB),
resuspended in SB containing 3 mM cAMP (Sigma Aldrich, St Louis, MO, USA
A6885), and distributed at 3–6 x10e5 cells in 1 ml of SB plus cAMP per chamber of
2-chamber-LabTek slides (155380, Nalge Nunc, Penfield, NY, USA). Cells were
incubated for 8 h at 22 °C, then the liquid was carefully removed by aspiration
followed by one wash with 1 ml of SB per chamber, which was replaced with 1 ml of
SB containing either no inducer when only initial signal effects were investigated, or,
as second signals, 100 nM DIF-1 (DN1000, Affiniti Research Products, Exeter, UK)
or more often here and 10 μM c-di-GMP sodium salt (C 057-01; Biolog, Bremen,
Germany) or a mixture of 10 nM DIF-1 and 10 mM c-di-GMP.11 Further incubation
at 22 °C was usually for 16 h. The cells were thus kept under starvation for a total of
24 h, namely 8 h with cAMP plus 16 h without cAMP in SB only or in the presence
of inducers. In some case, detailed in the main text, incubation proceeded for longer
times. Cells were directly examined by phase contrast or labeled as indicated below.

Imaging RNA synthesis. We used the Click-It RNA Imaging kit (C10329,
Molecular Probes Invitrogen, Eugene, OR, USA), following the provider's protocol
with some modifications. Per Labtek chamber, cells starved for 24 h with or without
cAMP for 8 h were incubated with EU (final 3 mM for 2 h, unless stated otherwise),
then fixed with PFA (final 1%) removed after 15 min, permeabilized with triton (final
0.5% for 20 min), then treated with the Alexafluor 488 Click-It reagent, rinsed once
with SB and counterstained with DAPI 0.1 μg/ml in SB for 10 min. No wash was
required.

Imaging RNA stores. We used the SYTO RNASelect Green Fluorescent Cell
Stain (S32703, Molecular Probes Invitrogen), following the provider's protocol with
some modifications. Per Labtek chamber, cells starved for 24 h including or not
cAMP for 8 h were fixed with PFA and permeabilized with triton as above. Then
triton was discarded, cells were incubated with SytoRNAselect (200 nM in SB, for
2 h, protected from light), rinsed once with SB and counterstained with DAPI
as above.

Clump enrichment by filtration. Clump formation (SB plus cAMP for 8 h,
then SB only for the following 16 h) was obtained by incubating 107 cells/10 ml SB
in Petri dishes not treated for tissue culture (Greiner Bio-One, Kremsmunster,
Austria, ref 633185). The resulting 10 ml suspension containing cells and cell
clumps was then filtered on a pluriStrainer 20 μm (pluriSelect Life Science, Leipzig,
Germany) filter prewashed with 2 ml SB. The filter was then inverted, and the
retained clumps were eluted with 10 ml SB or HL5. The suspension was either
distributed in LabTeks (1 ml per chamber) for long-term reversibility experiments or
processed for electron microscopy.

Imaging DNA synthesis. The Click-It Edu Plus Fluor 488 kit from Molecular
Probes/Life Technologies (Eugene, OR, USA) (ref C10637) was used according to
the provider's protocol, slightly modified as follows. Suspensions of filtration-
enriched clumps were distributed in LabTek chambers and were left to sediment for
at least 1 h. In each LabTek chamber, the supernate was replaced by 1 ml HL5
containing EdU Plus 500 μM final. This was in line with the relatively high
concentrations of BUdR previously used in Dictyostelium.71,72 Lower concentrations
of EdU led to much weaker labeling. Then incubation proceeded for 72 h. In each
LabTek chamber, a volume of 400 μl of PFA 4% in SB was then added. After
15 min, PFA was removed and replaced by 1 ml of Triton 0.5% in SB for 20 min,
replaced by 1 ml of BSA 2% in SB for 15 min, replaced by 0.5 ml of freshly
prepared Click IT mix for 30 min protected from light. After one wash in SB, DAPI
0.1 μg final in 1 ml of SB was added. Examination by fluorescence microscopy
could take place either immediately or better after one day (which led to less
background).

Figure 7 A schematic representation of Dictyostelium cell death. As detailed in the present article, most subcellular cell death events took place in enveloped clumps (here
shown as a yellow area limited by a red dotted line). Such clumps were induced by the initial signal starvation/cAMP. In clumps, further events, in particular those indicated in pink
boxes with red letters, ultimately led both to priming to second signal and to commitment to die. The second signal DIF-1 or c-di-GMP induced cell death hallmarks, such as
vacuolization and cellulose encasings, indicated in beige boxes with black letters. Random insertional mutagenesis and targeted mutagenesis have identified a number of genes,
here shown in green letters, encoding molecules required for inducing this cell death or its hallmarks.12 These genes in turn helped defined pathways, such as a polysaccharide
pathway (right), and the pathways triggered by the initial and the second signals mentioned above (left)
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Imaging cellulose. Cellulose staining was with calcofluor (as fluorescent
brightener 28, Sigma F3543). This powder was dissolved in water (1% weight/
volume). This stock solution was further diluted 1 : 10 in water, of which a volume of
10 μl was added to 1 ml of SB per LabTek chamber (thus final concentration
1/1000). No wash was required and observation was after 5–10 min.

Microscopy. Cells were examined and photographed through the glass bottom
of LabTek chambers, either by phase contrast microscopy (Axiovert 200 M Carl
Zeiss, Oberkochen, Germany; x100 oil immersion) or by confocal microscopy (Leica
SP5, Wetzlar, Germany; x63 oil immersion). Fluorochromes were Alexafluor 488
(excitation 488 nm, emission 525 nm) and SYTO RNAselect (excitation 490 nm,
emission 530 nm). Confocal Z-stacks were usually started from the glass substrate
upward, thus taking isolated cells first and then clumped cells. Control reverse
Z-stacks gave the same results, showing that there were no position/fading
misleading effects. Confocal videos and other images were processed with Fiji
(Image J, NIH, Bethesda, MD, USA) and Graphic Converter. DAPI (pseudocolor
blue) and Alexafluor 488 or SYTO RNAselect (pseudocolor yellow) pictures were
merged. Nucleoli containing newly synthesized rRNA or rRNA stores appeared as
white bodies at the edge of blue nuclei. Figures were assembled using Illustrator.

Transmission electron microscopy. Cells or cell clumps were prefixed by
adding an equal volume of fixative (2% glutaraldehyde in Hepes buffer 200 mM, pH
7.2) to the medium. After 20 min, the medium was replaced by 1% glutaraldehyde in
Hepes for at least 1 h at 4 °C. Cells were then washed in Hepes, concentrated in 2%
agarose (LMPAgarose, Sigma A9414), washed again in Hepes and postfixed in 1%
osmium tetroxide (Electron Microscopy Sciences, Hatfield, PA, USA 19150) for 1 h
at 4 °C. Samples were washed again in distilled water, treated with 1% uranyl acetate
(EMS 22400) for 1 h at 4 °C in the dark, dehydrated in a graded series of acetone
and embedded in Epon resin (EMS). Ultrathin sections (60–90 nm) were cut, stained
with uranyl acetate and lead citrate and were analyzed using a Tecnai 200 KV
(operated at 120 KV) electron microscope (FEI Tecnai, Hillsboro, OR, USA).

Preparation of DH1.DcsA- cells by targeted mutagenesis. Tar-
geted mutagenesis of the cellulose synthase DcsA gene3 in DH1 cells was by
homologous recombination, by deletion from nt677 to nt2576 in the DcsA gene. The
targeting vector was constructed as follows. A DcsA DNA fragment made of a 5′
arm (nt2-nt677) and a 3′ arm (nt2576-nt3099) PCR-amplified from gDNA and
ligated by PCR, was cloned into the pGEM-T Easy Vector (Promega, Madison, WI,
USA). A bsR cassette was inserted in the BamHI site between the two DcsA arms.
These constructs were validated by digestions and sequencing. DH1 Dictyostelium
cells were transfected by electroporation (1 kV; 3 μF using a Bio-Rad gene pulser,
Hercules, CA, USA) with the DcsA construct after digestion by MscI and HhaI. Cells
were selected for resistance to 10 μg/ml blasticidin, and then cloned by limiting
dilution. Homologous recombinaison was checked by PCR and verified by Southern
blot. STOP codons at the 5′ end of the bsR cassette should ensure a maximum
length of 225 aa for the DcsA mutant protein. Primers were: DcsA-Arm5′- S: 5′-
GGATAGAAATGAAGGGGGTGATTTCCC-3′; DcsA-Arm5′-AS: 5′-GGATCCGTTT
CAGAATCTTCTTTGGCGAC-3′; DcsA-Arm3′-S: 5′-GGATCCGGGTAGAAGCTACT
GATCTTTGGAGAGC-3′; DcsA-Arm3′-AS: 5′-GTGAGCATGGTATGAAGAAGCATA
TGGCCATTG-3′.
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