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Abstract: Aiming at the problem that it is difficult to extract fault features from the nonlinear and
non-stationary vibration signals of wind turbine rolling bearings, which leads to the low diagnosis
and recognition rate, a feature extraction method based on multi-island genetic algorithm (MIGA)
improved variational mode decomposition (VMD) and multi-features is proposed. The decomposition
effect of the VMD method is limited by the number of decompositions and the selection of penalty
factors. This paper uses MIGA to optimize the parameters. The improved VMD method is used
to decompose the vibration signal into a number of intrinsic mode functions (IMF), and a group of
components containing the most information is selected through the Holder coefficient. For these
components, multi-features based on Renyi entropy feature, singular value feature, and Hjorth
parameter feature are extracted as the final feature vector, which is input to the classifier to realize the
fault diagnosis of rolling bearing. The experimental results prove that the proposed method can more
effectively extract the fault characteristics of rolling bearings. The fault diagnosis model based on this
method can accurately identify bearing signals of 16 different fault types, severity, and damage points.

Keywords: rolling bearing; fault diagnosis; variational mode decomposition; multi-island genetic
algorithm; multi-features

1. Introduction

The failure of the rolling bearing of the wind turbine is one of the important factors affecting the
normal operation of the wind turbine, so it is very important to diagnose the running state of the rolling
bearing in time in actual production [1]. When the bearing fails, the vibration signal characteristics
will also change accordingly. If the signal characteristics of each state can be extracted, the bearing
fault diagnosis can be carried out.

Empirical mode decomposition (EMD) has been widely used in mechanical fault diagnosis as
an adaptive signal decomposition method [2]. Wang et al. [3] use empirical mode decomposition to
decompose the vibration signal into a finite number of eigenmode functions and a residual function,
extracts the main eigenmode function energy and its local average frequency characteristics, and finally
uses the composite eigenvector as the input of the principal component analysis classifier completes
the identification of the fault. Zhou et al. [4] combined EMD and singular value decomposition (SVD)
to extract bearing fault feature vectors, and used fuzzy c-means (FCM) clustering to identify rolling
bearing fault types. Through the above methods, the importance of EMD in bearing fault diagnosis is
proved. Although EMD can extract the features of mechanical vibration signals, the extracted signal
features are not accurate enough due to the shortcomings of the EMD method such as modal aliasing.
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In order to overcome these shortcomings of EMD, Wu et al. [5] presented a new ensemble empirical
mode decomposition (EEMD) method, applying a noise-assisted data analysis method to improve
the original EMD. Li et al. [6] used the local mean decomposition (LMD) method to decompose the
bearing vibration signal and then performed subsequent bearing fault diagnosis. In addition, there are
other methods, such as CEEMD, etc., but the above-mentioned improved method only suppresses
modal aliasing and is far from completely eliminated.

In 2014, Dragomiretskiy et al. [7] proposed a new adaptive signal processing method, VMD. As a
new adaptive signal processing method, VMD method introduces the variational model to transform
the signal decomposition into the optimization problem of the optimal solution of the constraint
model, which can avoid the end effect, restrain the mode confusion, and has high decomposition
efficiency [8]. Liu et al. [9] proposed a feature extraction method based on VMD and SVD, using
standard FCM clustering for fault identification. Ding et al. [10] proposed a rolling bearing fault
diagnosis method combining VMD decomposition and t-SNE manifold learning. It uses the VMD
method to decompose the original vibration signal of the rolling bearing into several IMFs, then
calculates the time-frequency characteristics of each modal component to form high-dimensional fault
features and uses t-SNE to extract secondary features of the fault to obtain low-dimensional sensitive
features. Finally, the low-dimensional sensitive features are used as the input of the K-means classifier
to realize the identification of fault types. However, in the above studies, when using the VMD method
to decompose bearing vibration signals, the selection of the number of decompositions and the penalty
parameters are based on experience rather than a reasonable basis. In order to solve this problem
reasonably, this paper takes the local minimum envelope entropy of the modal component as the
objective function and uses MIGA algorithm to search for the optimal parameter combination of VMD.
On this basis, a VMD method based on MIGA algorithm is proposed, which can extract accurate fault
characteristic information from fault signals.

With the development of artificial intelligence, bearing fault diagnosis is increasingly treated as a
category of pattern recognition. Its effectiveness and reliability largely depend on the choice of feature
vector. Dou et al. [11] decomposed the bearing vibration signal into a set of IMFs through EEMD,
and calculated the Renyi entropy of each IMF component as the fault feature vector. Li et al. [12] use
the EEMD method to adaptively decompose the bearing vibration signal into multiple eigenmode
function components. Then six eigenmode function components are selected according to the kurtosis
criterion, and the matrix formed by them is subjected to singular value decomposition to obtain the
fault feature vector. Zhou et al. [13] performed EMD decomposition on the original vibration signal to
obtain representative IMFs, and calculated the Hjorth parameter as the fault feature vector. Therefore,
this paper takes the multi-features based on Renyi entropy feature, singular value feature, and Hjorth
parameter feature as the fault feature vector of rolling bearing vibration signal.

Based on this, this paper takes rolling bearing vibration signals as the research object, and
innovatively proposes a feature extraction method based on MIGA-VMD decomposition and
multi-features. The experimental results show that this method can effectively improve the accuracy of
fault diagnosis of rolling bearings.

The remainder of this paper is organized as follows: Section 2 introduces the decomposition
principle of the VMD method. Section 3 uses the multi-island genetic algorithm to optimize parameters
and obtain the optimal parameter combination. Section 4 provides a brief introduction to the Holder
coefficient. Section 5 provides an overview of multi-features. Section 6 elaborates the fault diagnosis
steps of rolling bearing based on MIGA-VMD decomposition and multi-features and conducts
simulation experiments in Section 7. Section 8 provides the conclusion of the article.

2. Brief Introduction of VMD

The process of variational modal decomposition is essentially the process of constructing variational
problems and solving variational problems [9]. This section introduces the VMD method from the two
aspects of construction and decomposition.
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2.1. Construction of the Variational Problem

The VMD algorithm redefines the decomposed IMF component as an AM-FM signal. Assuming
that the original signal is decomposed into K IMF components, the expression of the kth IMF
component is

uk(t) = Ak(t) cos[φk(t)], (1)

where k is the integer between 1∼K, φk(t) is a non-decreasing phase function; Ak(t) represents the
envelope function.

First, for each IMF component, use the Hilbert transform to find its analytic signal to obtain a
unilateral spectrum, and the spectrum expression is[

δ(t) +
j
πt

]
∗ uk(t) (2)

Secondly, according to the estimated center frequency of the hybrid, modulate the spectrum to the
corresponding base frequency band, which is recorded as[(

δ(t) +
j
πt

)
∗ uk(t)

]
∗ e− jωkt (3)

Finally, calculate the square of the L2 norm of the time gradient of the demodulated signal,
estimate the bandwidth of the modal component, and introduce constraints to construct a constrained
variational model, which can be expressed as

min
{uk},{ωk}

 K∑
k=1

∥∥∥∥∥∥∂(t)[(δ(t) + j
πt

)
∗ uk(t)

]
∗ e− jωkt

∥∥∥∥∥∥2

2


s.t.

K∑
k=1

uk = x

, (4)

where {uk} represents the K IMF components obtained by VMD decomposition; {ωk} represents the
center frequency corresponding to the IMF component; δ(t) is the Dirichlet function; ∗ is the convolution
operation; x represents the original signal.

2.2. Solving the Variational Problem

The penalty parameter α and the Lagrangian multiplication coefficient λ(t) are introduced to
change the constrained variational problem into an unconstrained variational problem. Among them,
the secondary penalty factor can ensure the accuracy of signal reconstruction in the presence of
Gaussian noise, and the Lagrangian coefficient keeps the constraint conditions strict. The augmented
Lagrangian function is

L({uk}, {ωk},λ) =〈
λ(t), x(t) −

∑
k

uk(t)
〉
+∥∥∥∥∥∥x(t) −

∑
k

uk(t)

∥∥∥∥∥∥2

2
+α

∑
k

∥∥∥∥∥∥∂t
(
σ(t) + j

πt

)
uk(t)e− jωkt

∥∥∥∥∥∥2

2

(5)

Then use the alternating direction multiplier method (ADMM) to solve the extremum of the above
equation to obtain the frequency domain expression of the IMF component as

ûn+1
k (ω) =

x̂(ω) −
K∑

i=1,i,k
ûi(ω) +

λ̂(ω)
2

1 + 2α(ω−ωk)
2 , (6)
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where ûn+1
k (ω) represents the Wiener filter of the current remaining amount x̂(ω) −

∑k
i=1,i,k ûi(ω).

Inverse Fourier transform is performed on the Wiener filter, and the real part obtained is the time
domain signal uk(t). Converting the center frequency problem to the frequency domain, the update
formula of the center frequency ωn+1

k is obtained as

ωn+1
k =

∫
∞

0 ω
∣∣∣ûk(ω)

∣∣∣2dω∫
∞

0

∣∣∣ûk(ω)
∣∣∣2dω

, (7)

where ωn+1
k represents the center of gravity of the current IMF component power spectrum. The

update formula of λn+1 is

λn+1 = λn + τ

x−
∑

k

un+1
k

 (8)

Through the above analysis, the algorithm flow of VMD is as follows:
Step 1: Initialize

{
u1

k

}
,
{
ω1

k

}
, λ1

k , and n;
Step 2: Update uk and ωk according to Equations (6) and (7);
Step 3: Update λ according to Equation (8);
Step 4: Set a judgment accuracy e > 0, if

∑
k ‖û

n+1
k − ûn

k ‖
2
2/‖ûn

k ‖
2
2 < e, stop the iteration, otherwise

return to step 2.

3. Parameter Optimization Based on Multi-Island Genetic Algorithm

In the VMD decomposition process, the number of decomposed IMF components K and the
penalty parameter α have a greater impact on the decomposition result. If the K value is too large,
false components will be generated in the decomposition results, which will mislead the judgment of
the experimental results; if the K value is small, modal aliasing will occur. If the penalty parameter α is
smaller, the bandwidth of each IMF component after decomposition is smaller. On the contrary, if the
penalty parameter α is larger, the bandwidth of each IMF component after decomposition is larger.
Except for K and α, other parameters have little influence on the decomposition effect and are set as
empirical values, namely tau = 0, init = 1, DC = 0, ε = 1e− 7. Therefore, before performing VMD
decomposition on the signal, appropriate K and α need to be selected.

In the process of optimizing VMD parameters, particle swarm optimization (PSO) algorithm and
frog jumping algorithm are used to optimize VMD parameters [14]. However, the PSO algorithm is easy
to fall into the local optimum and the search path is more complicated. The convergence speed of the
frog jumping algorithm is slow, and it may fall into a local optimal value. These two algorithms can only
determine the number of modal components and the calculation process is also more complicated [15].
The concept of genetic algorithm was first put forward by Holland of the University of Michigan in
1975, imitating the law of “survival of the fittest” in nature to carry out the optimization process [13].
In the parameter optimization process, the genetic algorithm is used to optimize the parameters of
VMD. It obtains parameter optimization solutions through iterative operations such as chromosome
selection, crossover, mutation, etc. This algorithm has the characteristics of implicit parallel search and
has a strong global search ability in the process of solving, but the genetic algorithm is easy to converge
prematurely and fall into local optimum. To solve the problem of premature convergence and local
optimal solution that often occurs with genetic algorithm, some scholars have proposed a multi-island
genetic algorithm. The multi-island genetic algorithm uses the operators and selection principles
of the genetic algorithm repeatedly and appropriately, from parents to offspring, from offspring to
grandchildren, continue to reproduce, so that the adaptability of the population to the environment
continues to improve. In this paper, multi-island genetic algorithm is used for parameter optimization
to obtain the optimal parameter combination.

Table 1 lists the specific steps of the multi-island genetic algorithm.
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Table 1. Algorithm table for multi-island genetic algorithm.

Algorithm: multi-island genetic algorithm

Step1: Initialize population P0.
Step2: The initial population P0 is divided into multiple “islands”, namely subpopulations.
Step3: Calculate the fitness value of each individual on each “island”.
Step4: The selection, crossover, and mutation operations in the standard genetic algorithm are performed on
each island.
Step5: If the migration conditions are met, then migrate from one island to another.
Step6: If the current number of iterations n is less than the maximum number of iterations MaxGen,
then proceed to Step3, otherwise proceed to Step7.
Step7: The individual with the best fitness value in the output population is the optimal solution.

The parameter design of the multi-island genetic algorithm is as follows: the initial population is
divided into 10 islands, the population number of each island is set to 10, and the number of optimized
generations is set to 10, so the calculated number of individuals is 1000. The mutation probability is set
to 0.01, the crossover probability is set to 1, the migration probability is set to 0.01, and the number of
elite individuals is set to 1.

In order to verify the feasibility of multi-island genetic algorithm, it is compared with genetic
algorithm. According to the characteristics of the fault vibration signal of rolling bearing, a simulation
signal y(u) is constructed. The expression of the simulated signal is given in Formula (9).

y(u) = −5sinu1sinu2sinu3sinu4sinu5 − sin5u1sin5u2sin5u3sin5u4sin5u5 + 8 (9)

In this simulation experiment, expression (9) is regarded as the fitness function of genetic
algorithm and multi-island genetic algorithm. For genetic algorithms, the number of iterations is 30,
the population size is 100, the crossover probability is 1, and the mutation probability is 0.01. For
the multi-island genetic algorithm, the initial population is divided into 10 islands, the population
number of each island is set to 10, the number of iterations is 30, the crossover probability is 1, the
mutation probability is 0.01, the migration probability is 0.01, and the number of elite individuals is 1.
The iterative curve of the optimization process is shown in Figures 1 and 2.
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Figure 1. Iterative curve of the optimization process of genetic algorithm.
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From the results of Figures 1 and 2, it can be seen that the genetic algorithm is stuck in premature
convergence and the convergence speed is gradually reduced. After the completion of 30 iterations,
the obtained result still has a large deviation from the optimal value. Under the same population size,
the multi-island genetic algorithm obtains the approximate optimal solution in the 10th iteration. Its
convergence speed is faster, the obtained optimal value is closer to the theoretical optimal value, and
the accuracy of parameter optimization is better than that of traditional genetic algorithm. The result
shows that the multi-island genetic algorithm has a faster convergence speed and stronger global
optimization ability.

When using multi-island genetic algorithm for parameter optimization, a fitness function needs
to be selected. Reference [16] proposed the concept of envelope entropy Ep. After the fault signal
is decomposed by VMD, the envelope entropy Ep of the IMF component can reflect the sparsity of
the component. If the IMF component contains more noise after decomposition, thereby concealing
the impact characteristics of the fault, the sparsity of the IMF component is weaker and the envelope
entropy is larger; on the contrary, if the IMF component contains more regular fault impacts, then
the IMF component has strong sparsity, and the envelope entropy is small. Under the influence of
the parameter combination K and α, K components will have K envelope entropy values, and the
smallest one of the K envelope entropy values is selected as the local minimum envelope entropy
minEp. The component corresponding to the minimum entropy value has abundant fault characteristic
information [7]. Taking the local minimum entropy as the fitness function in the multi-island genetic
algorithm, the entire search process is to find the optimal parameter combination [K,α] corresponding
to the global minimum envelope entropy. Therefore, construct the following fitness function

minF = minEp, (10)

the expression of envelope entropy Ep is
Ep = −

N∑
j=1

e jlge j

ei = a( j)/
N∑

j=1
a( j)

, (11)

where j = 1, 2, 3, . . . , N, a( j) is the envelope signal obtained by Hilbert demodulation of x( j),
e j is obtained by normalizing a( j), and Ep is obtained according to the calculation rules of
information entropy.
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In order to verify the effectiveness of the local envelope entropy as a fitness function, a simulation
signal of the rolling bearing is constructed. Its expression is

c(t) = y0e−2π fnξt sin
(
2π fn

√
1− ξ2t

)
+ n(t), (12)

where c(t) represents the noise-added rolling bearing simulation signal, y0 is the displacement constant,
fn is the natural frequency of the rolling bearing, ξ is the damping coefficient, n(t) is the Gaussian
white noise tending to the real noise, t is the sampling time, sampling Frequency fs = 20 KHZ, number
of sampling points N = 4096. Here, we set y0 = 3, fn = 3000 HZ, and ξ = 0.09.

Figure 3 shows the waveforms of the simulation signal under the conditions of no noise, noise
intensity = 1, noise intensity = 3, and noise intensity = 5, respectively. By comparing the four pictures,
we can see that the periodic pulses in the simulation signal are completely covered by strong noise.
There is a positive proportional relationship between the intensity of noise and envelope entropy: as
the noise becomes stronger, the periodic pulse becomes blurred and the envelope entropy increases;
with the weakening of noise, the periodic pulse becomes prominent and the envelope entropy becomes
smaller. This also proves the law that the greater the sparsity of the signal, the smaller the envelope
entropy. Therefore, the modal component with minimum envelope entropy can be identified as the
optimal component.
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4. Holder Coefficient

The Holder coefficient can be used to analyze the correlation between two discrete signals.
The Holder coefficient algorithm evolves from the Holder inequality [17,18]. The definition of the
Holder inequality can be described as [19].

For any vector X = [x1, x2, · · · , xN]
T and Y = [y1, y2, · · · , yN]

T, they satisfy:

N∑
i=1

∣∣∣xi · yi
∣∣∣ ≤  N∑

i=1

|xi|
p


1/p

·

 N∑
i=1

∣∣∣yi
∣∣∣q

1/q

, (13)

where 1/p + 1/q = 1 and p, q > 1.
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Based on the Holder inequality, for two discrete signal x(t) = [x1, x2, · · · , xN] and y(t) =

[y1, y2, · · · , yN], the Holder coefficient of these two discrete signal is given by

Hc =

∑N
i=1 xiyi(∑N

i=1 xp
)1/p
·

(∑N
i=1 yq

)1/q
, (14)

where 1/p + 1/q = 1 and p, q > 1; 0 ≤ Hc ≤ 1.
The greater the value of Holder coefficient, the greater the correlation between the two discrete

signals. In this paper, the partial IMF components which are closely related to the original signal are
selected by calculating the Holder coefficients of each IMF component and the original signal.

5. Multi-Features

In order to meet the requirements of accurate diagnosis of rolling bearing fault types,
a multi-features feature extraction method based on Renyi entropy feature, singular value feature
and Hjorth parameter feature is proposed to extract the health state feature vector from the bearing
vibration signal.

5.1. Renyi Entropy Feature

For a discrete random variable X = {xk | k = 1, 2, · · · , n}, Renyi entropy is defined as

Rα(X) =
1

1− α

n∑
i=1

log pαk , (15)

where α represents the order of Renyi entropy; pk is the probability density of event X = xk.
In information theory, Renyi entropy, like Shannon entropy, is also a method of quantitatively

describing signal information, which can reflect the amount of information and complexity of the
signal. For the diagnosis of mechanical equipment, the different operating states of the equipment
represent different internal mode complexity. The greater the complexity, the greater the Renyi entropy,
especially for some specific faults. Because the fault information is often concentrated in a certain
sensitive frequency band, when a fault occurs, the vibration signal in the sensitive frequency band will
change significantly, that is, the complexity of the frequency band also changes [11]. Because VMD
can be adaptively decomposed into the sum of several IMF components located in different frequency
bands and representing different intrinsic modes according to the characteristics of the signal itself, the
Renyi entropy of each IMF component of the signal under different operating conditions can reflect
the complexity of the frequency band mode to a certain extent, which also provides a basis for the
extraction of fault information feature vectors.

The Renyi entropy feature E =
[
R1, R2, · · · , R j

]
( j = 1, 2, · · · , n) is used as part of the feature vector

of rolling bearing fault identification.

5.2. Singular Value Feature

Singular value decomposition can decompose the matrix containing signal feature information
into different subspaces, and is a feature extraction method that can keep signal features relatively
stable under disturbance and noise. At the same time, its singular value can reflect the inherent
properties of the matrix and its principal component relationship [20].

For any matrix Φ, there are orthogonal (or unitary) matrices U and V, so that equation (16) holds.

Φ= UΣVT or Φ= UΣVH, (16)
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where
∑

=

[ ∑
r 0

0 0

]
, and

∑
r = diag(σ1, σ2, · · · , σr), the diagonal elements are arranged in

descending order (σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0), r is the rank of matrix Φ, σ1, σ2, · · · , σr are the singular values
of matrix Φ.

VMD decomposition not only performs adaptive frequency band information description on the
signal, but also greatly increases the amount of data. Therefore, singular value decomposition can be
used to compress the dimensions of high-dimensional related time series, that is, the singular values
σ1, σ2, · · · , σr are the enrichment of each IMF component information [21].

The singular value feature S = [σ1, σ2, · · · , σr] is used as part of the feature vector of rolling bearing
fault identification.

5.3. Hjorth Parameters Feature

The three parameters proposed by Hjorth are activity, mobility, and complexity [22].

5.3.1. Activity Parameter

The activity parameter represents the signal power and it is defined as the variance of the vibration
signal amplitude. If x(t) = [x1, x2, · · · , xN] is the sampled vibration signal, then the activity parameter
of x(t) is given by

Activity(x(t)) = variance(x(t)) = σ2
x, (17)

where σx is standard deviation of the vibration signal and it is expressed as

σx =

√√√√
1

N − 1

N∑
t=1

[x(t) − µ]

2

, (18)

where µ = 1
N

∑N
t=1

∣∣∣x(t)∣∣∣ is the mean of x(t).

5.3.2. Mobility Parameter

The mobility parameter is defined as the ratio of the square root of variance of the first derivative
of the vibration signal divided by the variance of the vibration signal or as the ratio of the standard
deviation of the first derivative of the vibration signal to the standard deviation of the vibration signal.

For sampled vibration signal x(t) = [x1, x2, · · · , xN], the mobility parameter of x(t) is given by

Mobility(x(t)) =

√
Variance(dx(t)/dt)

Variance(x(t))
=
σx′

σx
, (19)

where σx′ is standard deviation of the first derivative of the vibration signal.

5.3.3. Complexity Parameter

The complexity parameter gives an estimate of the bandwidth of the signal and indicates how
closely the vibration signal resembles a pure sine wave. It is defined as the ratio of mobility of the first
derivative of vibration signal to the mobility of the vibration signal.

For sampled vibration signal x(t) = [x1, x2, · · · , xN], the complexity parameter of x(t) is given by

Complexity(x(t)) =
Mobility(dx(t)/dt)

Mobility(x(t))
=

√√√ σx′′
σx′

σx′
σx

, (20)

where σx′′ is the standard deviation of the second derivative of the vibration signal.
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The Hjorth parameters feature H = [Activity(x(t)), Mobility(x(t)), Complexity(x(t))] is used as
part of the feature vector of rolling bearing fault identification.

In this paper, the extracted feature vectors are composed of multi-features [E, S, H] as the final
feature vector.

6. Fault Diagnosis Model Based on MIGA-VMD and Multi-Features

On the basis of the above theory, the fault diagnosis model based on MIGA-VMD and multi-features
is shown in Figure 4. The specific implementation steps are as follows:

Step 1: Taking the minimum value of the local envelope entropy as the objective function, the
MIGA algorithm is used to search for the optimal parameter combination [K0,α0] of VMD.

Step 2: Use VMD with parameter optimization to decompose the vibration signal in each state,
and obtain K0 IMF components respectively.

Step 3: Analyze the correlation between each IMF component and the original signal by calculating
the Holder coefficient of each IMF component and the original signal.

Step 4: Calculate the Renyi entropy of the six IMF components with greater correlation with
the original signal to form the Renyi entropy feature; combine the six IMF components with greater
correlation with the original signal to form a matrix, and perform singular value decomposition on the
matrix to form singularity Value feature; calculate the Hjorth parameters of the IMF component with
the greatest correlation with the original signal to form the Hjorth parameters feature.

Step 5: The Renyi entropy feature, singular value feature and Hjorth parameters feature are
composed of multi-features as the final feature vector.

Step 6: After the sample feature value is normalized to [0, 1], the feature vector of the training set
is input to the classifier for training to obtain a classification model.

Step 7: Input the feature vector of the test set sample into the trained classification model to realize
fault diagnosis.
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7. Experimental Verification and Result Analysis

7.1. Introduction of Experiment

In order to verify the effectiveness of the proposed method in the fault diagnosis of rolling
bearings, this paper uses rolling bearing data from the Electrical Engineering Laboratory of Case
Western Reserve University. The rolling bearing test system selected SKF deep groove ball bearings
of model 6205-2RSJEM, and the experimental bearings were damaged to varying degrees through
electrical discharge machining. The vibration signal collection frequency was 12 kHz. The fault types
include inner ring fault, outer ring fault and ball fault. The diameter of the fault is 7%�, 14%�, 21%�,
and 28%� respectively. The damage points of the bearing outer ring are at 3 o’clock, 6 o’clock, and 12
o’clock respectively.

When the motor load is 0 hp and the speed is 1797 r/min, the bearing vibration data for analysis is
obtained. The vibration signals of 16 different types of failures, severity and damage points are analyzed.
Fifty groups of vibration signals of each state are selected, including 30 groups of training samples and
20 groups of test samples. Each sample is composed of 2048 time series points. The information of
bearing vibration data is shown in Figure 5.
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7.2. Comparison and Analysis of MIGA-VMD Decomposition Effect

Taking the inner ring fault signal with a fault severity of 7%� as an example, the multi-island
genetic algorithm is used to search for the optimal parameter combination of VMD. The curve of
local envelope entropy changing with the number of iterations is shown in Figure 6. Figure 6 shows
that the minimum local envelope entropy of 4.1716 appeared in the eighth iteration and has been
converging since then, indicating that the optimization algorithm converges fast and has strong global
optimization capabilities, and is suitable for searching for the optimal parameter combination of VMD.
At the minimum value of 4.1716, the corresponding parameter combination [K0,α0] is [10,151]. This
parameter combination is introduced into the parameter settings of the VMD algorithm. Figure 7
shows the time domain waveform and spectrum of 10 IMF components after the inner ring fault signal
with a fault severity of 7 %� is decomposed by VMD.
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Figure 7. Waveform and spectrum of 10 IMF components. (a) Time domain, (b) FFT spectrum.

For the vibration signals of 16 states, the best parameter combination [K0,α0] searched by the
multi-island genetic algorithm is shown in Table 2.
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Table 2. Optimal parameter combination [K0,α0].

Health Status Condition [K0,α0] Health Status Condition [K0,α0]

Normal [12,94] OR_14 [14,510]
IR_7 [10,151] IR_21 [15,2519]
B_7 [14,248] B_21 [14,1246]

OR_7_3 [13,935] OR_21_3 [13,3987]
OR_7_6 [15,3876] OR_21_6 [14,3419]

OR_7_12 [14,921] OR_21_12 [13,1065]
IR_14 [9,3241] IR_28 [15,3968]
B_14 [14,576] B_28 [14,678]

According to the best parameter combination [K0,α0] in Table 2, K and α of the VMD method are
set, and the signal samples are decomposed by the VMD method of parameter optimization.

In order to highlight the ability of the MIGA-VMD method to capture fault features, the fault
signal is decomposed by EMD, EEMD, and MIGA-VMD respectively, and the Teager energy operator
envelope demodulation is performed on the six IMF components that have a greater correlation with
the original signal. Take the inner ring fault signal with a fault severity of 7%� as an example, as shown
in Figure 8, where the inner ring fault frequency is 161.1 Hz.
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Figure 8. Teager energy operator envelope spectrum of six IMF components. (a) EMD, (b) EEMD,
(c) MIGA-VMD.

In Figure 8a, only the first component’s envelope spectrum has a relatively obvious characteristic
frequency peak, indicating that the remaining five IMF components are false components. In Figure 8b,
only the first three components have obvious characteristic frequency peak in the envelope spectrum,
indicating that the remaining three IMF components are false components. In Figure 8c, the characteristic
frequency peak appears in the envelope spectrum of the six components decomposed according to the
method in this paper. In addition, the envelope spectra of the first component in Figure 8a and the first
two components in Figure 8b both contain a large number of noise frequencies, while the envelope
spectrum of the six components in Figure 8c contains few noise frequencies. Based on this, compared
with the EMD and EEMD methods, the envelope spectrum obtained by the MIGA-VMD method has
fewer interference peaks and prominent main characteristic frequency. The MIGA-VMD method can
effectively extract the fault features of bearing fault signals.

7.3. Comparison and Analysis of Feature Extraction

The Holder coefficient is used to analyze the correlation between each IMF component and the
original signal. Calculate the Renyi entropy of the six IMF components that have greater correlation
with the original signal to form the Renyi entropy feature. The six IMF components that have greater
correlation with the original signal are formed into a matrix, and the singular value decomposition is
performed on the matrix to form singular value feature. Calculate the Hjorth parameter of the IMF
component with the greatest correlation with the original signal to form the Hjorth parameter feature.
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Extract the Renyi entropy feature, singular value feature, and Hjorth feature from the normal
signal of the rolling bearing and the fault signal of the inner ring, ball and outer ring under the fault
diameter of 7%�, respectively, and use t-SNE for dimensionality reduction visualization, as shown in
Figure 9a. Extract the Renyi entropy feature, singular value feature, and Hjorth parameter feature
from the inner ring fault signals of different severity, and use t-SNE for dimensionality reduction
visualization, as shown in Figure 9b. The Renyi entropy feature, the singular value feature, and the
Hjorth parameter feature are extracted from the outer ring fault signals of different damage points, and
use t-SNE for dimensionality reduction visualization, as shown in Figure 9c.
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It can be seen from Figure 9a that the Renyi entropy feature and singular value feature extracted
from bearing vibration signals of different fault types have better inter-class separation and intra-class
aggregation than Hjorth parameter feature. It can be seen from Figure 9b that the singular value feature
and Hjorth parameter feature extracted from bearing vibration signals of different severity levels have
better inter-class separation and intra-class aggregation than Renyi entropy feature. It can be seen from
Figure 9c that the Renyi entropy feature and Hjorth parameter feature extracted from bearing vibration
signals at different damage points have better inter-class separation and intra-class aggregation than
singular value feature. As Renyi entropy feature, singular value feature, and Hjorth feature show their
respective advantages and disadvantages when classifying vibration signals of different fault types,
different severity levels and different damage points, the Renyi entropy feature, singular value feature
and Hjorth parameter feature are composed of multi-features as the final feature vector.

In the field of bearing fault diagnosis, methods such as permutation entropy, sample entropy, and
energy entropy are often used to characterize the fault information of bearing signals. In order to prove
the effectiveness and superiority of the multi-features feature extraction method, the MIGA-VMD
method is used to decompose different bearing vibration signals. The permutation entropy feature,
sample entropy feature, energy entropy feature, and multi-features are extracted from three perspectives
of different fault types, different severity levels, and different damage points. The effects of the four
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feature extraction methods are compared through t-SNE dimensionality reduction visualization, such
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It can be seen from Figure 10a that the energy entropy feature and multi-features extracted from
the bearing vibration signals of different fault types have better inter-class separation and intra-class
aggregation effects than permutation entropy feature and sample entropy feature. It can be seen from
Figure 10b that the sample entropy feature and multi-features extracted from bearing vibration signals
of different severity levels have better inter-class separation and intra-class aggregation effects than
permutation entropy feature and energy entropy feature. It can be seen from Figure 10c that the
permutation entropy feature and multi-features extracted from bearing vibration signals at different
damage points have better inter-class separation and intra-class aggregation effects than sample entropy
feature and energy entropy feature. In summary, multi-features have better inter-class separation and
intra-class aggregation effects from three perspectives of different fault types, different severity levels,
and different damage points. Compared with the permutation entropy feature, sample entropy feature,
and energy entropy feature, multi-features can more accurately characterize the fault information of
the bearing signal.

The MIGA-VMD method is used to decompose 16 different bearing vibration signals, multi-features
are extracted and dimensionality reduction visualization is performed through t-SNE, as shown in
Figure 11.
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It can be seen from Figure 11 that after using MIGA-VMD decomposition and multi-features
feature extraction method, the aggregation of 16 types of data features is good, and the feature
distinction is obvious. Multi-features can accurately characterize the fault information of bearing
signals and effectively improve the accuracy of fault recognition.

7.4. Comparison and Analysis of Fault Diagnosis Accuracy

In order to further verify the superiority of MIGA-VMD decomposition and multi-feature feature
extraction methods, the fault classifiers in literature [23–25] are used to diagnose and identify 16
bearing signals. Figures 12–14 and Table 3 shows the fault diagnosis results of the method proposed
in this paper with three classifiers, and compared with three documents. Reference [23] proposed
a fault classification method. Four kinds of bearing vibration signals were decomposed by EMD,
Hjorth parameters were extracted as feature vectors, and a rule-based classifier was used to classify the
vibration signals. The classification accuracy is 93.82%. Reference [24] extracts the statistical features of
seven bearing vibration signals and the energy entropy features of the IMF components after EMD
decomposition, and uses ANN to classify the vibration signals. The classification accuracy is 93%.
Reference [25] extracts 37 features in time domain, frequency domain, and time-frequency domain
from 12 kinds of bearing vibration signals, and uses PSO-SVM to classify the vibration signals with a
classification accuracy of 93.33%.
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Table 3. Comparison of fault diagnosis results between the method proposed in this article and the
methods of three documents.

Literature Feature Classifier No. of Classes Accuracy

[23] EMD Hjorth parameter
features

Rule-based
classifiers 4 (N, IR, B, OR) 93.82%

This Work MIGA-VMD-multi-features Rule-based
classifiers 16 94.68%

[24]
EMD energy entropy of the

first seven IMFs and classical
statistical features

ANN 7(H, DR, FR, DIR,
FIR, DOR, FOR) 93%

This Work MIGA-VMD-multi-features ANN 16 96.25%

[25]

16 Time domain +13
Frequency domain + 8

Time-frequency domain
features

PSO-SVM

12(N, IR7, IR14,
IR21, IR28, OR7,
OR14, OR21, B7,
B14, B21, B28)

93.33%
with

time-domain
features

This Work MIGA-VMD-multi-features PSO-SVM 16 95.31%

In this paper, the signal is decomposed by MIGA-VMD, and the Renyi entropy feature, singular
value feature, and Hjorth parameter feature are composed of multi-features as the final feature vector,
which is input to the classifier for bearing fault diagnosis. A good feature extraction method can
effectively extract the fault features of the bearing fault signal, which plays a vital role in improving the
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accuracy of fault recognition. It can be seen from Figures 12–14 and Table 3 that the method proposed in
this paper can not only diagnose the fault of 16 kinds of bearing signals but also has higher diagnostic
accuracy than the above papers, which verifies the superiority of the method.

8. Conclusions

This paper proposes a feature extraction method based on MIGA-VMD decomposition and
multi-features. The application of this method to the fault diagnosis of bearing signal fully verified the
effectiveness of the method. Finally, the following specific conclusions can be drawn:

(1) Through the envelope spectrum analysis, the MIGA-VMD method can extract the fault feature
information of the signal more effectively and significantly than EMD and EEMD, which is of
great significance for the fault diagnosis of rolling bearings.

(2) Through t-SNE dimensionality reduction visualization analysis, compared with the permutation
entropy feature, sample entropy feature, and energy entropy feature, the multi-features composed
of Renyi entropy feature, singular value feature, and Hjorth parameter feature can more accurately
characterize the fault information of the bearing signal and effectively improve the accuracy of
fault recognition.

(3) The MIGA-VMD decomposition and multi-features feature extraction method is combined with
three classifiers respectively to establish new fault diagnosis models. Through experimental
comparison and analysis, the new fault diagnosis models have high recognition accuracy, which
verifies the superiority of the method proposed in this paper.
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