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Abstract

Objectives

Previous studies have demonstrated that microRNA-132 plays a vital part in and is actively

associated with several cancers, with its tumor-suppressive role in hepatocellular carci-

noma confirmed. The current study employed multiple bioinformatics techniques to estab-

lish gene signatures for hepatocellular carcinoma, microRNA-132 predicted target genes

and the corresponding overlaps.

Methods

Various assays were performed to explore the role and cellular functions of miR-132 in

HCC and a successive panel of tasks was completed, including NLP analysis, miR-132 tar-

get genes prediction, comprehensive analyses (gene ontology analysis, pathway analysis,

network analysis and connectivity analysis), and analytical integration. Later, HCC-related

and miR-132-related potential targets, pathways, networks and highlighted hub genes were

revealed as well as those of the overlapped section.

Results

MiR-132 was effective in both impeding cell growth and boosting apoptosis in HCC cell

lines. A total of fifty-nine genes were obtained from the analytical integration, which were

considered to be both HCC- and miR-132-related. Moreover, four specific pathways were

unveiled in the network analysis of the overlaps, i.e. adherens junction, VEGF signaling

pathway, neurotrophin signaling pathway, and MAPK signaling pathway.
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Conclusions

The tumor-suppressive role of miR-132 in HCC has been further confirmed by in vitro exper-

iments. Gene signatures in the study identified the potential molecular mechanisms of

HCC, miR-132 and their established associations, which might be effective for diagnosis,

individualized treatments and prognosis of HCC patients. However, combined detections of

miR-132 with other bio-indicators in clinical practice and further in vitro experiments are

needed.

1. Introduction
Hepatocellular carcinoma (HCC) is among the most common cancers and ranks as the third
most frequent cause of cancer-related deaths globally.[1] Nevertheless, diagnosis of HCC is
often made at an advanced stage and drug resistance and recurrence are often observed in
HCC, leaving poor prognosis for HCC patients.[2, 3] Thus, there are urgent demands that
novel diagnostic and prognostic biomarkers for HCC should be discovered and that a clearer
map of molecular mechanisms of HCC should be drawn.

Gene signatures, which are considered auspicious in diagnosing and prognosis-predicting
for HCC, can furnish us with molecular bases, regulatory pathways and mediating networks of
HCC pathogenesis, thus leading to an improved route for earlier detection and more personal-
ized treatment strategies for HCC.[4]

MicroRNAs, or miRNAs in short, are an abundant class of small non-coding RNA mole-
cules, acting as regulators in nearly one third of protein-coding genes at post-transcriptional
level.[5] During the last decade, miRNAs have been proved to be active and crucial in human
carcinogenesis via mediating protein expressions. [6]

MiR-132, one of the most vigorously studied miRNAs, is located in chromosome 17p13.3,
which has exhibited connections with a variety of malignancies such as breast cancer[7], colo-
rectal cancer[8], gastric cancer[9], glioma[10], osteosarcoma[11], pancreatic cancer[12], and
prostate cancer[13]. Initially, Wei, et al. [14] explored the potential role of miR-132 may play
in HBV-mediated hepatocarcinogenesis, and demonstrated the down-regulation of miR-132 in
HBV-related HCC with a cohort of 20 patients. Later on, in our previous study, we have vali-
dated the down-regulation of miR-132 in HCC with a larger cohort of 95 patients and con-
firmed its tumor suppressive role in HCC on the basis of determined relationships between
miR-132 and several clinical/pathological indicators and recurrence data in HCC patients (Xin
Zhang, et al. Down-regulation of MicroRNA-132 Indicates Progression in Hepatocellular Carci-
noma: A Clinical Perspective. Experimental and Therapeutic Medicine. In Press.). Recently, Liu,
et al[15] has conducted a series of tasks, including comparing expressions of miR-132 between
HCC and adjacent non-cancerous liver tissue, as well as in several cell lines, exploring cellular
functions of miR-132 in HCC via multiple assays, confirming tumor suppressive role of miR-
132 in HCC with nude mouse model and establishing PIK3R3 as a new target gene of miR-132.
However, the overview for molecular mechanisms on the decrease of miR-132 in HCC remains
obscure in spite of the previous researches. Given the complexity of multi-level regulatory sys-
tems in oncogenesis, a comprehensive and systematic analysis of miR-132 signatures in HCC
is pressingly thirsted, which will not only feature the potential molecular mechanisms of miR-
132 in HCC but also provide insights into diagnostic methods, therapeutic strategies and prog-
nostic assessments of HCC.

In the current study, in vitro experiments were conducted to further verify the down-regula-
tion of miR-132 and to assess its cellular functions in HCC with a quadrupled scale of four
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HCC cell lines compared to the study led by Liu, et al.[15]. More importantly, we performed a
successive panel of data mining and screening, target genes prediction, comprehensive analy-
ses, which included gene ontology (GO) analysis, pathway analysis and network analysis, and
later analytic integration in an attempt to offer a comprehensive and systematic panorama on
the expression of potential target genes of miR-132 related to carcinogenesis, metastasis, prog-
nosis, recurrence, survival and drug-resistance (sorafenib and bevacizumab) in HCC.

2. Materials and Methods
In vitro experiments were performed to further verify the tumor-suppressive role of miR-132
and to assess its cellular functions in HCC (Fig 1). A series of tasks, i.e. natural language pro-
cessing (NLP) analysis of HCC, prediction of miRNA-132 target genes, comprehensive gene
analyses and analytical integration was then conducted successively (Fig 2).

2.1 Verification of role and assessment of cellular functions of miR-132
in HCC

2.1.1 Cell line preparation. Four types of cell lines were cultured as formerly reported, i.e.
HepG2 (American Type Culture Collection, ATCC), HepB3 (ATCC), SNU449 (ATCC) and
SMMC-7221 (Chinese Academy of Medical Sciences) [16–19]. In vitro processes were con-
ducted in triplicate. HCC cells were established in 96-well plates with 2.5 × 103 cells per well
and incubated at the temperature of 37 degree Celsius for 24 hours prior to transfection.

2.1.2 Transfection. The transfection procedures were conducted respectively in cells of
blank control, mock control, negative miRNA inhibitor control, miR-132 inhibitor, negative

Fig 1. Flow chart of in vitro processes. In vitro experiments were performed to further verify the tumor-suppressive role of miR-132 and to
assess its cellular functions in HCC.

doi:10.1371/journal.pone.0159498.g001
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miRNAmimic control, and miR-132 mimic (Ambion, Life Technologies Grand Island, NY,
USA) at the concentration of 200 nanomoles/L for up to 96 hours with combiMAGnetofection
(OZBIOSCIENCES, Marseille Cedex 9, France) in accordance with manufacturers’ instruc-
tions. Sequence of miR-132 was uaacagucuacagccauggucg.

2.1.3 Transfection efficiency detection. Meanwhile, RT-qPCR was employed to detect
and monitor the transfection efficiency. The entire RNA with miRNA included was extracted
from HCC cells in corresponding groups respectively. The housekeeping reference here was
the combination of RNU6B and let-7a for the purpose of miR-132 expression detection. The
primers for miR-132, RNU6B and let-7a were maintained in TaqMan MicroRNA Assays
(4427975, Applied Biosystems, Life Technologies Grand Island, NY 14072 USA). Sequence of
miRNA and references were: miR-132: 000457; RNU6B: 001093; let-7a: 000377. In terms of
reverse transcription, a total volume of ten microliters was applied with TaqMan MicroRNA
Reverse Transcription Kit (4366596, Applied Biosystems, Life Technologies Grand Island, NY
14072 USA) with the exact same reverse primers. Real-time qPCR was conducted with Applied
Biosystems PCR7900 as previously described [16–19], which was in the charge of detecting
and monitoring miRNA expression.

2.1.4 Cellular function assessment. A series of assays, i.e. fluorimetric resorufin viability
assay, MTS tetrazolium assay, and the fluorescent caspase-3/7 assay, was used, as formerly
described[16–25], to access the cellular functions of HCC cell lines influenced by miR-132
mimics and miR-132 inhibitors, which were cellular viability, proliferation and apoptosis
respectively.

2.1.5 Statistical analysis. All the data were analyzed with SPSS 20.0 and presented in the
way of means ± standard deviation (SD) from three independent, single experiments at least.
One-way analysis of variance (ANOVA) test was applied for significance analysis of different
groups. When statistical significance emerged in the probability for ANOVA, the least

Fig 2. Flow chart of bioinformatic processes. A series of tasks, i.e. natural language processing (NLP) analysis of HCC, prediction of miRNA-
132 target genes, comprehensive gene analyses and analytical integration was conducted successively.

doi:10.1371/journal.pone.0159498.g002
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significant difference (LSD) method of multiple comparisons between two groups was
employed. If the P value was less than 0.05, it would be regarded to be statistically significant.

2.2 NLP analysis of HCC
The NLP analysis procedure of HCC was summarized in Fig 3.

2.2.1 Document mining. An electronic search in PubMed was performed in an attempt to
include all relevant articles published between January 1, 1980 and May 25, 2015. The

Fig 3. Flow chart of NLP analysis for HCC. The NLP analysis procedure of HCC includes document mining, data processing and statistical
analysis.

doi:10.1371/journal.pone.0159498.g003
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combination of search strategy employed were as follows: (hepatocellular carcinoma) AND
(resistance OR prognosis OR metastasis OR recurrence OR survival OR carcinogenesis OR sor-
afenib OR bevacizumab) and (‘1980/01/01” [PDAT]: “2015/05/25” [PDAT]). All the relevant
proteins and genes related to the keywords above were mined out and a corresponding list was
later created.

2.2.2 Data processing. A Biomedical Named Entity Recognizer (ABNER), an open-source
software (http://pages.cs.wisc.edu/~bsettles/abner/), was adopted for gene mention tagging,
which automatically tagged out proteins, genes and other entity labels in the text. Conjunction
resolution was also in the charge of ABNER, by which extracted genes were analytically
resolved and sorted. For instance, ABNER would detect the “Caspase3/7” gene and resolve it
into two separate genes, i.e. Caspase3 gene and Caspase7 gene. [26] Since multiple names
might be used for the same gene, we normalized all the gene names in the articles into a stan-
dard set of names according to Entrez Database developed by NCBI.[27, 28]

2.2.3 Statistical analysis. The frequency of occurrences was counted respectively for each
gene. A higher frequency of a certain gene suggested a greater chance that the gene would be
associated with HCC. The total number of articles in PubMed was labeled as N. The occurrence
frequencies of genes and HCC in the PubMed were recorded asm and n respectively. K was set
as the frequency of spontaneous co-occurrence of the specific gene and HCC under actual cir-
cumstances. With the assistance of hypergeometric distribution, it became possible to calculate
the probability of occurrence frequency of co-citation greater than k under complete random-
ness by the formulae listed below:

p ¼ 1�
Xk�1

i¼0

pðijn;m;NÞ

pðijn;m;NÞ ¼ n!ðN � nÞ!m!ðN �mÞ!
ðn� iÞ!i!ðn�mÞ!ðN � n�mþ iÞ!N!

2.3 Prediction of miRNA-132 target genes
Eleven bioinformatics tools were employed to predict the potential target genes of miRNA-
132, which are as follows: DIANA-microT[29], MicroInspector[30], miRanda[31], MirTarget2
[32], miTarget[33], NBmiRTar[34], PicTar[35], PITA[36], RNA22[37], RNAhybrid[38] and
TargetScan/TargetScanS[39]. Only when a predicted target gene were nominated by at least
four bioinformatics tools would it be considered to be reliable and further eligible for its inclu-
sion of the current study.

2.4 Comprehensive gene analyses
2.4.1 Gene ontology (GO) analysis. It was the GSEABase package of the R Project for Sta-

tistical Computing (https://www.r-project.org/) that took on the responsibility for GO analysis,
which categorized predicted target genes into groups according to three independent classifica-
tion systems, i.e. molecular function, cellular component, and biological process.

2.4.2 Pathway analysis. Potential target genes of miR-132 were mapped into the Kyoto
Encyclopedia of Genes and Genomes (KEGG) Pathway Database with the assistance of Gen-
MAPP v2.1[40], which was also employed for the calculation of enrichment P value of each
pathway.
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2.4.3 Network analysis. In general, three different classes of interaction relationships were
integrated in attendance with the following principles:

• Existing data from protein interaction, gene regulation and protein modification mentioned
in KEGG Database.

• Available data from high-throughput experiments. A case in point was a yeast-two-hybrid
system which supported the protein-protein interaction.

• Published or reported data with regard to interactions among genes.

The specific steps could be described as follows:

• For data mentioned in KEGG Database, pathway data downloaded from KEGG Pathway
Database were ported into the R Project for Statistical Computing (https://www.r-project.
org/) and the KEGGSOAP package (http://www.bioconductor.org/packages/2.4/bioc/html/
KEGGSOAP.html) was employed for the performance of a genome-wide interaction analy-
sis, which included three types of relationships listed in Table 1.

• For data from high-throughput experiments, data regarding protein-protein interactions
were obtained from the MIPS Mammalian Protein-Protein Interaction Database (http://
mips.helmholtz-muenchen.de/proj/ppi/).

• For the published or reported data, they proceeded with the algorithm described in Section
2.1.3.

At length, we took the all the above factors and data into account comprehensively, estab-
lished the corresponding networks and displayed then via figures with the assistance of
MEDUSA software.

2.4.4 Connectivity analysis. Connectivity analysis was used for the display of degrees to
which genes/proteins interacts with one another.

2.5 Analytical integration
The gene overlaps were integrated analytically between HCC-related genes from NLP analysis
and predicted target genes of miR-132 by bioinformatics softwares.

3. Results

3.1 The role and cellular functions of miR-132 in HCC
RT-qPCR was employed to detect and monitor the influences of different agents on the expres-
sion levels of miR-13, which guaranteed the transfection efficiency to be optimal. The impact
of miR-132 on cell growth was established with two different methods respectively, i.e. fluori-
metric resorufin viability assay and MTS tetrazolium assay.

In the fluorimetric resorufin viability assay (Fig 4), both the miR-132 mimic and the miR-
132 inhibitor had certain influence on the viability of cells. After the transfection with miR-132
mimic, cell viability significantly decreased in all the four cell lines: both HepG2 and SMMC-

Table 1. Three classes of relationships are mentioned in the genome-wide interaction analysis.

ECrel enzyme-enzyme relation, indicating two enzymes catalyzing successive reaction steps

PPrel protein-protein interaction, such as binding and modification

GErel gene expression interaction, indicating relation of transcription factor and target gene product

doi:10.1371/journal.pone.0159498.t001
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7221cell lines showed the similar tendencies, i.e. the viability both declined to around 90% and
approximately 80% after 72 hours and 96 hours of the transfections of the mimics; as for
HepB3 and SNU449, the viability of both cell lines dropped to around 85% after 96 hours of
the transfections of the mimics. However, the less significant results emerged when miR-132
inhibitors was transfected: only after 48 hours and 72 hours of inhibitor transfection into
HepG2 and SNU449 cell lines respectively, did a slight increase of less than 5% appear in both
cell lines; SMMC-7221 and HepB3 cell lines displayed no results of statistical significance after
being transfected with miR-132 inhibitors.

The cell proliferation was assessed by the MTS tetrazolium assay (Fig 5), in which the obser-
vation resembled the result in the fluorimetric resorufin viability assay—miR-132 mimics
showed greater impacts on cell lines than miR-132 inhibitors did. After being transfected with
miR-132 mimics, the proliferation in all the four cell lines dropped significantly: HepG2 cell
line showed a post-72hrs decline of approximately 10% and a post-96hrs drop of around 20%
in proliferation; SMMC-7721 cell line displayed a post-72hrs decrease of approximately 15%
and a post-96hrs fall of around 25%; a post-96hrs downward trend of approximately 15% was
observed in HepB3 cell line; and SNU499 cell line demonstrated a post-72hrs reduce of around

Fig 4. Viability test. Time-dependent effects of miR-132 were assessed on viability in various HCC cell lines, i.e. HepG2 (A), SMMC-7221 (B), HepB3 (C)
and SNU449 (D). Columns represent the averages of sets of three single, independent experiments while bars stand for the standard deviations. *P < 0.05,
** P < 0.01 and ***P < 0.001, compared to blank and negative controls at the same time point.

doi:10.1371/journal.pone.0159498.g004
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15% and a post-92hrs decline of approximately 20%. MiR-132 inhibitors displayed less signifi-
cant tendencies than miR-132 mimics did in terms of proliferation as well: the proliferation
rate rose by an approximate 5% to 10% after the 48–72 hours of inhibitor transfection in
HepG2 cell line; a post-72hrs increase of approximately 10% was observed in SMMC-7721 cell
line posterior to the transfection and the trend remained roughly stable till the post-96hrs
detection; SNU449 cell line showed an approximate uptrend of 7% only after 96 hours of the
transfection; and no statistically significant data of proliferation was observed in HepB3 poste-
rior to the inhibitor transfection.

The fluorescent caspase-3/7 assay was performed to investigate the effects of miR-132 on
the apoptosis and caspase activation in HCC cells (Fig 6). Similar to the viability and prolifera-
tion tests, miR-132 mimics were much more influential than miR-132 inhibitors in this part.
After the transfection with miR-132 mimics, the caspase-3/7 activity was significantly upturned
by a post-96hrs fold change of approximately 0.2 in both HepG2 and SMMC-7221 cell lines.
More significant results emerged in both HepB3 and SNU499 cell lines, where we observed a
statistically significant, constant yet slight increase of the caspase-3/7 activity after both 72
hours and 92 hours of the mimics’ transfection. Opposite to the mimics’ performance, miR-
132 inhibitors demonstrated no statistically significant impact on the apoptosis and caspase
activation in HCC cells.

Fig 5. Proliferation test. Time-dependent effects of miR-132 were assessed on proliferation in various HCC cell lines, i.e. HepG2 (A), SMMC-7221 (B),
HepB3 (C) and SNU449 (D). Points represent the averages of sets of three single, independent experiments while bars stand for the standard deviations.
*P < 0.05, ** P < 0.01 and ***P < 0.001, compared to blank and negative controls at the same time point.

doi:10.1371/journal.pone.0159498.g005
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3.2 NLP analysis of HCC
A total of 64,577 records of titles and abstracts related to HCC were identified in PubMed, with
1800 related genes obtained. Subsequently, GO analysis, pathway analysis and network analysis
were further conducted. Firstly, GO analysis classified all the obtained genes in accordance
with molecular function, cellular component and biological process, which were summarized
in Table 2. Later, 24 pathways were proved significant (P< = 0.05) by pathway analysis
(Table 3). Lastly, network analysis was carried out in order to elucidate how genes could possi-
bly interact with or regulate each other. Hub genes could be defined as the highly connected
genes in the network, which were considered vital in gene regulation and thus affect the stabil-
ity of the network. In the current study, a network of genes was established and shown in Fig 7.
In addition, connectivity analysis was employed, highlighting the top connectivity of PIK3CA
and the second highest connectivity of PIK3R2 (Fig 8).

3.3 The analysis of miR-132 predicted target genes
Eleven bioinformatics softwares aforementioned were used for the prediction of potential tar-
get genes of miRNA-132 and we would only include a certain target gene if it got nominated by
at least four bioinformatics softwares. As a result, 501 potential target genes were considered
qualified and later went through GO analysis, pathway analysis and network analysis.

Fig 6. Apoptosis test. Time-dependent effects of miR-132 were assessed on the caspase-3/7 activities in various HCC cell lines, i.e. HepG2 (A),
SMMC-7221 (B), HepB3 (C) and SNU449 (D). Points represent the averages of sets of three single, independent experiments while bars stand for
the standard deviations. *P < 0.05, compared to blank and negative controls at the same time point.

doi:10.1371/journal.pone.0159498.g006
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To begin with, all the miR-132 predicted target genes were sorted out according to mole-
cular function, cellular component and biological process by GO analysis (Table 4). Further-
more, pathway analysis identified a total of 70 pathways (S1 Table) and four of them were
considered statistically significant (P< = 0.05), i.e. neurotrophin signaling pathway (count = 5;
P = 0.002082; MAPK1, YWHAG, KRAS, FOXO3, FRS2), MAPK signaling pathway (count = 5;

Table 2. GO analysis classified all the HCC-related genes obtained from NLP in accordance with
molecular function, cellular component and biological process.

Molecular function

Term count P-value

transcription regulatory activity 194 1.27E-10

transporter activity 69 0.999018385

signal transduction activity 384 0.000166595

enzyme regulator activity 84 0.000951267

Translation activity 4 0.647613656

Nucleic acid binding activity 327 2.22E-10

extracellular structural activity 3 0.416191131

kinase activity 173 1.04E-10

cytoskeletal activity 51 0.256119892

Other molecular function 1290 1.73E-10

Cellular component

Term count P-value

extracellular matrix 56 5.61E-08

non-structural extracellular 250 7.83E-11

Cytosol 65 6.08E-08

plasma membrane 345 1.43E-10

Other membranes 603 0.999999471

Nucleus 536 1.48E-10

Cytoskeleton 108 0.018083091

translational apparatus 17 0.704983031

Mitochondrion 82 0.846509924

ER/Golgi 117 0.542990563

Other cytoplasmic organelle 47 0.281825841

Other cellular component 774 1.57E-10

Biological process

Term count P-value

cell cycle and proliferation 350 1.13E-10

stress response 235 1.02E-10

Transport 242 0.15918636

developmental processes 531 1.23E-10

RNAmetabolism 339 5.22E-09

DNAmetabolism 89 2.41E-11

protein metabolism 434 1.40E-10

Other metabolic processes 370 1.39E-10

cell organization and biogenesis 305 1.24E-10

cell-cell signaling 67 2.67E-09

signal transduction 453 4.06E-10

cell adhesion 107 5.35E-10

Death 221 1.17E-10

Other biological processes 705 0.000230959

doi:10.1371/journal.pone.0159498.t002

Gene Signatures for HCC, miR-132 Predicted Target Genes and the Overlaps

PLOS ONE | DOI:10.1371/journal.pone.0159498 July 28, 2016 11 / 27



P = 0.029881; MAPK1, KRAS, NLK, GNA12, DUSP9), VEGF signaling pathway (count = 3;
P = 0.044476; MAPK1, KRAS, PXN), and adherens junction (count = 3; P = 0.046643;
MAPK1, NLK, TCF7L2). Network analysis provided us with an unprecedentedly clear map on
the potential interacting and regulatory networks of miR-132 (Fig 9). The additional connectiv-
ity analysis revealed that KRAS harbored the highest connectivity among all the hub genes in
the network of miR-132 predicted genes, interacting with sixteen genes (ARID1A, BRCA1,
DNMT3A, EGR1, FOXO3, FRS2, GNA12, HMGA2, MAPK1, PTCH1, PXN, SGK3, SIRT1,
USP9X, WT1, YWHAG) (z-test, P = 0.00618). Besides, MAP1 ranked as the second highest
connected hub genes among all, with fifteen genes interacted (BRCA1, CITED2, DUSP9,
EGR1, FOXO3, FRS2, GATA2, GNA12, KRAS, NET1, PEA15, PXN, SGK3, SPRY1, and
YWHAG) (z-test, P = 0.001543). (Fig 10, S2 Table)

3.4 Analytical integration of results from NLP procedure of HCC and
prediction of miRNA-132 target genes
The integration systematically analyzed the overlaps and featured fifty-nine genes that were
both potentially HCC-related and probably regulated by miR-132 (Table 5). A network analy-
sis was performed among the fifty-nine genes identified (Fig 11) so as to better comprehend
the possible underlying mechanisms. MiR-132 might be associated with TCF7L2 via adherens
junction and interact with PXN via VEGF signaling pathway. Neurotrophin signaling pathway
might mediate the interactions and regulations between miR-132 and YWHAG, FOXO3 and

Table 3. Twenty-four pathways were identified to be statistically significant for the NLP analysis of
HCC (P< = 0.05).

Pathway Count P-value

Cytokine-cytokine receptor interaction 111 1.41E-17

Focal adhesion 85 1.37E-12

Neurotrophin signaling pathway 61 6.97E-12

Toll-like receptor signaling pathway 53 1.91E-11

MAPK signaling pathway 100 3.92E-11

p53 signaling pathway 39 2.62E-09

Chemokine signaling pathway 74 6.69E-09

Cell cycle 56 1.28E-08

Apoptosis 44 2.29E-08

ErbB signaling pathway 44 2.29E-08

T cell receptor signaling pathway 50 4.63E-08

Natural killer cell mediated cytotoxicity 57 7.02E-08

Adherens junction 38 1.67E-06

Jak-STAT signaling pathway 59 7.41E-06

Fc epsilon RI signaling pathway 35 1.64E-04

NOD-like receptor signaling pathway 30 2.18E-04

Wnt signaling pathway 53 0.001007886

TGF-beta signaling pathway 36 0.001133761

Cell adhesion molecules (CAMs) 48 0.001159562

VEGF signaling pathway 32 0.002400693

Adipocytokine signaling pathway 29 0.00582618

Insulin signaling pathway 47 0.006083566

B cell receptor signaling pathway 31 0.007834751

Hematopoietic cell lineage 32 0.043504802

doi:10.1371/journal.pone.0159498.t003
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Fig 7. Network analysis for HCC. In NLP analysis, a network of multiple genes was established for HCC.

doi:10.1371/journal.pone.0159498.g007
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FRS2. MAPK signaling pathway could be responsible for the communications between miR-
132 and DUSP9, GNA12, MAPK1, NLK and KRAS. The remaining seventy-two genes would
interact with miR-132 via other different pathways.

4. Discussion
Since HCC ranks top as one of the most frequent cancers internationally, novel biomarkers for
early diagnosis and precise prognosis of HCC are pressingly demanded [1]. Thus, researchers’
attention has been drawn by microRNAs, a diverse class of small non-coding RNAs, which reg-
ulate and mediate gene expressions in human oncogenesis [5, 6]. Among them is the vigorously
studied miR-132, which has displayed its associations with several cancers including colorectal
cancer[8], gastric cancer[9], and pancreatic cancer[12].

Originally, Wei, et al. [14] reported the potentially active and crucial role of miR-132 in
HBV-mediated hepatocarcinogenesis, and the down-regulation of miR-132 in HBV-related
HCC with a sample size of 20 patients. To complement their research, our previous study
employed an almost quintupled cohort of 95 patients to verify the decrease of miR-132 in HCC
and investigated the relationships between miR-132 and mainstream clinical/pathological
parameters as well as recurrence data in HCC patients, confirming the tumor-suppressive role
of miR-132 in HCC (Xin Zhang, et al. Down-regulation of MicroRNA-132 Indicates Progression
in Hepatocellular Carcinoma: A Clinical Perspective. Experimental and Therapeutic Medicine.
In Press.). The associations have been proved statistically significant between the expression of
miR-132 and metastasis, clinical TNM stage, and tumor capsular infiltration (Xin Zhang, et al.
Down-regulation of MicroRNA-132 Indicates Progression in Hepatocellular Carcinoma: A Clini-
cal Perspective. Experimental and Therapeutic Medicine. In Press.). It was also speculated that
its tumor-suppressive function in HCC would probably rely on suppressing CCNE1 expression
[11], targeting ZEB2[8], HN1[7], Sox5[41], or ZEB2[42], provoking acetylcholinesterase-inde-
pendent apoptosis[43], or mediating methylation-silencing and anti-metastasis in the control-
ling cellular adhesion of prostate cancer [13], which were established by researches on
molecular mechanisms of miR-132 as a tumor suppressor in other malignancies. Furthermore,
a study led by Liu, et al[15] identified the downregulation of miR-132 in HCC tissues and cell
lines. And its expression negatively correlated with tumor differentiation, TNM stage and
lymph node metastasis. Also, miR-132 is believed to suppress cell proliferation, colony forma-
tion, migration and invasion, and induce apoptosis in HCC cells via in vitro experiments. In
vivo demonstrated the role of miR-132 as a suppressor for tumor growth in nude mouse

Fig 8. Connectivity analysis for HCC.Connectivity analysis demonstrated that the top connectivities of PIK3CA and
PIK3R2.

doi:10.1371/journal.pone.0159498.g008
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model. Lastly, they confirmed that PIK3R3 is a novel target gene of miR-132 and miR-132
might exert its tumor suppressive function by directly targeting the PIK3R3 and regulating the
AKT/mTOR pathway.

However, no well-founded insights with supporting data were provided into the overview of
potential molecular mechanisms of miR-132 in HCC [14][15] (Xin Zhang, et al. Down-regula-
tion of MicroRNA-132 Indicates Progression in Hepatocellular Carcinoma: A Clinical Perspec-
tive. Experimental and Therapeutic Medicine. In Press.), which calls for studies like the current
one from us. Thanks to the booming bioinformatics technology, such as natural language pro-
cessing, prediction of target genes, gene signatures and so forth, it is now possible for us to

Table 4. All the miR-132 predicted target genes were sorted out according to molecular function, cel-
lular component and biological process by GO analysis.

Molecular function

Term count P-value

transcription regulatory activity 15 1.16E-06

transporter activity 2 0.854486

signal transduction activity 5 0.994435

enzyme regulator activity 1 0.88333

nucleic acid binding activity 21 2.25E-05

kinase activity 6 0.05029

cytoskeletal activity 2 0.485943

other molecular function 48 0.112394

Cellular component

Term Count P-value

mitochondrion 3 0.648952

other cytoplasmic organelle 3 0.20695

Cytosol 3 0.11775

cytoskeleton 4 0.408324

Nucleus 30 5.98E-06

plasma membrane 9 0.569293

other membranes 18 0.983114

translational apparatus 1 0.499061

ER/Golgi 4 0.631317

other cellular component 33 0.305633

Biological process

Term count P-value

cell cycle and proliferation 12 0.001377

Transport 6 0.882846

stress response 7 0.114018

developmental processes 28 1.13E-08

RNAmetabolism 23 2.57E-05

DNAmetabolism 4 0.060241

other metabolic processes 12 0.310527

cell organization and biogenesis 15 0.002505

cell-cell signaling 5 0.00704

signal transduction 18 0.101181

cell adhesion 3 0.38637

protein metabolism 17 0.013399

Death 9 0.002664

other biological processes 25 0.474989

doi:10.1371/journal.pone.0159498.t004
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illuminate the potential targets, pathways or even regulatory networks of miR-132 in HCC
[4, 26–39].

In the current study, in vitro experiments have been done to validated the tumor-suppres-
sive role and assess the cellular functions of miR-132 in HCC and a series of tasks has been

Fig 9. Network analysis for miR-132 predicted target genes.Network analysis provided insights into the potential
interacting and regulatory networks of miR-132.

doi:10.1371/journal.pone.0159498.g009

Fig 10. Connectivity analysis for miR-132 predicted target genes. The additional connectivity analysis
revealed that KRAS harbored the highest connectivity and MAPK1 the second highest, interacting with
sixteen and fifteen genes respectively.

doi:10.1371/journal.pone.0159498.g010
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Table 5. The integration systematically analyzed the overlaps and featured 59 genes that were both potentially HCC-related and probably regu-
lated by miR-132.

Gene P-value Gene Description

SIRT1 <1.00E-08 sirtuin (silent mating type information regulation 2 homolog) 1 (S. cerevisiae)

SPRY1 0.000332 sprouty homolog 1, antagonist of FGF signaling (Drosophila)

DPYSL3 0.000387 dihydropyrimidinase-like 3

NOVA1 0.028707 neuro-oncological ventral antigen 1

SOX4 2.83E-05 SRY (sex determining region Y)-box 4

PFTK1 0.024657 PFTAIRE protein kinase 1

SEC62 0.01855 SEC62 homolog (S. cerevisiae)

MAPK1 0.000255 mitogen-activated protein kinase 1

PXN 9.25E-06 Paxillin

PCDH10 0.022625 protocadherin 10

BTG2 0.003519 BTG family, member 2

HMGA2 2.47E-05 high mobility group AT-hook 2

YWHAG 0.10812 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, gamma polypeptide

PEA15 0.002455 phosphoprotein enriched in astrocytes 15

HN1 0.01855 hematological and neurological expressed 1

SGK3 0.05855 serum/glucocorticoid regulated kinase family, member 3

LIN28B 1.29E-05 lin-28 homolog B (C. elegans)

SOX6 0.03475 SRY (sex determining region Y)-box 6

ARID2 0.000332 AT rich interactive domain 2 (ARID, RFX-like)

ZEB2 <1.00E-08 zinc finger E-box binding homeobox 2

DUSP9 0.010348 dual specificity phosphatase 9

SOX2 <1.00E-08 SRY (sex determining region Y)-box 2

FOXO3 1.62E-08 forkhead box O3

TLN2 0.03274 talin 2

CPEB4 0.008287 cytoplasmic polyadenylation element binding protein 4

TCF7L2 0.008234 transcription factor 7-like 2 (T-cell specific, HMG-box)

DNMT3A 1.98E-06 DNA (cytosine-5-)-methyltransferase 3 alpha

MIB1 <1.00E-08 Mindbomb homolog 1 (Drosophila)

WT1 0.069664 Wilms tumor 1

LIN9 0.02059 lin-9 homolog (C. elegans)

CCNG1 0.0008 cyclin G1

KRAS 0.005874 v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog

PIK3IP1 0.022625 phosphoinositide-3-kinase interacting protein 1

GATA2 0.093154 GATA binding protein 2

ARID1A 9.06E-07 AT rich interactive domain 1A (SWI-like)

DYNLL2 0.000192 dynein, light chain, LC8-type 2

EGR1 0.041332 early growth response 1

TTK 0.05855 TTK protein kinase

IDS 0.13732 iduronate 2-sulfatase

MAOA 0.40307 monoamine oxidase A

BTBD7 4.30E-05 BTB (POZ) domain containing 7

PTCH1 2.86E-05 patched homolog 1 (Drosophila)

USP9X 0.044739 ubiquitin specific peptidase 9, X-linked

CYLD <1.00E-08 cylindromatosis (turban tumor syndrome)

SOD2 0.004207 Superoxide dismutase 2, mitochondrial

ST18 0.014458 suppression of tumorigenicity 18 (breast carcinoma) (zinc finger protein)

(Continued)
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completed, including data mining and selecting, target genes prediction, comprehensive analy-
ses (gene ontology analysis, pathway analysis, network analysis and connectivity analysis), and
analytic integration, in order to elucidate HCC-related and miR-132-related potential targets,
pathways and networks as well as those of the overlapped section.

The influences of miR-132 on various cellular functions in HCC were evaluated with differ-
ent assays. Generally, both mimics and inhibitors of miR-132 were found to be able to influence

Table 5. (Continued)

Gene P-value Gene Description

EIF2C2 1.12E-06 Eukaryotic translation initiation factor 2C, 2

BRCA1 0.65001 breast cancer 1, early onset

GNA12 4.29E-06 guanine nucleotide binding protein (G protein) alpha 12

NLK 0.040756 nemo-like kinase

GOLM1 <1.00E-08 golgi membrane protein 1

DACH1 0.046724 Dachshund homolog 1 (Drosophila)

ACSL4 1.15E-05 acyl-CoA synthetase long-chain family member 4

FRS2 0.074089 fibroblast growth factor receptor substrate 2

RTN4 0.13373 reticulon 4

SLC2A1 0.003185 solute carrier family 2 (facilitated glucose transporter), member 1

NET1 0.036756 neuroepithelial cell transforming 1

CITED2 0.040756 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2

NFE2L2 0.002581 nuclear factor (erythroid-derived 2)-like 2

doi:10.1371/journal.pone.0159498.t005

Fig 11. Network analysis for the overlapped genes in the analytical integration. A network analysis was performed
among the fifty-nine genes identified in the analytical integration so as to better comprehend the possible underlying
mechanisms.

doi:10.1371/journal.pone.0159498.g011

Gene Signatures for HCC, miR-132 Predicted Target Genes and the Overlaps

PLOS ONE | DOI:10.1371/journal.pone.0159498 July 28, 2016 18 / 27



cell functions of HCC cell lines though miR-132 mimics exerted greater influence on HCC cell
lines than miR-132 inhibitors did. In viability test, cell viability significantly decreased in all the
four cell lines transfected with miR-132 mimics while miR-132 inhibitors only increased the
viability of two cell lines (HepG2 and SNU449) out of four (Fig 4). Observations from the pro-
liferation test resembled those from the viability test. MiR-132 mimics made the proliferation
rate significantly drop in all the four cell lines while its inhibitors displayed boosting role in the
proliferation of three cell lines (HepG2, SMMC-7721, and SNU449) (Fig 5). In the apoptosis
assessment, miR-132 mimics were considered effective in significantly upturning the caspase-
3/7 activity in all the four cell lines (Fig 6), which means that miR-132 mimics positively
affected the apoptosis process of HCC cells. However, no statistically significant observations
were made with regards to the role of miR-132 inhibitors in the apoptosis and caspase activa-
tion in HCC cells (Fig 6). The above demonstrated that miR-132 is effective in both impeding
HCC cell growth (decreasing viability and undermining proliferation) and boosting HCC cell
apoptosis (upturning the caspase-3/7 activity), which mutually supports the findings by both
Wei, et al. [14], Liu, et al.[15] and us (Xin Zhang, et al. Down-regulation of MicroRNA-132 Indi-
cates Progression in Hepatocellular Carcinoma: A Clinical Perspective. Experimental and Thera-
peutic Medicine. In Press.). Taking all the in vitro experiments and clinical expression data [14]
[15] (Xin Zhang, et al. Down-regulation of MicroRNA-132 Indicates Progression in Hepatocellu-
lar Carcinoma: A Clinical Perspective. Experimental and Therapeutic Medicine. In Press.), we
considered the tumor-suppressive role of miR-132 in HCC to be well established.

In combination with our previous study (Xin Zhang, et al. Down-regulation of MicroRNA-
132 Indicates Progression in Hepatocellular Carcinoma: A Clinical Perspective. Experimental
and Therapeutic Medicine. In Press.), our findings are consistent with those by Liu, et al.[15]
andWei, et al. At first, the down-regulation of miR-132 in HCC can be considered well con-
firmed. Wei, et al. made use of only 20 cases, Liu, et al.[15] employed 40 pairs of tissues and 4
HCC cell lines, while in ours (Xin Zhang, et al. Down-regulation of MicroRNA-132 Indicates
Progression in Hepatocellular Carcinoma: A Clinical Perspective. Experimental and Therapeutic
Medicine. In Press.), a more than doubled cohort of 95 pairs of tissues was considered. Next,
the down-regulation of miR-132 correlates with several clinical parameters, which indicates
the progression of HCC. Liu, et al [14] assumed miR-132 negetively correlated with tumor dif-
ferentiation, TNM stage and lymph node metastasis, while in the previous research by us (Xin
Zhang, et al. Down-regulation of MicroRNA-132 Indicates Progression in Hepatocellular Carci-
noma: A Clinical Perspective. Experimental and Therapeutic Medicine. In Press.), a doubled
panel of parameters was taken into consideration such as distant metastasis, TNM stage, HBV-
positive, nm23-expression, Ki-67 LI and tumor infiltration or no capsule. Lastly, multiple cellu-
lar functions are validated to be influenced by miR-132 in HCC, which Liu, et al.[15] verified
with the single cell line of HepG2 and we later confirmed with the quadrupled scale of four
HCC cell lines, namely HepG2, HepB3, SNU449 and SMMC-7221.

The natural language processing analysis captured 64,577 HCC-related records of PubMed
titles and abstracts in total with 1800 HCC-related genes identified. GO analysis classified all
the 1800 obtained genes in accordance with molecular function, cellular component and bio-
logical process. Among all the specific items with statistical significance (P< = 0.05), signal
transduction activity (n = 384; P = 0.000166595) and nucleic acid binding activity (n = 327;
P = 2.22E-10) stood out in molecular functions; among cellular components, nucleus (n = 536;
P = 1.48E-10) shared the highest occurrence; in terms of biological processes, developmental
processes definitely appeared the most prominent with an count of 531 (P = 1.23E-10). The
above GO analysis results would equip researchers with better defined orientations as to molec-
ular studies of HCC. Followed-up pathway analysis recognized 24 statistically significant
HCC-related pathways with cytokine-cytokine receptor interaction (n = 111; P = 1.41E-17)
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and MAPK signaling pathway (n = 100; P = 3.92E-11) notably sharing the most occurrences.
Lastly, network analysis was performed in an attempt to predict the potential gene regulatory/
interacting networks. A network composed of multiple genes was established and it is worth-
while to mention that some of highly connected genes, which are known as hub genes, might
play indispensably crucial role in the stabilization, interaction, and regulation of gene networks.
Connectivity analysis pointed out the top connectivity of PIK3CA and PIK3R2. PI3Ks, or
phosphatidylinositol 3-kinases, are a class of lipid kinases, which can phosphorylate the 3'OH
end of the inositol ring of phosphoinositides and cope with a wide range of cellular activities,
such as cell proliferation, migration and development. PIK3CA gene encodes a 110 kDa cata-
lyzing subunit of p110α protein in human. The mutation of PIK3CA gene can result in the acti-
vation of protein kinase B signaling, which has been observed in multiple cancers. [44] PIK3R2
gene encodes the β isoform of the PI3K p85 regulatory subunit. PIK3R2 has been considered
vital in some malignancies and reported as the target of several microRNAs, such as miR-126
in esophageal squamous cell carcinoma[45], miR-126-3p in hepatocellular carcinoma[46], and
so forth. Quite interestingly, Liu, et al[15] looked for the potential miR-132 targets with the
help of prediction algorithms such as TargetScan, miRanda, and miRWalk and later on consid-
ered PIK3R3 to be a potential target in HCC. Moreover, the following luciferase assay con-
firmed that PIK3R3 is a directly target of miR-132. In a certain way, the finding of PIK3R3 as a
direct target in a certain way proved the current study to be practical and promising for future
usages, since in the NLP analysis the top two genes with the highest connectivity are PIK3CA
and PIK3R2, both of which. Similar to PIK3R3, belong to regulatory subunits of phosphoinosi-
tide-3-kinase. Other notable hub genes have also been claimed to be associated with cancers,
including MAPK1[47], MAPK3[48], JAK2[49], EGFR[50], KRAS[51] and NRAS[52]. Given
the complexity of multi-step processes of carcinogenesis, development, progression and metas-
tasis, we might suggest that researchers and practitioners should consider combining some of
the above hub genes together or with well-established biomarkers to better predict the
prognosis.

To enhance the sensitivity of miR-132 target gene prediction, a wide range of eleven bioin-
formatics tools were employed for the prediction process. For reliability/credibility control pur-
pose, only when a certain target gene got named by at least four bioinformatics tools would it
be included. Subsequently, 501 potential target genes turned out qualified. GO analysis for
miR-132 predicted genes identified transcription regulatory activity (n = 15; P = 1.16E-06) and
nucleic acid binding activity (n = 21; P = 2.25E-05) as the only two statistically significant
items in molecular function (P< = 0.05); in the cellular component section, nucleus was the
only statistically significant one with a count of 30 and a P-value of 5.98E-06; as to biological
processes, among items with statistical significance, developmental processes (P = 1.13E-08)
and RNAmetabolism (P = 2.57E-05) stood out with primal top occurrences of 28 and 23
respectively. The above GO analysis might better illuminate miR-132-related research focus for
scientists and clinical practitioners. Later, the pathway analysis established a total of 70 path-
ways with four proved statistically significant (P< = 0.05), namely neurotrophin signaling
pathway (count = 5; P = 0.002082), MAPK signaling pathway (count = 5; P = 0.029881), VEGF
signaling pathway (count = 3; P = 0.044476), and adherens junction (count = 3; P = 0.04664).
Network analysis displayed the potential unique networks on how miR-132 interacts with
other genes. In Fig 9, we used lines of different colors to differentiate the sources of connecting
relationships. It could be seen that data from experiments took up the most followed by those
from literature, with very few originated from databases. We believe that this way of display
would help interested researchers evaluate the powers of network for further study purposes.
Forthcoming connectivity analysis uncovered the highest connectivity of KRAS in the potential
network of miR-132 predicted genes, with sixteen interacting genes, i.e. ARID1A, BRCA1,
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DNMT3A, EGR1, FOXO3, FRS2, GNA12, HMGA2, MAPK1, PTCH1, PXN, SGK3, SIRT1,
USP9X, WT1 and YWHAG (z-test, P = 0.00618). KRAS gene encodes the protein GTPase
KRas, also known as KRAS, whose normal form is a vital part in multiple signal transduction
in normal tissue at early stage[53]. However, its mutation might be associated with some malig-
nancies, especially colorectal cancer [54, 55]. MAP1 is the second highest connected hub genes,
interacting with fifteen other genes (BRCA1, CITED2, DUSP9, EGR1, FOXO3, FRS2, GATA2,
GNA12, KRAS, NET1, PEA15, PXN, SGK3, SPRY1, and YWHAG) (z-test, P = 0.001543) (Fig
10, S2 Table). There are two members, MAP1A and MAP1B, in the MAP1 (Microtubule-asso-
ciated protein 1) family. Of relatively high molecular mass, both MAP1A and MAP1B are
expressed mainly in the nervous system and associated with axon guidance and synaptic func-
tion [56, 57]. Considering the above, we speculated that KRAS and MAP1 might be partly
responsible for the confirmed associations between miR-132 and several cancers, such as colo-
rectal cancer[8], glioma[10] and primary glioblastoma multiforme[58]. An earlier study by
Chang, et al.[59] has put forward the concept of applying gene expression profile of peripheral
blood for the detection of colorectal cancer. Researchers interested can capitalize on methods
mentioned[59] in combination with findings in the current research, namely, discovering
whether the abovementioned hub genes, especially KRAS and MAP1, would be appropriate for
blood-based detection assays in HCC.

At length, the analytical integration synthesized the overlaps with fifty-nine genes identified
to be potentially both HCC- and miR-132-related (Table 5). Given the relatively scarce scale of
genes spotted, only network analysis was conducted for further analysis (Fig 11). Four path-
ways stood out, i.e. adherens junction, VEGF signaling pathway, neurotrophin signaling path-
way, and MAPK signaling pathway. Involved genes of these four pathways in the study are as
follows: TCF7L2 might interact with miR-132 via adherens junction; PXN could be associated
with miR-132 via VEGF signaling pathway; Neurotrophin signaling pathway could be in
charge of the interactions between miR-132 and YWHAG, FOXO3 and FRS2; MAPK signaling
pathway might mediate signaling and communicating between miR-132 and DUSP9, GNA12,
MAPK1, NLK and KRAS. KRAS and MAPK1 are considered to be the most connected among
the miR-132 predicted target genes in the integrated network. In our previous work (Xin
Zhang, et al. Down-regulation of MicroRNA-132 Indicates Progression in Hepatocellular Carci-
noma: A Clinical Perspective. Experimental and Therapeutic Medicine. In Press.), several associ-
ations have been established with statistical significance between the expression of miR-132
and metastasis, clinical TNM stage, and tumor capsular infiltration, which might be mutually
supported by four specific pathways in the overlapped network, namely adherens junction,
VEGF signaling pathway, neurotrophin signaling pathway, and MAPK signaling pathway.
Being multi-tasking, adherens junctions are among the most frequent class of intercellular
adhesions and responsible for preserving cellular polarity and tissue structures, confining cell
migration and proliferation, and generating drives for morphogenesis[60]. As can be observed
from the in vitro, miR-132 can significantly inhibit HCC cell proliferation, which might be the
very results via the pathway of adherens junctions. And the increased ability of colony forma-
tion as well as migration and invasion due to the loss of miR-132 [15] can be the very result of
the dysregulation of the pathway of adherens junction. VEGF, or vascular endothelial growth
factor, is a protein actively involved in human vasculogenesis and angiogenesis [61]. Accumu-
lating evidence revealed that VEGFR-2, a crucial participant of VEGF-provoked reactions in
endothelial cells, is vital to both physiologic and pathologic vasculogenesis and angiogenesis. A
serial of different signaling pathways, including VEGF signaling pathway, are followed by the
binding of VEGF to VEGFR-2, increasing the vascular permeability endothelial cells and mod-
erating their proliferation and migration[62]. We speculate that the decreased viability of HCC
cell lines by miR-132 in the in vitro experiments might be associated with the VEGF signaling
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pathway. So might the impaired proliferation rate of HCC cell lines. Likewise, VEGF signaling
pathway might be also responsible for the negative correlations between miR-132 and TNM
stage, lymph node metastasis, and tumor infiltration or no capsule reported formerly [15] (Xin
Zhang, et al. Down-regulation of MicroRNA-132 Indicates Progression in Hepatocellular Carci-
noma: A Clinical Perspective. Experimental and Therapeutic Medicine. In Press.). Neurotro-
phins are a class of trophic molecules actively engaged in differentiation and survival of
neurocytes. Neurotrophin signaling pathway interacts with an abundant range of intracellular
signaling cascades, which might exert their essential influence on both the development of neu-
rocytes and some of the higher-order behaviors like learning and memory. Neurotrophin sig-
naling pathway and related miRNAs have been considered relevant to several cancers and
brain diseases, which might provide potential novel diagnostic and therapeutic methods via the
crosstalk between neurotrophins and miRNAs[63]. MAPK (mitogen-activated protein kinase)
signaling pathway is an exceedingly conserved cascade involved in multiple human cell activi-
ties, such as proliferation, differentiation and migration. Though immature and still at early
stage, recent study has showed that MAPK signaling pathway inhibitors promise to be impetus
of target drugs due to the fact that around one third of cancers in human are influenced by
mutations of MAPK signaling pathway[64]. The changes of viability and proliferation in HCC
cells tranfected with miR-132 mimics/inhibitors have a great potential to do with the MAPK
signaling pathway. Speculations are that three pathways, namely adherens junction, VEGF sig-
naling pathway and MAPK signaling pathway, might be involved in significant association
between HCC metastasis and miR-132 while adherens junction and MAPK signaling pathway
have higher potentials to correlate with the tumor capsular infiltration of miR-132-related
HCC. Clinical TNM stage, whose relationship with miR-132 has been proved statistically sig-
nificant, is a comprehensive assessment scale with many factors taken into account. Thus,
more efforts should be put into the possible pathways linked to the clinical TNM stage of HCC,
which thereby would not be discussed here. Moreover, the decreased viability and lowered pro-
liferation rate of HCC cells influenced might be very likely to have connections with the three
pathways as well. Nevertheless, pathways related to the accelerated apoptosis from the in vitro
are not included in those established by the analytical integration.

Inspired by Gao, et al.[65], the current study has explored gene signatures for HCC, miR-
132 predicted target genes and the corresponding overlaps and presented a number of compre-
hensive analyses with the assistance of bioinformatics technology. There are several features of
the study that excels itself among all the others. First of all, the formerly reported tumor-sup-
pressive role of miR-132 have been further confirmed by in vitro, and as far as we are con-
cerned, the study is the first one to elucidate the gene signatures for either HCC or miR-132
predicted target genes, not to mention the corresponding overlaps. Then, it is also worth com-
mending that the NLP analysis of HCC, miR-132 predicted target genes and the relevant analy-
ses (GO analysis, pathway analysis, network analysis and connectivity analysis) are reusable
data which may prove helpful to the forthcoming researches. Furthermore, the current study
provides potential molecular basis for the down-regulation of miR-132 in HCC, complement-
ing the shortcomings of our previous work (Xin Zhang, et al. Down-regulation of MicroRNA-
132 Indicates Progression in Hepatocellular Carcinoma: A Clinical Perspective. Experimental
and Therapeutic Medicine. In Press.). Likewise, the potential mechanisms can be also used for
the explanation of the established, significant associations between the expression of miR-132
and several clinical parameters. Last but not least, the nearly quadrupled union of eleven bioin-
formatics tools adds the unprecedented reliability and credibility to the prediction of potential
miR-132 target genes, while, to our knowledge, all the similar works[65–67] regarding other
microRNAs or other cancers done previously adopted only a panel of three bioinformatics
tools at most. Nevertheless, limitations still exist with a primal one standing out that either
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NLP analysis of HCC or prediction of miR-132 target genes, to a considerable extent, are based
on bioinformatics techniques instead of experiments, which might cause false positive results.
Hence, our research team has hereby decided to select some of hub genes and pathways for
combined detections with other biomarkers in clinical practice and further in vitro experiments
in the future.

5. Conclusion
To summarize, the study has further confirmed the previously reported tumor-suppressive role
of miR-132 in HCC by in vitro and encapsulated gene signatures for HCC, miR-132 predicted
target genes and the corresponding overlaps, which complements the previously-found tumor-
suppressive role of miR-132 in HCC. A full panel of NLP analysis of HCC, prediction of miR-
132 target genes, comprehensive analyses and analytical integration was completed, providing
us with unprecedentedly illuminated insights into the underlying molecular mechanisms of
miR-132 in HCC. It is also suggested that miR-132 and its potential targets might prove to be
effective for diagnosis, individualized treatments and prognosis of HCC patients. However, due
to the limitations of bioinformatics technology, combined detections of miR-132 with other
biomarkers in clinical practice and further in vitro experiments are still pressingly demanded,
which the team decides to focus on in the future.
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