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Computational and statistical analysis of shotgun metagenomes can predict gene
abundance and is helpful for elucidating the functional and taxonomic compositions
of environmental samples. Gene products are compared against physicochemical
conditions or perturbations to shed light on the functions performed by the microbial
community of an environmental sample; however, this information is not always
available. The present study proposes a method for inferring the metabolic potential of
metagenome samples by constructing a reference based on determining the probability
distribution of the counts of each enzyme annotated. To test the methodology, we used
marine water samples distributed worldwide as references. Then, the references were
utilized to compare the annotated enzymes of two different water samples extracted
from the Gulf of Mexico (GoM) to distinguish those enzymes with atypical behavior.
The enzymes whose annotation counts presented frequencies significantly different
from those of the reference were used to perform metabolic reconstruction, which
naturally identified pathways. We found that several of the enzymes were involved
in the biodegradation of petroleum, which is consistent with the impact of human
hydrocarbon extraction activity and its ubiquitous presence in the GoM. The examination
of other reconstructed pathways revealed significant enzymes indicating the presence
of microbial communities characterizing each ocean depth and ocean cycle, providing
a fingerprint of each sampled site.

Keywords: Gulf of Mexico, reference metagenomes, metabolic potential, metabolic network, key enzymes,
hydrocarbon degradation

Abbreviations: GoM, Gulf of Mexico; EC, Enzymatic Commission number; EZS, equivalent z-score; PDF, probability
density function; Pi, inorganic phosphate.
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INTRODUCTION

The Gulf of Mexico (GoM) is an area with important oil
industry activity that is constantly affected by the extraction
and transportation of hydrocarbons, sometimes causing large-
scale spills, which have repeatedly disturbed the area (Jernelv,
2010; Michel et al., 2013; Soto et al., 2014). The introduction of
petroleum in fragile marine environments can result in severe
ecological perturbations. Crude oil is composed of thousands
of components, which can be mainly separated into saturates,
aromatics, resins, and asphaltenes. The aromatic compounds
are subject to physicochemical modifications, providing the
environment with smaller-molecular-weight products that are
readily biodegraded in marine environments. Other compounds
such as resins and asphaltenes are resistant to biodegradation
(Harayama et al., 1999). In the environment, petroleum
biodegradation is carried out by microorganisms (Head et al.,
2006), and the isolation of those microorganisms capable of
degrading petroleum components is therefore an area of interest.
However, given the impossibility of identifying and isolating
many of these organisms, methodologies based on the sequencing
of DNA recovered from environmental samples are now a
common approach.

Shotgun metagenomics has become an essential tool for
inspecting the metabolic potential and taxonomic composition of
environmental DNA (Gilbert and Dupont, 2011; Sharpton, 2014;
Bharti and Grimm, 2021). Sequencing technology for performing
such analyses has significantly evolved in recent decades, making
it possible to inspect the composition of samples representing a
vast collection from distinct environments (Gilbert and Dupont,
2011; Land et al., 2015; Wang et al., 2017). Nonetheless, even with
the improvements in sequencing technologies, it is difficult to
obtain comparable and reproducible results with many of them.
This is linked to other challenges, including study design, data
access, metadata standardization, and the use of analysis tools
that should be improved to enable comparative metagenomics in
different projects worldwide.

Several studies outlining the functional potential of ocean
water columns and sediments are based on metagenomic
studies. The metabolic potential of the microbial communities
revealed in metagenomic studies is expected to correlate with
the characteristics of the physical and chemical parameters
of each sample. Examples of these measurable parameters are
dissolved organic matter (DOM), inorganic matter, temperature,
pH, and depth. Other parameters that are difficult to assess
are the direct and indirect interactions between microorganisms
distributed in water layers and sediments. The inference of
pathways based only on the above information may make some
functions challenging to appraise since these parameters are not
always available.

In recent years, publicly available metagenomic databases
have grown to house thousands of studies, providing the
unique opportunity to compare experiments to identify the
differences between gene products and taxa in distinct biomes
(Paczian et al., 2019; Mitchell et al., 2020). However, these
comparisons represent a great challenge due to the variation in
experimental designs, the use of different sequencing platforms,

and the posttreatments applied to sequences. Therefore, it is
necessary to develop new methodologies for comparing this
information. The observations mentioned above prompted us
to determine whether it was possible to develop a method by
which to infer the metabolic potential of shotgun metagenomic
samples in a comparative manner to help address the lack
of specific information concerning environmental conditions
from which the samples were extracted. For this purpose,
the proposed method requires a selection of metagenomes
serving as a reference to identify the probability distribution
describing the behavior of each enzyme into the reference. The
distribution of each enzyme will enable the determination of
whether the same enzyme in different metagenomes presents
an atypical behavior with respect to the reference. For this
work, the reference enzymes were obtained from annotated
metagenomes of water samples from oceanographic campaigns
distributed worldwide for comparison with water samples from
the GoM. The enzymes identified as atypical (overrepresented)
were used to reconstruct metabolic pathways. We evaluated
the consistency of the results considering the origin in the
GoM and the depth in the water column. We also discuss the
implications of the type of probability density function (PDF)
found for the enzymes, paying special attention to those defined
as essential to life. We observed lower dispersion of essential
enzymes relative to enzymes expected to be less preserved in all
organisms. Moreover, we found that the distribution of a group
of aminoacyl tRNA synthetases cataloged as essential presented
long tails, a result that appeared to be consistent with other
findings based on the unequal distribution of some of them
even within the same taxon. Finally, we were able to identify
relevant pathways related to hydrocarbon degradation and their
connection with other metabolic pathways incorporating the
end products. We also found relevant enzymes and pathways
related to ocean cycles and the niche from which the samples
were taken. We concluded that even with the limitations of
metagenomic techniques, this approach has great potential for
inferring broader functional profiles of any biome by taking
advantage of the number of samples currently available in
public repositories.

MATERIALS AND METHODS

Data Collection and Processing
Gulf of Mexico Samples
We evaluated two metagenomes of water samples from the
GoM collected in March 2016 (Figure 1; Raggi et al., 2020).
Sample A04 was found at a depth of 1,000 m in the Antarctic
Intermediate Water (AAIW) of the Perdido Fold Belt (NW;
coordinates, 25◦52′47.0′′N 94◦40′07.0′′W). Sample D18 was
collected at Campeche Knolls, Coatzacoalcos (SE), in the
maximum fluoresce layer at a depth of 76 m at 19◦55′52.1′′N
94◦20′26.4′′W. The samples were sequenced and processed
as described previously (Raggi et al., 2020), except for the
annotation step performed using the MG-RAST suite (Paczian
et al., 2019). In Supplementary Table 1, we show the MG-RAST
identifiers assigned to each metagenome.
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FIGURE 1 | Sampling locations. Nineteen locations water sample collection in the GEOTRACES project distributed worldwide are shown in circles. Depth from
shallow to deep is represented in colors ranging from red to purple the map shows two sampling locations in the Gulf of Mexico, in the Perdido Fold Belt and
Campeche Knolls.

Reference Samples
We downloaded the assembled sequences of 19 water samples
from the Sequence Read Archive (SRA) database collected on
GEOTRACES cruises (Biller et al., 2018) covering sites in the
Atlantic and Pacific Oceans and considering different depths
(Figure 1). The assembly published by the GEOTRACES project
was uploaded to the MG-RAST suite. Supplementary Table 1
shows the geographical coordinates, depths, sequence technology
used, and MG-RAST and SRA identifiers of each sample.

The GoM and reference samples and the annotated gene
products of enzymes showing 45% sequence identity and an
e-value ≤ 1E−04 were classified based on their functions
according to the Enzymatic Commission (EC) number (Tipton
and Boyce, 2000). A minor group of enzymes with incomplete
enzymatic activity descriptors, such as 1.-.-. -, 1.1.-. -, or 1.1.1.-
were discarded when absent in the metabolic Kyoto Encyclopedia
of Genomes and Genomes (KEGG) databases used in this study
(Kanehisa et al., 2017).

Metagenome Assembly, Binning, and
Functional Annotation
The raw reads from D18_MAX and A04_AAIW with
SRR11308320 and SRR11308318 SRA ID numbers, respectively,
were first filtered using fastp1 with default parameters to trim

1https://github.com/OpenGene/fastp

adaptors and clean reads. Trimmed paired-end reads were
then merged into a single fasta file for later assembly with
IDBA-UD (Peng et al., 2011) with default settings. A scaffolding
step was carried out on the contigs of the assemblies with
OPERA (Gao et al., 2011). Bowtie v.2.3.5.1 (Langmead and
Salzberg, 2012) was used to map sequence reads back to the
assembly. Then, MetaBAT v.2 (Kang et al., 2019) was used to
bin the assemblies under default settings. Next, to calculate
the completeness, contamination, and strain heterogeneity
of the bins formed, CheckM (Parks et al., 2015) was used.
The taxonomic classification of the bins of every sample was
performed with Phylophlan v.3.0 (Asnicar et al., 2020). Finally,
the functional annotations of the bins were completed with
evolutionary genealogy of genes: non-supervised Orthologous
Groups (eggNOG mapper) (Huerta-Cepas et al., 2017).

Statistical Analysis Inferring the
Metabolic Potential
First, let us focus on a given element, m, of the reference
metagenomes and on the subset of annotations that produce
an enzyme as the output. Let ygm denote the observed count
of annotations for enzyme g in m. Now, we will assume that
occurrences of each enzyme follow a multinomial or Poisson
distribution. This assumption is justified because a few thousand
different enzymes are typically annotated with relatively low
frequencies. Let us imagine that we repeat the annotation process
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under the same conditions. In this case, we expect that, on
average, the count of occurrences for a particular enzyme, g, per
million annotated sequences can be calculated as follows:

λgm =
ygm

Nm
106,

where Nm is the total number of enzymes annotated in the
entire metagenome m. However, some reflection results in the
realization that, due to random effects throughout the annotation
process, deviations from this value much larger than the expected
variance can occur. To proceed to the metagenome analysis, we
conclude that the distribution parameter λgm is not a constant
but is sampled from a distribution.

We extend this idea further and consider a collection of
metagenomes processed according to the same workflow but
under slightly different environmental conditions. In this case,
we expect greater variability in the observed ygm. Nevertheless,
we can assume that this extra variability can be captured by
theoretical distributions of the λgm parameters, which we have
denoted with f (x; θgl), where θgl represents certain parameters to
be determined. Thus, for a given metagenome, k, not belonging
to the reference, we can tell if the observed frequencies, ygk
, are within the reference values or constitute a statistically
unexpected event.

Once the parameters of each enzyme were assigned to
each metagenome in the reference, we obtained an empirical
distribution for the enzymes in the reference (Supplementary
Table 2). We fitted these empirical distributions using the fitdistr
function from the R package MASS2. Since the data to be fitted
were frequencies, we try to fit a normal distribution only when
x > 3s, where x and s are the sample means and standard
deviation. When this condition was not fulfilled, the theoretical
distributions with which we attempted to fit the data were
gamma, log-normal, Weibull. In this case, the goodness of fit for
each distribution was verified through the Anderson–Darling test
in the R package goftest.3 To choose the optimal fit, we used the
Akaike information criterion.

Next, for the two metagenomes under study, we calculated
quantities in a manner analogous to Eq. 1:

λgk =
ygk

Nk
106, (1)

with k= 1, 2, and using the set fg(x; θgl) of fitted distributions, we
calculated the probability:

Pgk = P
(
X ≤ λgk

)
=

∫ λgk

−∞

dxfg(x, θgl) (2)

To ease interpretation, rather than to work directly with the
values in Eq. 2, we choose to express these probabilities in
terms of an equivalent Zgk score determined with the following
equation:

Pgk =

∫ Zgk

−∞

dxN (x) , (3)

2https://cran.r-project.org/web/packages/MASS/MASS.pdf
3https://github.com/baddstats/goftest

where N(x) is the PDF of a normal distribution with a zero
mean and a unitary standard deviation. The set {Zgk} is the basic
information that we use to derive our results. An example of
the results of these procedures is provided in Table 1, and the
associated workflow is in Figure 2.

Global Metabolic Network
To reconstruct the global metabolic network, we retrieved the EC
kgml files from all the metabolic pathways available in KEGG
(Kanehisa et al., 2017). We did not include all kgml files from
glycan biosynthesis and metabolism. This step was also useful for
curating EC numbers that were not updated by the MG-RAST
databases. With the use of a custom Python script, all the kgml
pathways were merged into one global metabolic network. Then,
for each metagenomic sample (A04_AAIW and D18_MAX), we
built a subnetwork filtering out all EC numbers from the global
metabolic network with z-scores lower than −1. The networks
were displayed using Cytoscape software (Shannon et al., 1971).

Global Network Clusters
For each sample’s metabolic network, we built clusters (groups
of nodes more connected to each other than to the rest of
the network) using MCL software (Van Dongen, 2008) with an
inflation value of 1.5. Next, we filtered out all those clusters

TABLE 1 | Reference metagenomes and results of the GoM samples.

EC 1.1.1.35 1.14.13.7 1.3.1.32 2.8.3.8

M1 2104.258 21.69339 21.693386 65.08016

M2 2111.734 34.36254 28.114808 93.71603

M3 2213.504 28.22319 32.255073 76.6058

M4 2089.64 22.5907 22.590702 71.53722

M5 2594.575 33.75057 29.531753 42.18822

M6 2365.485 15.87574 12.70059 41.27692

M7 1939.527 38.25496 49.73145 38.25496

M8 2174.35 20.60995 41.219903 103.04976

M9 2206.178 15.68373 47.051197 151.60941

M10 2656.021 16.39519 2.732532 19.12772

M11 2541.855 52.83302 23.481344 70.44403

M12 2363.248 55.19262 85.297689 120.42027

M13 2349.213 25.28301 18.962259 63.20753

M14 2267.837 20.76774 33.228387 87.22452

M15 2315.387 64.46553 53.721273 118.1868

M16 2339.845 21.02557 15.018262 45.05479

M17 2412.827 20.0512 20.051197 66.83732

M18 2169.387 25.7647 15.458818 77.29409

M19 2317.505 28.00611 28.006105 98.02137

Distribution Normal Lognormal Gamma Weibull

p1 2291.17784 3.295168 2.683552 2.555658

p2 176.84802 0.4076202 0.08778131 86.05314

EZS (D18_MAX) −0.220768 1.5988 1.14147 0.838235

EZS (A04_AAIW) 3.27996 2.18523 3.7638 2.8628

The table illustrates the distributions and parameters (p1, p2) obtained from
the rates of four enzymes (EC:) using the reference metagenomes (M).
The EZSs calculated for each enzyme in the EZS (D18_MAX) and EZS
(A04_AAIW) are also shown.
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FIGURE 2 | Workflow diagram. The diagram represents the steps used to determine the EZSs of the annotated enzyme. (A) Data collection. (B) Pre-processing. (C)
Definition of the probability distributions (D) Calculation of the z-Scores.

with fewer than four EC numbers. Finally, we counted the
total number of intersecting ECs between each remaining
cluster and all the KEGG pathways employed for global
network construction.

RESULTS

Generation of the Reference Enzymes
and Equivalent z-Score Interpretation
The selection of genes encoding enzymes representing the
metabolic potential of metagenomic samples is mainly based
on the search of key (marker) enzymes of expected metabolic
pathways of the microbial communities. The resolution of the
reconstructed pathways is usually improved by searching for

other enzymes using software and data bases as for example
KEGG Mapper (Kanehisa et al., 2021) or by manual inspection.

In contrast, our approach aims to highlight enzymes, in a
sample under study, with values of the rates in Eq. 1 that
are significantly different from those of the reference group of
metagenomes under similar environmental conditions. We then
take this set of enzymes with atypical rates as a seed with which
to reconstruct a metabolic network, which gives a hint of the
metabolic potential of the sample.

The reference, as described in “Materials and Methods,”
comprises a set of PDFs for those enzymes present in all
19 selected metagenomes. To obtain a random sampling
and maximized variability of the metagenomes, we gathered
samples located at different longitudes, latitudes, and depths.
Figure 3 shows an example of the four types of PDFs of
different enzymes: normal, log-normal, gamma, and Weibull.
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The enzymes described by gamma, log-normal and Weibull PDF
are characterized by long tails. With these results, it is now
simple to estimate, using Eq. 2, the probability of occurrence
of observing a given rate (Figure 3). We used these theoretical
distributions to analyze two metagenomes from the GoM. Instead
of using the probability P directly, as described in “Materials
and Methods,” it is convenient to transform it into a z-score
using Eq. 3. These calculations can be easily performed with the
appropriate software. We provide an example of the code used
in R in Supplementary File 1. If the distribution is normal, the
z-score can be calculated by hand with the usual formula. As is
well known, the z-score in the center of the curve is zero, meaning
that enzymes with values close to zero behave the same as in the
reference. The z-scores to the right of the mean are positive, and
the z-scores to the left of the mean are negative. Additionally,
an important property of the z-score is that it can be used to
calculate the percentage of the population below a given value.
For this study, enzymes of the GoM presenting an EZS ≥ 2.0
have a rate higher than 97.72 of the reference observations. The
equivalent z-score (EZS) above this region should be considered
to have an atypical behavior; i.e., the enzymes with an EZS ≥ 2
are involved in metabolic functions overrepresented in the GoM
communities. However, the enzymes located in the negative part
of the curve, with an EZS ≤ −1, are also atypical but may
be more relevant in the reference’s metagenomes. Finally, those
enzymes in the interval between−1 > EZS≤ 2 should be relevant
for the communities represented in both the reference and the
GoM metagenomes.

Statistical Properties of the Reference
Samples
As described in the methodology section, we calculated the
PDF for each enzyme appearing in all 19 analyzed reference
metagenomes. After the procedure was performed, 1,127
enzymes with a full EC description available were retained for
posterior analysis. The statistical analysis showed that 49 (4%)
enzymes had a gamma distribution, 257 (23%) had a Weibull
distribution, 356 (32%) presented a log-normal distribution,
and 465 (41%) showed a normal distribution (Supplementary
Table 2). We then categorized the enzymes into their respective
metabolic pathways, which placed 879 enzymes in at least one
metabolic pathway (Supplementary Table 3), distributed as
follows: gamma = 34 (4%), normal = 380 (43%), Weibull = 196
(22%), and log-normal= 269 (31%). According to this procedure,
40% of the enzymes showed a normal distribution, which can
potentially be explained by different hypotheses, as explained in
“Discussion.”

We then analyzed the behavior of enzymes essential for
the maintenance of cellular integrity that should be present
in every metagenome. Examples of such proteins include
RNA polymerase subunits, aminoacyl-RNAt synthetase (aaRS),
ribosomal proteins, and some metabolic enzymes that have
been identified in representative organisms (Na et al., 2018).
The KEGG Ortholog (KO) (Kanehisa et al., 2016) and Cluster
of Orthologous Genes (COGs) databases (Tatusov et al., 2003;
Galperin et al., 2015) include orthologous groups for most of

these proteins, providing an initial view of the distribution of
these enzymes in sequenced genomes. To evaluate the PDFs
of essential enzymes found in the reference metagenomes, we
searched for those with an EC number. The analysis revealed
that among a group of 80 essential enzymes reported in
the literature (Na et al., 2018), 16 were not present in the
reference metagenomes, and 48 had a normal distribution.
Fourteen enzymes presented a log-normal distribution, and
two presented a Weibull distribution. From these enzymes, we
observed that five enzymes of class 6.1.1.X (where X stands for
any digit) presented non-normal PDFs, and all of them acted
as aaRSs. As shown in Supplementary Table 3, three have a
log-normal distribution, and two have a Weibull distribution
behavior. To understand whether the total number of each aaRS
distributed across a set of 4,852 bacterial genomes influences
the observed PDF, we counted the orthologous genes in KO
groups encoding aaRSs. Additionally, we grouped the aaRSs
into their catalytic domain classes, where class I and class
II aaRSs are unrelated (Woese et al., 2000; O’Donoghue and
Luthey-Schulten, 2003). Supplementary Table 3 shows that
none of these features may be responsible for the observed
distributions since these enzymes present unique copies in the
bacterial genomes.

In the next step, we explored whether the enzymes were
equally distributed in the pathways, which was not the case,
as shown in Supplementary Table 4. We observed poor
preservation of the PDFs within the pathways, with between
two and three enzymes being identified on average. We believe
that this is an expected result since gene abundances tend to
vary as a function of the relative abundance of the organisms
constituting the sample. A remarkable case was that of the
six enzymes involved in xylene metabolism, which displayed a
Weibull distribution (Supplementary Table 4).

Role of the Equivalent z-Score in the
Identification of Metabolic Pathways
The 879 enzymes that were associated with a metabolic
pathway and had an EZS were organized into the B functional
classes stored in the KEGG BRITE database (Kanehisa, 2017;
Supplementary Table 5), yielding thirteen classes, as shown in
Figure 4. The enzymes from both metagenomes were classified
into 11 metabolic classes, including four enzymes in the signal
transduction category and 25 into the translation class containing
the aaRs. A small number of enzymes appearing in both
metagenomes catalyzed reactions related to infectious diseases
in the following categories: viral, immune system (n = 2);
environmental adaptation, endocrine system (n = 1); and drug
resistance: antimicrobial (n= 1).

Among the boxplots shown in Figure 4, xenobiotic
biodegradation stands out because in A04_AAIW, 24 enzymes of
the 56 with significant EZS are included in the interval between
the median and the third quartile (q3). The enzymes related to
lipid metabolism in both metagenomes A04_AAIW (19 from
29) and D18_MAX (18 from 23) exhibit similar behavior. Some
classes, such as nucleotide metabolism, metabolism of cofactors
and vitamins, nucleotide metabolism in A04_AAIW, and the
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FIGURE 3 | Probability density functions of the reference metagenomes and observed rates of enzymes from the GoM. Examples of the histograms of the observed
rates describing four enzymes in the reference are shown. The solid red line represents the theoretical distribution. The dashed line is the observed rate for each
enzyme in D18_MAX (blue) and A04_AAIW (green). The probability Pgk in Eq. 2 is the area under the red curve from minus infinity to the values indicated with these
dashed lines.

metabolism of cofactors and vitamins in D18_MAX, showed a
lower proportion of significant enzymes between q3 and EZS≥ 2
(Supplementary Table 6).

To evaluate the pathways defining the metabolic potential of
both metagenomes, we took as a starting point the BRITE classes
showing the highest proportion of enzymes with a significant EZS
in q3 and beyond in the distribution.

The Xenobiotic Class Includes
Overrepresented Enzymes
As shown in Figure 4, a significant proportion of the enzymes
catalyzing xenobiotic-related reactions presented an EZS ≥ 2.
These enzymes, with are related to the following KEGG maps
(as shown in Figure 5): aminobenzoate, atrazine, benzoate,
bisphenol, caprolactam, chloroalkane, chlorocyclohexane and
chlorobenzene degradation, drug metabolism – cytochrome
P450, drug metabolism – other enzymes, ethylbenzene
degradation, metabolism of xenobiotics by cytochrome
P450, styrene degradation, and toluene degradation. Unlike

A04_AAIW, the annotated enzymes from the D18_MAX
metagenome in the xenobiotic class presented a lower count.

The results presented in Figure 5 show that the number of
enzymes found in the KEGG xenobiotic maps with a EZS ≥ 2
were those of drug metabolism – other enzymes (A04_AAIW
and D18_MAX), and aminobenzoate (A04_AAIW). Therefore,
we proceeded to reconstruct a compound-reaction-enzyme
network to inspect the number of consecutive steps leading to
the inference of the pathways representing each metagenome.
As described in detail in “Materials and Methods,” those
enzymes with an EZS ≥ 2 were initially considered in the
network reconstruction, followed by enrichment with enzymes
in an interval between −1 ≥ EZS < 2. We assumed that
the enzymes in the interval were equally represented in the
reference metagenomes and the tested samples from the GoM.
The networks representing each metagenome are shown in
Supplementary Figures 1, 2.

From the network, it was evident that the pathways of
drug metabolism (other enzymes) in A04_AAIW showed
several connected reactions in which the enzymes presented
a significant EZS (Supplementary Figure 1). Among these
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FIGURE 4 | Enzyme distribution according to BRITE class. The distribution of the EZSs of the enzymes from A04_AAIW (red) and D18_MAX (blue) in KEGG BRITE
classes is shown. EZSs (–2 and 2) are delimited by dotted red lines.

pathways, the enzymes involved in fluorouracil transformation
stand out. In this pathway, the prodrugs capecitabine,
tegafur, and carmofur, which are masked-form analogs of
5-fluorouracil (5-FU), are metabolized. These analogs are
widely used to treat breast and gastrointestinal carcinomas
(Uekama and Hirayama, 2008).

The results shown in Supplementary Table 5 for the
metagenome show the enrichment of the carboxylesterase (EC:
3.1.1.1, EZS = 3.75583), which modifies these compounds
in the liver of mammals (Wang et al., 2018). However,
homologs of these enzymes can catalyze the production of
analog compounds involved in bacterial metabolism, such
as the enzyme EC 3.1.1.1, which has been described as an
extracellular esterase and has been applied to determine marine
bacterial metabolic activity and phytoplankton cell lysis (Barzkar
et al., 2021). These extracellular enzymes have been reported
to play a role in organic matter mineralization in the ocean
(Barzkar et al., 2021). The drug metabolism-other enzymes
map also comprises the enzymes thymidine phosphorylase
(EC: 2.4.2.4, EZS = 3.61499) and a thymidine kinase (EC:

2.7.1.21, EZS= 5.02949) that incorporates thymidine in bacteria,
including oceanic species (Jeffrey and Paul, 1990). Homologs of
these enzymes modify other substrates in alternative pathways
found in bacteria, in which thymidine phosphorylase catalyzes
the conversion of thymine to thymidine in a reversible reaction.
A recent study analyzing the functional metatranscriptomic
enrichment of a marine oil spill in Bohai Bay in China
showed that thymidine phosphorylase was one of the most
upregulated enzymes (Song et al., 2021). The subsequent steps
transforming thymidine to deoxythymidine monophosphate
(dTMP) and dTMP to deoxythymidine diphosphate (TDP),
catalyzed by 5′-nucleotidase (EC: 3.1.3.5, EZS = 3.2916) and
dTMP kinase (EC: 2.7.4.9, EZS= 4.28755), respectively, were also
detected at a significant level; however, the final step in which
dTDP is transformed to deoxythymidine triphosphate (dTTP),
catalyzed by the nucleoside-diphosphate kinase EC 2.7.4.6, was
underrepresented (EZS = −1.14672). Remarkably, within this
pathway, 5′-nucleotidase is a key enzyme involved in aquatic
phosphorus regeneration, even in the open ocean (Ammerman
and Azam, 1985). Our analysis showed that alkaline phosphatase
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FIGURE 5 | Pathways in the xenobiotics class. Counts of enzymes with EZS ≥ 2 found in pathways grouped in the xenobiotic KEGG BRITE class in the A04_AAIW
and D18_MAX metagenomes.

is a bacterial membrane protein encoded by the phoA gene
(Inouye et al., 1981) that has been hypothesized to be directly
related to phosphorus deficiency within bacterial cells (Wanner,
1996; Benitez-Nelson, 2000), presented an EZS = 1.52342 in
A04_AAIW and an EZS = 2.01831 in D18_MAX, suggesting
that the microbial community in the MAX zone must have the
potential to contend with inorganic phosphate (Pi) stress.

Enzymes Involved in Petroleum
Hydrocarbon Degradation Are
Significantly Represented in the Perdido
Fold Belt and Campeche Knolls in the
Gulf of Mexico
The above observations naturally showed an overrepresentation
of enzymes involved in petroleum degradation, consistent with
the geographical origin of samples extracted from the GoM. The
results presented in Figure 5 show the enrichment of enzymes
catalyzing aromatic hydrocarbon degradation. In the A04_AAIW
metagenome, extracted from a depth of 1,000 m, we detected 46
enzymes with significant EZSs that catalyze reactions included
in 14 KEGG pathway maps. The KEGG maps of aminobenzoate,

caprolactam, and toluene degradation were the most populated.
We then performed a deeper inspection of these KEGG maps
to identify two features: (1) the presence of key enzymes in the
pathways with significant EZSs and (2) consecutive reactions with
a significant EZS. From this analysis, two consecutive reactions
caught our attention; the first transforms benzoyl-phosphate to
benzoate, and the second transforms benzoate to benzoyl-CoA.
These reactions are catalyzed by the enzymes acylphosphatase
(EC: 3.6.1.7, EZS = 5.06032) and benzoate-CoA ligase (EC:
6.2.1.25, EZS = 5.74931) (as shown in Figure 6A), both of which
are key enzymes in anaerobic benzoyl-CoA degradation. To
date, the anaerobic degradation of monoaromatic hydrocarbons,
such as benzoate, phenol, toluene, and ethylbenzene, has been
indicated to proceed via a pathway involving benzoyl-CoA (Boll,
2005; Meckenstock and Mouttaki, 2011).

The following steps in the conversion of benzoyl-CoA
to acetyl or succinyl-CoA can proceed via several different
pathways that are well described in Thauera aromatica, Azoarcus
sp. CIB, and Geobacter metallireducens, in which benzoyl-CoA
is reduced to formcyclohexa-1,5-diene-1-carbonyl-CoA by a
benzoyl-CoA reductase (Porter and Young, 2014). The reduction
of benzoyl-CoA to cyclohexa-1,5-diene-1-carbonyl-CoA also
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FIGURE 6 | Benzoyl-coenzyme A metabolism. (A) Reconstruction of the anaerobic degradation of phenolic compounds via the benzoyl-coenzyme A pathway.
Significantly represented enzymes are shown in red, the enzymes represented equally in the reference and in the A04_AAIW metagenome are shown in pink, and the
enzymes that are better represented in the reference metagenomes are shown in gray. The key enzymes related to benzoyl-coenzyme A are shown blue. Pink circles
represent the compounds found in the KEGG aminobenzoate pathway, and brown circles represent those of the benzoate pathway. (B) Metabolic network
reconstruction of the anaerobic conversion of benzoyl-coenzyme A. The significant enzymes are shown in red; the enzymes represented equally in the reference and
the A04_AAIW metagenome are shown in pink, and the enzymes that are better represented in the reference metagenomes are shown in gray. A group of enzymes
annotated in the reference and A04_AAIW (purple circles) with EC numbers “. -” are presented. One enzyme annotated only in the reference yellow circle and
another annotated only in the Gulf metagenome (blue circle) are also shown (the EC list is included in Supplementary Table 7).

occurs in Rhodopseudomonas palustris, and a common hydrolysis
step occurs in all of these species (Porter and Young, 2014). After
this step, the conversion of cyclohexa-1,5-diene-1-carbonyl-
CoA continues via different pathways. In our study, we did
not identify the pathways found in T. aromatica, Azoarcus
sp. CIB, or G. metallireducens, but our statistical analysis
yielded several enzymes involved in benzoyl-CoA conversion
in R. palustris. The first notable result showed that enzymes
transforming benzoyl-CoA to 3-hydroxy-pimeloyl-CoA were
not detected; however, as shown in Figure 6B, the enzymes
that subsequently transform 3-hydroxy-pimeloyl-CoA to
3-keto-pimeloyl-CoA (3-hydroxyacyl-CoA dehydrogenase;
EC: 1.1.1.35, EZS = 3.27996) and 3-keto-pimeloyl-CoA
to glutaryl-CoA (acetyl-CoA acyltransferase; EC: 2.3.1.16,

EZS = 2.44283) presented significant EZSs. The enzyme acetyl-
CoA acyltransferase (EC: 1.3.8.6), which transforms glutaryl-CoA
to crotonyl-CoA, was also missing. Nevertheless, enoyl-CoA
hydratase (EC: 4.2.1.17, EZS = 4.00025), which catalyzes the
transformation of crotonyl-CoA to (S)-3-hydroxybutanoyl-CoA;
3-hydroxybutyryl-CoA dehydrogenase (EC: 1.1.1.157), which
catalyzes the transformation of (S)-3-hydroxybutanoyl-CoA to
acetoacetyl-CoA catalyzed; and acetyl-CoA C-acetyltransferase
(EC: 2.3.1.9, EZS = 2.44034), which is responsible for the
catalysis of acetoacetyl-CoA to acetyl-CoA, were identified
as significant enzymes by this method. The analysis of the
benzoate KEGG map showed that several enzymes involved in
the transformation of benzoyl-CoA to 3-hydroxy-pimeloyl-CoA
do not have a full EC number description. This was the case
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FIGURE 7 | Metabolisms described in the binned metagenomes (A) A04_AAIW and (B) D18_MAX. The heat maps depict the presence (blue) and absence (white) of
enzymes involved in drug metabolism, other enzymes, pyrimidine, benzoate, aminobenzoate, and lipid metabolisms. The explored pathways represent the metabolic
profile found in metagenomic bins, which metabolically and taxonomically describe the nature of the samples.

for the benzoyl-CoA reductase subunit BamB (EC: 1.3.-.-),
cyclohex-1-ene-1-carboxyl-CoA (EC: 4.2.1.-), hydratase, 2-
hydroxycyclohexanecarboxyl-CoA dehydrogenase (EC: 1.1.1.-),
and 2-ketocyclohexanecarboxyl-CoA hydrolase (EC: 3.1.2.-),
which were annotated by MGRast in both the A04_AAIW
metagenome and in the references (Figure 6B). Enzymes of this
nomenclature were dismissed in the initial analysis. In 2018,
they were discarded from the records of protein and metabolic
databases, including KEGG, since they represent incomplete
enzyme-catalyzed reactions.4 On the other hand, benzoyl-
CoA reductase subunit C (EC: 1.3.7.8) was annotated in our
metagenome but not in the reference samples, and cyclohexane-
1-ene-1-carbonyl-CoA dehydrogenase (EC: 1.3.8.10) was
annotated in the reference but not in our metagenomes. Finally,
the enzyme (EC: 1.3.62.80) pimeloyl-CoA dehydrogenase was
not detected in the reference or in A04_AAIW. We will later
discuss the preprocessing and postprocessing methodologies that
may affect enzyme identification in metagenomic samples.

Additionally, in the aminobenzoate KEGG map, we
found that the enzyme phenol hydroxylase (EC: 1.14.13.7,
EZS = 2.18523) involved in the elimination of phenolic
compounds was significantly represented in A04_AAIW
(Supplementary Table 5). In phenol degradation, phenol
hydroxylase monohydroxylates the aromatic ring in the adjacent
carbon of a hydroxyl group, resulting in catechol, which is in
turn cleaved by either ortho- or meta-cleavage pathways (Silva

4http://www.sbcs.qmul.ac.uk/iubmb/enzyme/

et al., 2013). These pathways have been described in the genus
Halomonas, which is able to degrade phenol as a sole source of
carbon and energy, as observed in a Halomonas sp. strain isolated
from the Great Salt Lake (Le Borgne et al., 2008). In our previous
study, we analyzed the bacterial community of A04_AAIW; we
observed that the abundance of the genus Halomonas increased
substantially (1–48%) (Raggi et al., 2020). From the posterior
conversion of catechol, we found that the ortho-cleavage
pathway included significant EZSs of muconate cycloisomerase
(EC: 5.5.1.1, EZS = 2.3406), 3-oxoadipate enol-lactonase (EC:
3.1.1.24, EZS = 6.4463), and the acetyl-CoA acyltransferase (EC:
2.3.1.16, EZS = 2.44283), which were significantly represented.
Two other enzymes, the 3-oxoadipate CoA-transferase alpha
subunit (EC: 2.8.3.6 EZS = 0.0846268) and 3-oxoadipyl-CoA
thiolase (EC: 2.3.1.174, EZS = −0.373101), had EZSs located
within the interval of −2 ≥ EZS < 2. As previously mentioned,
we considered values in the interval of −1 ≥ EZS < 2 to
correspond to enzymes represented in both the reference and the
queried metagenomes.

Finally, to identify the taxonomy that may be involved in
oil degradation and some of the above-described pathways,
we binned and classified the genomes from the metagenomes.
The taxonomy found in A04_AAIW, as shown in Figure 7A,
reveals and matches the capability of hydrocarbon degradation,
represented by Parvibaculum lavamentivorans, which is usually
detected in habitats contaminated with oil, diesel, and other
compounds (Schleheck et al., 2011). We also identified in
A04_AAIW, Pseudomonas aestusnigri, isolated from an oil
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spill (Sánchez et al., 2014), and organisms within the genera
Kineosporia that are also capable of hydrocarbon degradation
(Gontikaki et al., 2018). In the D18_MAX metagenome, we
identified Sulfitobacter sp. DFL_14, an oil degrader (Nuñal
et al., 2017), and Actinobacteria_unclassified_SGB36491
that have enzymes related to aminobenzoate and benzoate
degradation (Figure 7B).

Lipid Metabolism Is Related to
Petroleum Degradation
Lipids are hydrocarbons that are soluble in non-polar solvents
(Pond, 2009). They are also carriers of fat-soluble vitamins,
carotenoids, and organic contaminants, the last of which
are the main drivers of pollutant bioaccumulation in marine
ecosystems (Parrish, 2013). Both A04_AAIW and D18_MAX
showed enrichment in enzymes related to lipid metabolism.
Lipid enzymes are involved in pathways such as the biosynthesis
and degradation of essential fatty acids, glycolipids, and
glycerophospholipids. These pathways include hydrocarbons in
the form of alkanes that are modified via terminal oxidation
to fatty acids. In A04_AAIW (Supplementary Table 5), we
found enzymes related to alkane degradation, such as alkane 1-
monooxygenase (EC:1.14.15.3, EZS= 6.41577), which was one of
the most enriched enzymes in the dataset. Within this pathway,
we found that aldehyde dehydrogenase (NAD+) was significantly
enriched (EC: 1.2.1.3, EZS = 2.19467). Other enzymes, such
as alcohol dehydrogenase (EC: 1.1.1.1), ferredoxin–NAD+
reductase (EC: 1.18.1.3) and rubredoxin–NAD+ reductase (EC:
1.18.1.1), were equally represented in both the reference and
A04_AAIW samples, indicating that the pathway may be present
in some species in the sample. It has been reported that
the genus Alcanivorax is abundant in alkane-polluted ocean
waters (Li et al., 2019), and in a recent study, we reported the
presence of genes involved in alkane degradation in Pseudomonas
aeruginosa strain GOM1 isolated from the water column (Muriel-
Millán et al., 2019). Moreover, we have previously reported
the particular enrichment of Alcanivorax (23%) at this site
(Raggi et al., 2020). A set of enzymes involved in fatty acid
oxidation that were significantly detected in A04_AAIW included
dodecenoyl-CoA isomerase (EC: 5.3.3.8, EZS = 2.19995), which
participates in the beta-oxidation of fatty acids with double
bonds at an odd position, and 3-hydroxybutyryl-CoA epimerase
(EC: 5.1.2.3, EZS = 2.67964), which is also involved in fatty
acid beta-oxidation. The long-chain fatty acid–[acyl carrier
protein] ligase (EC: 6.2.1.20, EZS = 0.403923) showed a
score suggesting that the enzyme is equally represented in the
A04_AAIW and reference metagenomes. Alkane degradation
enzymes were poorly enriched in D18_MAX, except for
aldehyde dehydrogenase (EC: 1.2.1.3, EZS = 2.19467). Five
of the enzymes in the pathway were represented both in
the reference and in our metagenome, which suggests that
there are organisms in all of these samples that are capable
of transforming alkanes. Searching into the binned genomes
(Figures 7A,B), we found the ferredoxin–NAD+ reductase (EC:
1.18.1.3), alcohol dehydrogenase (EC: 1.1.1.1), and aldehyde
dehydrogenase (NAD+), represented in P. lavamentivorans

(A04_AAIW) and Sulfitobacter sp. DFL_14 (D18_MAX), both
reported as oil degraders as previously commented.

Networks Representing the Metabolic
Potential
The examples presented in the previous section showed
pathway reconstructions considering the BRITE classes with
wider enrichment to be those related to xenobiotic and
lipid metabolism. However, as shown in Figure 4, other
classes included enzymes implicated in different metabolic
pathways. Therefore, to obtain a global view of the metabolic
potential detected in both metagenomes, we assessed groups
of enzymes with −1 ≥ EZSs ≥ 2, which were used to
construct the metabolic network of A04_AAIW and D18_MAX
(Supplementary Figures 1, 2). As explained in detail in
“Materials and Methods,” the network was built using the
substrates and products catalyzed by the selected enzymes.

The network was grouped into 35 clusters in A04_AAIW and
51 in D18_MAX, from which we extracted those clusters included
more than 4 enzymes. These clusters were regrouped to evaluate
the interactions within the network (Supplementary Table 8).
The clusters derived from sample A04_AAIW are represented
in Figure 8, in which we observed two major clusters. Major
cluster MC1_8 was subdivided into two subclusters, MC1_8_a1
and MC2_8_a2. MC1_8_a1 contains clusters 1, 2, 5, 13, 16, 17,
and 19, among which clusters 1, 2, and 13 did not share any
reactions catalyzed by the same group of enzymes. The most
populated clusters (which we defined as those having at least 3
enzymes associated with a metabolic pathway), were related to
the catalysis of reactions involved in biotin metabolism and fatty
acid biosynthesis (cluster_3); galactose metabolism, amino sugar,
and nucleotide sugar metabolism (cluster_13); and pyruvate
metabolism (cluster_2).

In clusters 5, 16, 17, and 19, aldehyde dehydrogenase (NAD+)
(EC: 1.2.1.3, EZS = 2.24583) catalyzes reactions of the fatty
acid degradation pathway, valine, leucine, and isoleucine
degradation, tryptophan metabolism, lysine degradation,
β-alanine metabolism, pantothenate and CoA biosynthesis,
limonene and pinene degradation, ascorbate and aldarate
metabolism, and glycolysis/gluconeogenesis, among others.
This enzyme has been characterized in marine bacteria such as
Halomonas salina strain AS11, which produces high levels of
aldehyde dehydrogenase (Sripo et al., 2002) that may contribute
to the biotransformation of a large number of drugs and other
xenobiotics; these reactions generate aldehydes as intermediates,
many of which have significant biological effects, including
cytotoxicity, mutagenicity, genotoxicity, and carcinogenicity,
and they have also been identified as a product of the shrimp
aquaculture industry (Sripo et al., 2002).

MC1_8_a2 contains clusters 9 and 23, responsible for
catalyzing reactions involved in amino acid metabolism; it shows
no related enzymes, and a larger subcluster includes clusters
3, 4, 7, and 14. Clusters 23 and 18 contain cystathionine
gamma-synthase (EC: 2.5.1.48, EZS = 1.53123), which is
shared by the reference and this metagenome. Cystathionine
gamma-synthase catalyzes reactions involved in cysteine and
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FIGURE 8 | A04_AAIW metagenome metabolic network cluster. We present the clustering analysis of the A04_AAIW metabolic networks. The analysis represents
the total number of intersecting ECs between each group and the KEGG pathways employed for global network construction.

FIGURE 9 | D18_MAX metagenome metabolic network cluster. We present the clustering analysis of the D18_MAX metabolic networks. The analysis represents the
total number of intersecting ECs between each group and the KEGG pathways employed for global network construction.
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FIGURE 10 | Global representation of the metabolic processes in the analyzed GoM samples. A series of fermentation processes, such as those associated with
butanoate and propanoate metabolism, characterizes the photic zone. Other types of metabolism, such as amino acid and glyoxylate metabolism, were also
observed in the photic zone. Below the photic zone, at deeper layers, the water column showed chemolithotrophic pathways, such as methane metabolism and
aromatic hydrocarbon degradation.

methionine metabolism, seleno compound metabolism, and
sulfur metabolism. Cluster 23 also shares with cluster 3 threonine
ammonia-lyase (EC: 4.3.1.19, EZS = 3.46455), which was
significantly detected in our metagenome. This enzyme is a D-
amino acid lyase that, similar to other D-amino acid lyases,
is a key enzyme involved in the use of D-amino acids as
a nitrogen source integrating DOM in marine environments
(Yu et al., 2020).

Major cluster MC2_8_a1 contains 12 groups, five of which
are interconnected (clusters 8, 10, 22, 25, and 29) by purine
nucleosidase (EC: 3.2.2.1, EZS = 1.036), with EZSs equally
represented in the reference and the metagenome. This enzyme is
involved in purine metabolism and nicotinate and nicotinamide
metabolism. Clusters 10, 11, 14, 22, 25, 26, 29, and 10 share
a 5′-nucleotidase (EC: 3.1.3.5, EZS = 3.2916) and purine
nucleoside phosphorylase (EC: 2.4.2.1, ESZ = 3.19126), both
of which have significant EZSs and catalyze reactions involved
in purine metabolism, pyrimidine metabolism, nicotinate and
nicotinamide metabolism, and the biosynthesis of secondary
metabolites. In a previous section, we discussed the relevance
of 5′-nucleotidase in the phosphate cycle. Clusters 11 and 14
share thymidine phosphorylase (EC: 2.4.2.4) and thymidine
kinase (EC: 2.7.1.21), both of which were identified at significant
levels and catalyze reactions involved in pyrimidine metabolism
and drug metabolism. Clusters 10, 14, 22, and 29 contain

enzymes related to drug metabolism – other enzymes, such as
hypoxanthine-guanine phosphoribosyltransferase (PRTase) (EC:
2.4.2.8, EZS = 5.74335), whose activity is also associated with
the purine salvage pathway that generates adenine and guanine
ribonucleotides and deoxynucleotides from hypoxanthine. This
enzyme shows broad specificity and is universally distributed in
the three cellular domains (Armenta-Medina et al., 2014).

Other pathways involved in arginine metabolism and the one-
carbon pool associated with folate were identified in MC2_8_a2,
which included some enzymes related to nucleotide metabolism.
In particular, the one-carbon pool involved in folate metabolism
was associated with a cluster of five enzymes, three of which
were detected at significant levels: dihydrofolate reductase
(DHFR) (EC: 1.5.1.3, EZS = 4.87773), formyltetrahydrofolate
deformylase (EC: 3.5.1.10, EZS= 2.91206), and methionyl-tRNA
formyltransferase (EC: 2.1.2.9, EZS = 2.24395). DHFR catalyzes
the reduction of dihydrofolate (DHF) to tetrahydrofolate (THF);
this is an indispensable enzyme for all organisms because of
its role in the biosynthesis of purine nucleotides and some
amino acids (Ohmae et al., 2015). This enzyme, as well as
others that were well represented in our study such as alpha-
glucosidase (Shirai et al., 2008) (EC: 3.2.1.20, EZS= 2.64074) and
aspartate carbamoyltransferase (De Vos et al., 2007) (EC: 2.1.3.2,
EZS = 2.24583), have been cataloged as deep-sea enzymes.
Another deep-sea enzyme is 3-isopropyl malate dehydrogenase
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(Kato et al., 1998) (EC: 1.1.1.85 = 0.847829), which was equally
represented in the GoM metagenome and the reference samples.

The clusters in Figure 9 showed pathways enriched in the zone
of maximum fluorescence (D18_MAX). In this metagenome,
we identified 27 clusters, some of which were enriched at
this depth: drug metabolism – other enzymes, pyrimidine and
purine metabolism and nicotinate and nicotinamide metabolism,
among others. On the other hand, pathways involved in the
xenobiotics class were more represented in the network than at
the A04_AAIW depth; these pathways included the ethylbenzene,
geraniol, caprolactam, toluene, chloroalkane and chloroalkane,
and limonene degradation pathways. Similarly, as shown in
Figure 8, the tree can be divided into two major clusters
(MC1_9 and MC2_9).

MC1_9_a1 includes clusters 1, 5, 8, 17, and 25. Cluster
1, the largest of these clusters, contains enzymes catalyzing
reactions in other clusters of the same group. The shared
enzymes in this cluster are equally represented in both our
metagenome and the reference. The pathways with more
than 3 enzymes include several amino acid biosynthesis
and degradation pathways, such as glycine, serine, and
threonine metabolism; cysteine and methionine metabolism;
arginine biosynthesis; and alanine, aspartate, and glutamate
metabolism. Nitrogen metabolism involves five enzymes
catalyzing steps including the transformation of nitrile to
ammonia (NH3+) (mediated by glutaminase; EC 3.5.1.2,
EZS = 4.26525), which is then transformed into L-glutamine
(mediated by glutamine synthetase; EC 6.3.1.2, EZS = 0.98244)
and further into L-glutamate [mediated by three enzymes,
glutamate synthase (NADPH) large chain (EC: 1.4.1.13,
EZS = 0.255537), glutamate synthase (NADH) (EC: 1.4.1.14,
EZS = −0.495233), and glutamate synthase (ferredoxin) (EC:
1.4.7.1, EZS = −0.823102)]. An alternative pathway with
the significant role of directly transforming ammonia into
L-glutamate, mediated by glutamate dehydrogenase [NAD(P)+]
(EC: 1.4.1.3, EZS = 5.65565), was also identified. The end
product of this reaction enters D-glutamine and D-glutamate
metabolism, in which glutamate is reversibly transformed into
two oxoglutarate by glutamate dehydrogenase [NAD(P)+].
In turn, two oxoglutarate is taken up by the citrate cycle
or is transformed into D-glutamate by glutamate racemase
(EC: 5.1.1.3, EZS = 2.30112). D-Glutamate is subsequently
transformed into UDP-N-acetylmuramoyl-L-alanyl-D-
glutamate by UDP-N-acetylmuramoylalanine-D-glutamate
ligase (EC: 6.3.2.9, EZS = 6.18275), and the next product
enters peptidoglycan biosynthesis. All of the enzymes of this
pathway have significant EZSs. The abovementioned findings are
important since although D-amino acids are minor components
of living organisms, they occur in a wide range of natural
environments, such as soils (Vranova et al., 2012; Naganuma
et al., 2018), rivers, and marine systems (Wu et al., 2007;
Naganuma et al., 2018), among others.

MC1_9_a1 includes four populated pathways: β-alanine
metabolism; valine, leucine, and isoleucine degradation;
glyoxylate and dicarboxylate metabolism; and cysteine and
methionine metabolism. Clusters 11, 19, and 24 contain aldehyde
dehydrogenase, which participates in alkane degradation as

previously mentioned. This versatile enzyme in this cluster also
participates in the production of β-alanine. From this pathway,
we identified all of the steps in the bidirectional conversion of
uracil into β-alanine. The enzymes participating in this pathway
are dihydropyrimidine dehydrogenase (NAD+) subunit
PreT (EC: 1.3.1.1, EZS = 2.03861) and dihydropyrimidine
dehydrogenase (NADP+) (EC: 1.3.1.2, EZS = 1.38085), which
catalyzes the transformation of uracil into 5,6-dihydrouracil,
followed by the reaction converting this compound into
N-carbamoyl-β-alanine, catalyzed by dihydropyrimidinase (EC:
3.5.2.2, EZS = 0.631778). The last reaction is the conversion to
β-alanine by the enzyme beta-ureidopropionase (EC: 3.5.1.6,
EZS = −0.734533). Similar results have shown that the non-
protein amino acids β-alanine and γ-aminobutyric acid can be
found as dissolved free amino acids in marine water (Dawson,
1986). The sequence of reactions found in our study suggests
the presence of microorganisms capable of decomposing
uracil into β-alanine. Finally, MC1_9_a2 includes enzymes
that catalyze reactions involved in drug metabolism - other
enzymes, pyrimidine metabolism, nicotinate and nicotinamide
metabolism, and purine metabolism. These pathways were
also found in A04_AAIW, but a greater proportion of the
enzymes were represented in D18_MAX, with a maximum
of 12 enzymes, versus a maximum of 9 in A04_AAIW.
Enzymes representative of cluster 3 were the most abundant
(n = 12), all of which participated in reactions involved in
purine metabolism.

DISCUSSION

Reference Metagenomes as Tools for the
Identification of Metabolic Potential
Extracting meaningful biological information from metagenomes
is a serious bioinformatics challenge. A considerable number of
tools have been employed to identify useful information that
can help to understand the taxonomic and genomic composition
of several biomes (De Anda et al., 2017; Nurk et al., 2017;
Escobar-Zepeda et al., 2018; Dong and Strous, 2019; Paczian
et al., 2019). Consequently, the need for a new method that
takes into consideration all the information of the enzymes in a
group of metagenomes, unlike previously described approaches
that depict metabolic pathways only based on a group of marker
genes, led us to propose a novel statistical method that considers
the distribution of enzymes derived from the annotation of
metagenomic samples as a fundamental element of the analysis.
The logic underlying this approach is that each enzyme in a
group of metagenomes should have a particular distribution and
that the EZS can indicate whether an enzyme in a different
metagenome is distinct from those observed in the reference
distribution. As shown by our results, 41% of the enzymes had a
normal distribution. We interpreted this as better preservation of
these enzymes in the metagenomes. This possibility was evaluated
by observing the distribution of essential enzymes, which showed
that 77% of them presented a normal, consistent with our
expectation that these enzymes would be present in all organisms
of the community.
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However, as shown in the results, some enzymes, such as
some of the aaRSs, are non-normally distributed. Moreover, the
log-normal and Weibull observed distributions have long tails,
which are characteristic of these kinds of distributions. The
meaning of this behavior is difficult to explain; however, we know
that these enzymes are not well preserved in known species,
and several of them have been tested only in representative
organisms. It is possible that the organisms with these aaRSs
are not heavily represented in the selected samples. This lack
of preservation of certain aaRSs has been shown for some
archaeal, bacterial, and organellar genomes that instead employ
indirect aminoacylation pathways (O’Donoghue and Luthey-
Schulten, 2003), which may explain the observed behavior. Other
explanations may be related to the impossibility of recovering
genes of low-abundance organisms, or the genes encoding these
enzymes may be in chromosomal regions that are difficult to
sequence. On the other hand, the lack of coverage in the assembly
could be another problem impacting the more homogeneous
annotation of these enzymes.

As previously mentioned, identifying valuable information in
metagenome samples is challenging since the methodological
decisions made concerning trimming, assembly, and annotation
can impact the results and affect the tested distributions,
especially for those genes that are less widely distributed in
the samples. However, in the analysis performed herein, we
attempted to consider methodological and biological variation by
evaluating the distribution of each enzyme.

Another factor affecting the PDFs of enzymes is the kind
of metagenome selected to construct the reference dataset.
The approach applied herein first considered samples collected
worldwide, representing distinct depths and conditions, which
were compared with the GoM samples under the assumption
that they should differ, at least concerning the presence of
hydrocarbons. However, the environmental conditions were
poorly described in several metagenomic studies, even when
physicochemical parameters were included. Therefore, the
selection of reference samples could be challenging. In these
cases, the analysis encountered reference conditions presenting
small variations compared with our metagenomes. As a result, we
found similarities between the samples, leading to poor enzyme
identification, but we hope to identify some enzymes defining the
tested conditions. Additionally, the databases used for annotation
will introduce bias. In this work, we employed MG-RAST, which
uses several databases to perform this task. Nonetheless, the
annotations are incomplete.

It may be possible to improve our statistical method by
modifying the selection of the reference samples. This can
be done by performing sampling at several points at the
same depth, longitude, and latitude and probably in the same
season, considering the impact of this last parameter on the
biophysiochemical composition of ocean samples, which we
think will highlight the uniqueness of certain enzymes in the
tested metagenomes. Moreover, by selecting the reference in
this way, we expect to increase the detection of enzymes in the
reference since we expect all of them to be preserved in the
metagenomes; however, this is also a disadvantage since not all
enzymes are represented in all metagenomes. Nevertheless, we

wanted to be strict concerning this point. We also expect the
enzymes to be more normally distributed in these new references,
considering that the samples may be more similar.

Identification of Overrepresented
Pathways
The boxplots showing the distribution of EZS in Figure 4 were
the initial approximations used for the selection of major classes
with a high proportion of atypical enzymes. The xenobiotic
pathways in the A04_AAIW metagenome showed this property.
This is a meaningful result knowing that our samples were
collected in the GoM, which is frequently disrupted by both
natural oil release (De Beukelaer et al., 2003; MacDonald et al.,
2015) and oil spills (Mason et al., 2012; Liu and Liu, 2013;
Looper et al., 2013). Moreover, the natural identification of the
anaerobic degradation of aromatic hydrocarbons was meaningful
at this depth, proving that our method is a powerful tool for
discovering well-represented enzymes that correlate well with the
physicochemical composition of the environment without any
previous preselection.

The approach also naturally highlighted other enzymes related
to petroleum biodegradation and those involved in lipid and
amino acid metabolism in both metagenomes, in accord with
previous studies that have demonstrated that “crude oil pollution
constitutes a temporary condition of carbon excess coupled to
limited availability of nitrogen that prompts marine oil-degrading
bacteria to accumulate storage compounds” (Manilla-Pérez et al.,
2010) such as lipids. In aquatic ecosystems, lipids provide the
densest form of energy, yielding at least two-thirds more energy
per gram than proteins or carbohydrates, and they are therefore
significant molecules in trophic chains (Parrish, 2013). As noted
above, lipids also function as solvent or absorbent carriers of fat-
soluble vitamins, carotenoids, and organic contaminants, the last
of which are the main drivers of pollutant bioaccumulation in
marine ecosystems (Parrish, 2013). Additionally, certain essential
fatty acids and sterols are important drivers of ecosystem health
and stability (Arts et al., 2001).

Notably, the results related to the presence of enzymes
involved in oil degradation are consistent with previous works of
our own and other groups that investigated the Mexican exclusive
economic zone and identified oil-degrading microorganisms
derived from 16S amplicon analysis (Fernanda Sánchez-Soto
Jiménez et al., 2018; Godoy-Lozano et al., 2018; Hernández-López
et al., 2019; Moreno-Ulloa et al., 2019; Raggi et al., 2020; Ramírez
et al., 2020); isolated fractions related to petroleum (Moreno-
Ulloa et al., 2019); isolated consortia and species capable of
degrading petroleum under aerobic and anaerobic conditions
(Muriel-Millán et al., 2019; Curiel-Maciel et al., 2021; Rosas-Díaz
et al., 2021); and characterized petroleum-degrading enzymes
(Rodríguez-Salazar et al., 2020), even in regions with no evidence
of anthropogenic perturbation. A recent review illustrated the
distribution of bacteria in the water column and sediments of
the Mexican exclusive economic zone of the GoM (Rodríguez-
Salazar et al., 2021). The identification of all samples amplified
using the V3–V4 16S rRNA gene variable regions showed
that members of oil-degrading genera were distributed in the
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water column throughout the region extending from Perdido
(Tampico) to Campeche Bay.

In this study, the inspection of BRITE classes provided
a general view of the global metabolism represented in the
GoM metagenomes. Nevertheless, for the definition of a more
detailed metabolic profile, network reconstruction is necessary.
The reconstructed network revealed the interconnection of
compounds whose production was catalyzed by the identified
enzymes. This reconstruction considered not only the enzymes
with a significant EZS ≥ 2 but also the enzymes in the interval
between −1 and 2. As explained above, the EZSs located in the
interval corresponded to enzymes that were equally represented
in the reference and in the GoM metagenomes.

Network reconstruction led to the identification of several
enzymes functioning in more than one reaction. These reactions
were components of pathways that may not be in accord with
the environmental conditions evaluated. Therefore, an important
step of manual curation is always necessary to establish a more
consistent pathway reconstruction. In our work, this was the
case for the detected reactions in the drug metabolism – other
enzymes category, composed of enzymes participating in the
fluorouracil pathway, for which analogs are widely used to treat
breast and gastrointestinal carcinomas (Uekama and Hirayama,
2008). The anticancer effects of these drugs in mammals are
exerted through the inhibition of thymidylate synthase and the
misincorporation of its metabolites into RNA and DNA in place
of uracil or thymine. A deep inspection showed that a better
interpretation of our observations was related to pyrimidine
metabolism, which is closely related to the phosphorus cycle
in oceans. However, it is worth noting that 5-FU derivatives
were isolated from the marine sponge Phakellia fusca in another
study (Xu et al., 2003), which is significant because fluorine-
containing organic compounds are rare in nature; nevertheless,
the presence of this type of metabolism in microorganisms has
not been reported.

The analysis of pyrimidine metabolism provided an excellent
example of the identification of key enzymes, such as the
5′ nucleotidase involved in aquatic phosphorus regeneration
and the alkaline phosphatase modulating phosphorus deficiency
within bacterial cells. The 5′nucleotidase was first identified in
both marine and freshwater environments on the cell surface
of bacterial plankton and was shown to rapidly hydrolyze 5′
nucleotides regenerating Pi (orthophosphate) (Bjorkman and
Karl, 1994). This enzyme is different from alkaline phosphatase
(EC: 3.1.3.1), another bacterial membrane protein encoded by
the phoA gene (Inouye et al., 1981) that has been hypothesized
to be directly related to phosphorus deficiency within bacterial
cells (Wanner, 1996; Benitez-Nelson, 2000). Moreover, under
laboratory conditions, the inhibition of the end product of
alkaline phosphatase by phosphate demonstrated the relationship
between low Pi levels and alkaline phosphatase activity (Mahaffey
et al., 2014). The same study showed that the activity of alkaline
phosphatase clearly impacted the concentration of dissolved
organic phosphorus (DOP), which was suggested in a recent
revision to potentially support a large fraction of the P demand
in the microbial community (Duhamel et al., 2021). However,
studies in the open ocean show that alkaline phosphatase activity

occurs in a range of concentrations that suggest constitutive or
inducible activity (Mahaffey et al., 2014).

Among these enzymes, we identified key enzymes of the
benzoyl-CoA pathway and some deep-sea enzyme markers.
Furthermore, the identification of the β-alanine pathway in
D18_MAX was also consistent with reports showing that in the
marine water column, these non-protein amino acids comprise
a small fraction (<4%) of the total amino acid pool, which may
be released during phytoplankton decomposition (Nguyen and
Harvey, 1997) and then deposited in marine sediments, where
they are more abundant (Schroeder, 1975).

A general reconstruction of metabolic pathways that could
be occurring within the marine samples analyzed in this study
is depicted in Figure 10. Within the photic zone, there is a
prevalence of fermentation processes, particularly butanoate and
propanoate metabolism. However, it is important to point out
the metabolism of amino acids and the degradation of aromatic
hydrocarbons and alkanes due to their prevalence and abundance
in accordance with the EZS of the enzymes described above.

The identification of enzymes with bioremediation potential
in ocean samples as other molecules important for medical
treatments and biotechnological uses is desirable because these
enzymes are more tolerant to high pressure, salinity, and
temperature than enzymes identified under other environmental
conditions. We proved that our approach produced promising
results in this regard. In this report, we describe some examples
of the more significant cases to illustrate the scope of our
method, leaving some enzymes and pathways less well explained.
Moreover, metagenomic bins (Supplementary Table 9) encode a
wide range of enzymes relative to oil and xenobiotic degradation
pathways, particularly in the A04_AAIW and less in D18_MAX
samples, as shown in Figures 7A,B, respectively.

CONCLUSION

The amount of available biological data is continuously
increasing; hence, the bioinformatics community has the golden
opportunity to solve or retrieve hidden information from
genomic and metagenomic data and gather information about
microorganisms and gene functions that have been unexplored
thus far. In this paper, we present a method for identifying the
metabolic potential within metagenomic samples. Our proposed
strategy explores the statistical properties of the enzymes
collected from the samples, converting them into a baseline and
allowing us to explore the overrepresentation of the enzymes
catalyzing the reactions describing the metabolic potential of
tested metagenomes. As a case study, we used two metagenomes
collected in the GoM and sequences annotated by our group that
were compared to reference metagenomes of the GEOTRACES
project. This statistical analysis provided detailed examples of
how our strategy generated clues about the metabolic network-
defining pathways. Furthermore, the network reconstruction
showed congruence between the identified pathways and the
features of the sampled sites. Our results are promising, and
we are aware that several steps in the sample treatment,
sequencing, and bioinformatics pipelines employed for assembly
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and annotation may improve metabolic profile prediction.
However, this strategy provided consistent results and a new
approach for exploring the metabolic network of biomes.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

AL and R-MG-R conceived and designed the methodology and
analysis and wrote the manuscript. FG-G performed the network
reconstruction and clustering analysis. AE-Z and LS performed
the MG-RAST annotation. MS-O curated the essential enzymes
to aid in the bioinformatics analysis, she assembled, binned, and
annotated the genomes from the metagenomes, and prepared
the Figures 2, 7, 10. FG-G and R-MG-R prepared the figures
and tables. AE-Z, AS-F, EM, KJ, LS, and LP-L contributed to the
improvement of the project and reviewed the final version of the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

This research was funded by PAPIIT-DGAPA IN202821, awarded
to R-MG-R, and the National Council of Science and Technology
of Mexico – Mexican Ministry of Energy – Hydrocarbon Trust
(project 201441). This was a contribution of the Gulf of Mexico
Research Consortium [Consorcio de Investigación del Golfo de
México (CIGoM), 2021].

ACKNOWLEDGMENTS

The authors would like to thank Juan Manuel Hurtado, Ricardo
Ciria Merce, Arturo Ocádiz, David Santiago Castañeda Carreón,
Gabriela Román Flores, and Shirley Ainsworth for their technical
and bibliographical support.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2021.781497/full#supplementary-material

Supplementary Figure 1 | A04_AAIW metabolic network. The KGLM files were
used to reconstruct the metabolic network at a depth of 1,000 m. The
reconstruction was based on the significant identified enzymes (in red), connected
by the compounds reported to represent a reaction. The network involved in the
fluorouracil transformation is highlighted in a square.

Supplementary Figure 2 | D18_MAX metabolic network. The KGLM files were
used to reconstruct the metabolic network of the maximum fluorescence zone.
The reconstruction was based on the significantly identified enzymes (in red),
connected by the compounds reported to represent a reaction.

Supplementary File 1 | Code example. The file presents the R functions
employed to calculate the PDFs and EZS are shown.

Supplementary Table 1 | Metadata. The table provides the SRA experiment
identifiers for the reference and Gulf metagenomes, including the related
MG-RAST identifier, geographical location, latitude, longitude, depth, library
instrument, library layout, and PubMed references.

Supplementary Table 2 | Probability density function describing the annotated
enzymes in the reference. The table shows the PDF describing the behavior of
each enzyme (EC) in the reference metagenomes (normal, log-normal, gamma,
and Weibull distributions). The table also shows the parameters (Parameter 1 and
Parameter 2), the rates on the references (m1–m19) and the observed rates on
Rate D18_MAX and Rate A04_AAIW.

Supplementary Table 3 | Probability density functions of aaRSs. The table
presents the PDFs of the aaRSs of the reference. Enzymes were classified
according to their classes (Woese et al., 2000) and KOs. Column 4 shows the
number of genomes having the enzyme.

Supplementary Table 4 | Probability density function of enzymes in metabolic
pathways. The table shows the PDF describing the behavior of each enzyme in
the reference metagenomes for which a metabolic pathway is described. The
table presents from columns counts of enzymes with the same PDF within
the pathways. Columns F–K show the enzymes’ frequency in the
PDF found.

Supplementary Table 5 | Equivalent z-scores of enzymes found in metabolic
pathways. Enzymes with an assigned EZS were classified into the corresponding
KEGG BRITE classes and metabolic maps.

Supplementary Table 6 | Statistical properties of enzymes grouped into
BRITE classes. A summary of the measures of the central tendency and quartiles
is shown in the table with the enzymes grouped into the BRITE
classes.

Supplementary Table 7 | Enzymatic Commission equivalences. We show the
enzyme names associated with ECs related to Figure 6 presented
in the main text.

Supplementary Table 8 | Enzymatic Commissions in clusters. We list
the enzymes (EC: s) clustered within Figures 8, 9 from the
main text.

Supplementary Table 9 | Binned metagenome data. The features found for the
metagenome bins in terms of completeness, contamination, and strain
heterogeneity are listed. The final classification is set according to Checkm. The
taxonomic classification of the binned metagenomes is also shown. Ensembles
and annotations can be downloaded from Figshare
https://figshare.com/articles/dataset/BINS_A04_AAIW_Gulf_of_Mexico/17132402
and https://figshare.com/articles/dataset/BINS_D18_MAX/17132417.
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