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Weyl semimetals in optical lattices: 
moving and merging of Weyl 
points, and hidden symmetry at 
Weyl points
Jing-Min Hou1 & Wei Chen2

We propose to realize Weyl semimetals in a cubic optical lattice. We find that there exist three distinct 
Weyl semimetal phases in the cubic optical lattice for different parameter ranges. One of them has 
two pairs of Weyl points and the other two have one pair of Weyl points in the Brillouin zone. For a slab 
geometry with (010) surfaces, the Fermi arcs connecting the projections of Weyl points with opposite 
topological charges on the surface Brillouin zone is presented. By adjusting the parameters, the Weyl 
points can move in the Brillouin zone. Interestingly, for two pairs of Weyl points, as one pair of them 
meet and annihilate, the originial two Fermi arcs coneect into one. As the remaining Weyl points 
annihilate further, the Fermi arc vanishes and a gap is opened. Furthermore, we find that there always 
exists a hidden symmetry at Weyl points, regardless of anywhere they located in the Brillouin zone. The 
hidden symmetry has an antiunitary operator with its square being −1.

In last decade, topological matters have become an important branch of condensed matter physics1,2. Previously, 
the studies mainly concentrate on gapped systems, such as integer quantum Hall insualtors3 and quantum anom-
alous Hall insulator4, topological insulators5, chiral topological superfluids6, helical topological superfluids or 
superconductors7, and so on. Recently, physicists pay much attention on the topological characters of gapless 
systems, which were dubbed as topological semimetals. Generally, topological semimetals include Weyl semimet-
als8–12, Dirac semimetals13,14, topological nodal-line semimetals10. For Weyl semimetals, the materials have band 
structures with band-touching nodal points in momentum space, where the isolated band degeneracy occurs. 
Near these touching points, the dispersion relation is linear and can be described by a massless two-component 
Weyl Hamiltonian. At the nodal points, there exist singularities of a Berry field. Integrating the Berry field on 
the surface enclosing the singular point in momentum space, one obtain a Chern number, i.e., a topological 
charge. Thus, the band-touching nodal points can be considered as monopoles in momentum space. Due to the 
Nielsen-Ninomya theorem, the nodal points with opposite topological charges appear in pairs. The meeting of 
opposite charges in momentum space can lead to annihilation of nodal point pairs. The opposite topological 
charges can be separated from each other in momentum space so that they cannot be destroyed by the mutual 
annihilation if the time-reversal symmetry or inversion symmetry is broken. Time reversal symmetry break-
ing Weyl semimetals were firstly predicted in pyrochlore iridates8 and HgCr2Se4

9. Recently, inversion symmetry 
breaking Weyl semimetals were discovered in TaAs family15–19. In the theoretical aspect, recently, Ganeshan and 
Das Sarma presented a method to construct a Weyl semimetal by stacking one-dimensional Aubry-Andre-Harper 
lattice with tight-binding models with nontrivial topology20, which provides a theoretical connection between the 
commensurate Aubry-Andre-Harper model in one dimension and Weyl semimetals in three dimensions.

It is a difficult task to investigate moving and merging of Weyl points and topological phase transitions in 
real solid materials, the parameters of which can not be tuned in a wide ranges. Fortunately, the high control-
lability and tunability, and large number of mature detection techniques of cold atoms in optical lattices make 
them a platform to stimulate many interesting physics in condensed matters. Therefore, it is intriguing to study 
moving and merging of Weyl points, and topological phase transitions in optical lattices. In recent years, many 
schemes have been proposed to realize various topological semimetals with neutral atoms in optical lattices. In 
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two dimensions, gapless topological phases were proposed in honeycomb optical lattices21,22 and square opti-
cal lattices23–25. The important progress is the realization of topological semimetals in honeycomb optical lat-
tices26. In three dimensions, Weyl semimetal were proposed to realized in optical lattices27–30. In order to engineer 
the topological phases in optical lattices, sometimes, the hopping-accompanying phase, i.e., the Peirls phase, is 
required. In experiments, the hopping-accompanying phase has been realized with periodic lattice shaking31,32 
and laser-assisted tunneling techniques33–36. Another important progress in experiments is the measurement of 
Zak phase of topological Bloch bands in optical lattices37, which provides a path to detect topological characters 
in optical lattices.

In this paper, we design a cubic optical lattice trapping cold fermionic atoms, which can be realized based the 
laser-tunnelling technique33–36. In different parameter ranges, the system supports three classes of Weyl semimet-
als, one of which has two pairs of Weyl points in the Brillouin zone, the other two have one pair of Weyl points 
in the Brillouin zone. By adjusting the parameters, we can study the moving and merging of Weyl points. When 
Weyl points with opposite topological charges meet together, they annihilate and a topological phase transition 
happens. We also investigate the Fermi arc of surface states of a (010) slab. Fermi arcs connect the projections of 
Weyl poionts on the surface Brillouin zone and evolve with the moving of Weyl points. For the Weyl semimetal 
phase with two pairs of Weyl points, there are two Fermi arcs connect projections of Weyl points with opposite 
charges on the surface Brillouin zone. When a pair of Weyl points annihilate, the two Fermi arcs link into one sin-
gle Fermi arc connecting the projections of the remaining Weyl points. We find that the band degeneracy at Weyl 
points implies a hidden symmetry that has an antiunitary operator with its square being − 1. Based on a mapping 
method, we discover the hidden symmetry at each Weyl point in the Brillouin zone and discuss its relation with 
topological phase transitions.

Results
Weyl semimetals in optical lattices. Here, we consider a cubic optical lattice as shown in Fig. 1, where 
the arrows represent the hopping-accompanying phase. The hopping-accompanying phase is π/2 for the hopping 
along the y axis and π for the z axis. Due to the appearing of the hopping-accompanying phases, the translation 
symmetry is broken. Thus the lattice is divided into two sublattices, i.e. sublattices A and B. Assuming the distance 
between the nearest lattice sites being 1, we define the primitive lattice vectors as a1 =  (1, − 1, 0), a2 =  (1, 1, 0), and 
a3 =  (0, 0, 1). The primitive reciprocal lattice vectors are b1 =  (π, − π, 0), b2 =  (π, π, 0), and b3 =  (0, 0, 2π). Besides 
the hopping between nearest lattice sites, we also consider the diagonal hopping in the x− y plane and a staggered 
potential. The corresponding Hamiltonian is H =  H0 +  Hd +  Hs with
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Figure 1. Schematic of the cubic optical lattice. Here, the blue and green balls represent sublattices A and B, 
respectively; the single arrows and double arrows denote π/2 and π phases along with the hopping, respectively.
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where ai and bi are the annihilation operators destructing a particle at a lattice site of sublattice A and B, respec-
tively; tx and ty represent the amplitudes of hopping along the x and y directions, respectively; txy denotes the 
amplitude of hopping along the diagonal direction; v represents the magnitude of the staggered on-site potential. 
This optical lattice can be realized through the laser-assisted tunneling technique, which has been applied in 
several experiments33–36.

Taking the Fourier’s transformation on Equations (1), (2) and (3), we rewritten the Hamiltonian as = † †H a b[ , ]
T

k k  
 k a b( )[ , ]k k , where  k( ) is the corresponding Bloch Hamiltonian as

 σ σ α β σ= − − − − −t k t k t k k kk( ) 2 cos 2 cos 2 (cos sin sin ) , (4)x x x y y y z z x y z

with α =  v/2tz and β =  2txy/tz being the dimensionless parameters and σx, σy and σz being the Pauli matrices 
defined in the sublattice space. Diagonalizing Equation (4), we obtain the corresponding dispersion relation as

= ± + + −E t k t k t k m4 cos 4 cos (2 cos ) , (5)x x y y z z
2 2 2 2 2

with m =  2tz(α +  β sin kx sin ky). From this dispersion relation, we can see that two bands touch at some points Wi 
in the Brillouin zone in some parameter ranges. Near the touching points, the dispersion relation has the linear 
form as

σ σ σ= ± ±h v p v p v pp( ) , (6)x x x y y y z z z

with p =  k −  Wi. Around the the touching points, the chirality can be defined as

= = ± .C vsgn[det( )] 1 (7)ij

which is also the topological charge at Weyl points. Thus, the touching points are Weyl points and, correspond-
ingly, the system is a Weyl semimetal phase. According to the number of Weyl points in different parameter 
ranges, we can classify the system into four phases: (i) When α β+ < 1 and α β− < 1 are satisfied, there are 
four distinct points π π α β= ± +W ( /2, /2, arccos( ))1,2  and π π α β= − ± −W ( /2, /2, arccos( ))3,4  in the 
Brillouin zone. Since there are two pairs of Weyl points in the Brillouin zone, we term this phase as WSM2 phase. 
(ii) For the case α β+ < 1 and α β− > 1, only the pair W1,2 exists. Thus, we term this phase as WSM1a 
phase. (iii) For the case α β+ > 1 and α β− < 1, where the Weyl points W3,4 still remain. We term this new 
phase as WSM1b phase, which is different from the WSM1a phase. (iv) For α β+ > 1 and α β− > 1, no 
Weyl point exists and a gap opens, so the system is a band insulator. The phase diagram is shown as in Fig. 2.

Moving and merging of Weyl points, topological phase transition, and Fermi arcs of surface states.  
Here, we investigate moving and merging of Weyl points along with varying of the dimensionless parameters α 
and β. Merging of Weyl points and annihilations of topological charges lead to topological phase transitions. In 
our model, there are four kinds of topological phase transitions such as (i) transition from the WSM2 phase to the 
MSM1a phase, (ii) transition from the MSM2 phase to the MSM1b phase, (iii) transition from the MSM1a phase 
to the band insulator phase, and (iv) transition from the MSM1b phase to the band insulator phase.

Figure 2. Schematic of the phase diagram. Here, WSM2 (blue) denotes the Weyl semimetal phase with two 
pairs of Weyl points in the Brillouin zone; WSW1a (yellow) and WSW1b (green) denote the two semimetal 
phases with a pair of Weyl points in the Brillouin zone; BI denotes the band insulator phase.
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The WMS2 phase has two pairs of Weyl points W1,2 and W3,4 with topological charges C1,2 =  ± 1 and C3,4 =  ± 1,  
as shown in Fig. 3(a). When we keep α +  β invariant and increase α −  β, the Weyl points W3,4 move towards each 
other and W1,2 stay at the original positions. When α −  β increases to 1, the Weyl points meet at (π/2, − π/2, 0)  
in the Brillouin zone and merge, as shown in Fig. 3(b). When α −  β further increases more than 1, the Weyl 
points W3,4 annihilate and only W1,2 remain, the system from the MSM2 phase turns into the MSM1a phase, i.e., 
topological phase transition (i) happens. Topological phase transition (i) can also occur through the other type of 
moving and merging of Weyl points. Starting from the WSM2 phase, we keep α +  β invariant and decrease α −  β, 
the Weyl points W3,4 move away from each other and W1,2 stay at their starting positions. When α− β decreases 
to − 1, the Weyl points W3,4 arrive at (π/2, − π/2, ± π), which are identical points in the Brillouin zone, i.e., W3,4 
meet and merge, as shown in Fig. 3(c). When α− β is less than − 1, W3,4 annihilate and topological phase transi-
tion (i) happens. When it arrives at the MSM1a phase, there exist only one pair of Weyl points W1,2, which have 
opposite topological charges, in the Brillouin zone, as shown in Fig. 3(d). Similarly, there are two types of moving 
and merging of Weyl points to realize topological phase transition (ii), i.e., the transition from the WSM2 phase 
to the WSM1b phase. We can vary the value of α +  β and keep α− β invariant. When α +  β increases to 1 or − 1, 
the Weyl points W1,2 meet and merge at the center or the surface of the Brillouin zone, and W3,4 still remain. 
When |α +  β| is greater than 1, the Weyl points W1,2 annihilate and a topological phase transition from the MSM2 
phase into MSM1b phase happens, as shown in Fig. 3(e). For the MSM1a phase, we can also increase |α +  β| to 
1, the remaining Weyl points W1,2 meet and merge at the center or the surface of the Brillouin zone, as shown in 
Fig. 3(f). If we further increase |α +  β| greater than 1, the remaining Weyl points W1,2 annihilate and a gap opens, 
topological phase transition (iii) happens. For the MSM1b phase, if we increase |α −  β| to 1, the remaining Weyl 
points W3,4 meet and merge at the surface or corner of the Brillouin zone. If we further increase |α −  β| greater 
than 1, the remaining Weyl points W3,4 annihilate and a gap opens, so topological phase transition (iv) happens. 
In all the topological phase transitions, it is found that topological charges respect a conservation law and they are 
only created and annihilated in pairs.

In order to further study the characters of Weyl semimetals and topological phase transitions, we calculate the 
surface states of a slab geometry with (010) surfaces and investigate the evolution of Fermi arcs along with the 
moving and merging of Weyl points. In Fig. 4, we show the spectral function of the surface states at zero energy. 
The spectral function can be calculated through the formula = −

π
A E ImG E( ) ( )r1 , where Gr(E) is the retarded 

Figure 3. Weyl points in Weyl semimetal phases for. (a) The WSM2 phase with α =  0 and β =  0, (b) the 
boundary between the MSM2 phase and the MSM1a phase with α =  0.5 and β =  − 0.5, (c) the boundary 
between the MSM2 phase and the MSM1a phase with α =  − 0.5 and β =  0.5, (d) the MSM1a phase with α =  0.8 
and β =  − 0.8, (e) the MSM1b phase α =  0.8 and β =  0.8, (f) the boundary between the MSM1a phase and the 
band insulator phase with α =  1.3 and β =  − 0.3. For all of cases, we have set tx =  ty =  tz =  t. The yellow bulks 
represent the Brillouin zone; the red and green balls represent the Weyl points with positive and negative 
topological charges (also denoted by all-out and all-in arrows), respectively; the half red and half green balls 
represent merged Weyl points.
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Green function of the system. The projections of Weyl points W1,2,3,4 on the surface Brillouin zone are denoted as 
∼W1,2,3,4. Figure 4(a) shows that, in the WSM2 phase, there are two Fermi arcs in the surface Brilllouin zone, which 
connect points ∼W1 and ∼W3, ∼W2 and ∼W4, respectively. Since Weyl points W1 and W3, W2 and W4 have opposite 
topological charges, we conclude that Fermi arcs connect the projections of Weyl points with opposite topological 
charges on the surface Brillouin zone. When |α− β| increases to 1, ∼W3 and ∼W4 meet and merge at the side bound-
ary or the corners of the surface Brillouin zone, thereby two Fermi arcs combine into one single Fermi arc, as 
shown in Fig. 4(b,c), which corresponds to topological phase transition (i). When |α− β| increases greater than 1, 
the system in the MSM1a phase, the Fermi arc connects the projections of the remaining Weyl points ∼W1,2, as 
shown in Fig. 4(d). Similarly, for the MSM1b phase, there exists a Fermi arc connect the points ∼W3 and ∼W4 in the 
surface Brillouin zone, as shown in Fig. 4(e). When the transition from the MSM1a phase or the MSM1b phase to 
the band insulator phase the happen, the Fermi arc firstly shrink into a point, as shown in Fig. 4(f), and finally 
disappears.

Hidden symmetry at Weyl points. Here, we build the hidden symmetry at Weyl points. For convenience 
to construct the hidden symmetry, we suppose the case with the Hamiltonian H0 as Eq. (1) as the original model 
and the total model H =  H0 +  Hd +  Hs as the modified model.

Hidden symmetry at Weyl points of the original model. In the following, we will show that the Weyl points in 
the original model are protected by a hidden symmetry. For the original model, the lattice is invariant under the 
operation defined as

Figure 4. The spectral functions of surface states with E = 0 on the (010) surface Brillouin zone for. (a) The 
WSM2 phase with α =  0 and β =  0, (b) the transition from the MSM2 phase to the MSM1a phase with α =  0.5 
and β =  − 0.5, (c) the transition from the MSM2 phase to the MSM1a phase with α =  − 0.5 and β =  0.5, (d) the 
MSM1a phase with α =  0.8 and β =  − 0.8, (e) the MSM1b phase α =  0.8 and β =  0.8, (f) the transition from the 
MSM1a phase to the band insulator phase with α =  1.3 and β =  − 0.3. For all of cases, we have set tx =  ty =  tz =  t. 
Here, the rectangles represent the (010) surface Brillouin zone and kxy is the component on the xy plane in 
momentum space for the wavevectors on the surface Brillouin zone. The red and green circles represent the 
projections of Weyl points with positive and negative topological charges on the surface Brillouin zone; the half 
red and half green circles represent the projections of merged Weyl points on the surface Brillouin zone.
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σϒ = π
ˆe T K( ) , (8)i i

x x
z

where K is the complex conjugate operator; ˆT x is a translation operator that moves the lattice along the x direction 
by a unit vector; σx is the Pauli matrix representing the sublattice exchange; πe( )i i z is a local U(1) gauge transfor-
mation. It is easy to prove that the symmetry operator ϒ is antiunitary, and its square is equal to ϒ = ˆT x

2
2 .

By setting α =  0 and β =  0, the Bloch Hamiltonian of original model can be obtain from Eq. (4) as

 σ σ σ= − − − .t k t k t kk( ) 2 cos 2 cos 2 cos (9)x x x y y y z z z0

The symmetry operator ϒ can be considered as a self-mapping of the original model defined as

 ′ ′ϒ Ψ Ψ′ ′k k r k k r: ( , ( ), ( )) ( , ( ), ( )),k k0 0, 0 0,

where Ψ r( )k0,  and Ψ′ ′ r( )k0,  are the Bloch functions of the original model. We suppose that the Bloch functions of 
the square lattice model have the form as

Ψ =
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nk k, ,  with i =  1, 2 for two sublattices and Rn being a lattice vector. Performing  
the symmetr y transformation on the Bloch function (10) leads to ϒΨ = Ψ′ ′r r( ) ( )k k0, 0,  with 

π′ = ′ ′ ′ = − − − +k k k k k kk ( , , ) ( , , )x y z x y z . If the condition ′ = +k k G, where G is the reciprocal lattice vector, 
is satisfied, k is a ϒ-invariant point. In the Brillouin zone, the distinct ϒ-invariant points are 

π π π= ±M ( /2, /2, /2)1,2 , π π π= − ±M ( /2, /2, /2)3,4 , π= ±N (0, 0, /2)1,2 , and π π= ±N (0, , /2)3,4 . The square 
of the ϒ operator can be written in the form as ϒ = = −

ˆT ex
ik2

2
2 x in the Bloch representation. It is easy to verify 

that ϒ = −12  the points Mi(i =  1, 2, 3, 4), while ϒ = 12  at the points Ni(i =  1, 2, 3, 4). Considering the antiunita-
rity of the operator ϒ, based on Kramers theorem, we can conclude that there must be band degeneracies at the  
ϒ-invariant points Mi(i =  1, 2, 3, 4), which are just the Weyl points Wi(i =  1, 2, 3, 4) in the MSM2 phase with α =  0 
and β =  0. There, a hidden symmetry with its square of operators being − 1 exists at the Weyl points of the original 
model.

Hidden symmetry at Weyl points of the modified model. It is easy to verify that the hidden symmetry ϒ is violated 
in the modified model. However, with the mapping Ωα,β from the modified model into the original model defined 
in section Methods, we can find the hidden symmetry in the modified model. Based on the mapping Ωα,β, we 
define an operation Λ = Ω ϒ Ωα β α β α β

−
 , ,

1
, , which can be regarded as a self-mapping of the modified model as

′Λ Ψ ′ Ψ′α β ′k k r k k r: ( , ( ), ( )) ( , ( ), ( ))k k,  

Performing the above operation on the Bloch function of the modified model, we have Λ Ψ = Ψα β ′r r( ) ( )k k, , 
where π′ = − − − − ∆ − ∆ ′ +k k kk k k( , , ( ) ( ) )x y z z z  with ∆ = −K kk( )z z z being the shift of the z-component 
of the wave vector k due to the mapping Ωα,β. If ′ = +k k G is satisfied, k is a Λα β, -invariant point. In the 
B r i l l o u i n  z o n e ,  t h e  d i s t i n c t  Λα β, - i nv a r i a nt  p o i nt s  a r e  π π α β= ± +P ( /2, /2, arccos( ))1,2 , 

π π α β= − ± −P ( /2, /2, arccos( ))3,4 , α= ±Q (0, 0, arccos )1,2  and π α= ±Q (0, , arccos )3,4 .
From the definition of the operator Λα β, , we can verify Λ = Ω ϒ Ωα β α β α β

−
 ,

2
,
1 2

, , which acts on the Bloch func-
tion as Λ Ψ = Ψθ β

−er r( ) ( )ik
k k,

2 2 x . Substituting the Λα β, -invariant points =iP ( 1, 2, 3, 4)i  and =iQ ( 1, 2, 3, 4)i  
into the above equation, we find Λ = −α β 1,

2  at =iP ( 1, 2, 3, 4)i , while Λ =α β 1,
2  at =iQ ( 1, 2, 3, 4)i . Since Λα β,  is 

an antiunitary operator, based on Kramers theorem, there must exist band degeneracies at the Λα β, -invariant 
points =iP ( 1, 2, 3, 4)i , which are just the Weyl points =iW ( 1, 2, 3, 4)i  of the WSM2 phase for α β+ < 1 and 
α β− < 1. For α β+ < 1 and α β− > 1, P3,4 do not exist, there are only the Λα β, -invariant points P1,2, 
which correspond to the Weyl points W1,2 of the WSM1a phase. Similarly, for α β+ > 1 and α β− < 1, P1,2 
do not exist, there are only the Λα β, -invariant points P3,4, which correspond to the Weyl points W3,4 of the WSM1b 
phase. For the case α β+ > 1 and α β− > 1, all the Λα β, -invariant points P1,2,3,4 do not exist, so there are not 
Weyl points, which corresponds to a band insulator phase.

We can interpret the above results in an intuitive way. The mapping Ωα,β from the Brillouin zone of the modi-
fied model into that of the original model is not surjective, which can be seen in Fig. 5. For the WSM2 phase, i.e. 
α β+ < 1 and α β− < 1, the image of the mapping for the Brillouin zone of the modified model covers the 
degenerate ϒ-invariant points M1,2 and M3,4 in the Brillouin zone of the original model, as shown in Fig. 5(a). 
Therefore, there are always two pairs of Λα β, -invariant points P1,2 and P3,4, where the Weyl points locate, map into 
the degenerate ϒ-invariant points M1,2 and M3,4. When we increase α β−  to 1, P3 and P4 become the same point 
of the Brillouin zone of the modified model, which maps into the points M3,4 in the Brillouin zone of the original 
model as shown in Fig. 5(b), so the corresponding two Weyl points merge and a phase transition from the WSM2 
phase to the WSM1a phase occurs. When α β+ < 1 and α β− > 1, the image of mapping for the Brillouin 
zone of the modified model only covers the degenerate ϒ-invariant points M1,2 in the Brillouin zone of the origi-
nal model as shown in Fig. 5(c). There exists a pair of Weyl points P1,2 in the Brillouin zone of the modified model 
mapping into the degenerate ϒ-invariant points M1,2, which corresponds to the WSM1a phase. Similarly, when 
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α β+ = 1 and α β− < 1, the image of the mapping for the Brillouin zone of the modified model covers M1,2 
and M3,4 while M1,2 locate at the edge of the image and the same point in the Brillouin zone of the modified model 
maps into M1,2. The degenerate Λα β, -invariant points P1,2 merge at the edge of the Brillouin zone of the modified 
model while P3,4 still exist. This case corresponds to the phase boundary between the WSM2 and WSM1b phases. 
When α β+ > 1 and α β− < 1, the image of the mapping for the Brillouin zone of the modified model only 
covers the degenerate ϒ-invariant points M3,4 as shown in Fig. 5(d). Correspondingly, there exists a pair of Weyl 
points P3,4 in the Brillouin zone of the modified model mapping into the degenerate ϒ-invariant points M3,4, 
which corresponds to the WSM1b phase. When α β+ > 1 and α β− > 1, the image of mapping for the 
Brillouin zone of the modified model does not cover any degenerate ϒ-invariant points in the Brillouin zone of 
the original model as shown in Fig. 5(e). Therefore, there does not exist any Weyl point in the Brillouin zone of 
the modified model and a gap opens, which corresponds to the band insulator phase. When α β+ = 1 and 
α β− = 1, a direct phase transition between the MSM2 phase and the band insulator phase occurs, where two 
pairs of Weyl points merge simultaneously. For this case, the edge of the image of the mapping for the Brillouin 
zone of the modified model covers the degenerate ϒ-invariant points M1,2 and M3,4 in the Brillouin zone of the 
original model as shown in Fig. 5(f), which means that the four Λα β, -invariant P1,2 and P3,4 merge as two points. 
Therefore, the two pairs of Weyl points simultaneously merge at the edge of the Brillouin zone of the modified 
model.

Discussion
In summary, we have proposed a scheme to realize Weyl semimetals in a cubic optical lattice. There exist three 
Weyl semimetal phases, such as the WSM2, WSM1a, and WSM1b phases, for different parameter ranges. In the 
Brillouin zone, there are two pairs of Weyl points for the WSM2 phase while there is one pair of Weyl points for 
the MSM1a and MSM1b phases. The Weyl points move along with varying of the parameters. When the Weyl 
points with opposite topological charges meet, they merge and annihilate, which leads to a topological phase tran-
sition. The spectral functions of surface states at zero energy for a slab with (010) surfaces have been calculated. 
Fermi arcs appear to connect the projection of the Weyl points with opposite topological charges on the surface 
Brillouin zone. There are two Fermi arcs in the WSM2 phase and there is one in the MSM1a and MSM1b phases. 
When the phase transition from the WSM2 phase to the MSM1a or MSM1b phase happens, the two Fermi arcs 
combine into one Fermi arc. For the phase transition from the MSM1a or MSM1b phase to the band insulator 

Figure 5. The mapping from the Brillouin zone of the modified model into the Brillouin zone of the 
original model for. (a) α =  − 0.3, β =  0.3; (b) α =  1, β =  − 0.8; (c) α =  1, β =  0.8; (d) α =  2, β =  0; (e) α =  0.6, 
β =  − 0.4; (f) α =  1, β =  0;. Here, the yellow bulk represents the Brillouin zone of the original model; the green 
balls mark the Weyl points of the original model; the blue part represent the image of the mapping in the 
Brillouin zone of the original model for the Brillouin zone of the modified model.
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phase, the Fermi arc shrinks into a point, then disappears. We also found that there exist hidden symmetries at 
all of Weyl points. These hidden symmetries have an antiunitary operator with its square being − 1. Based on the 
mapping method25, we constructed hidden symmetries at all of Weyl points. Our work deepens our understand-
ing of Weyl semimetals on the point view of symmetry.

Methods
The mapping from the modified model into the original model. We can define a mapping from the 
modified model into the original model as25

Ω Ψ Ψα β k k r K K r: ( , ( ), ( )) ( , ( ), ( ))k K, 0 0, 

where Ψ r( )k  represents the Bloch function of the modified model. The concrete form of the mapping Ωα β,  
depends on the dimensionless parameters with α and β. For this mapping, we have Ω Ψ = Ψα β r r( ) ( )k K, 0,  with

=K k (11)x x

=K k (12)y y

π

π
=






− ∈ −

∈
α β

α β
K

k
k

k
k
( ), [ , 0]

( ), [0, ], (13)
z

z

z

,

,




where ≡α β
α β

α β

− −

+ +( )k( ) arccos
k k k

,
cos sin sin

1
z x y . Replacing k in equation (4) with K via Equations (11), (12), and 

(13), we obtain

σ σ σ= − ′ − ′ − ′t K t K t KK( ) 2 cos 2 cos 2 cos (14)x x x y y y z z z0

with ′ =t tx x, ′ =t ty y, and ′ = + | | + | |t t t v2 /2z z xy , which is just the Bloch Hamiltonian (9) of the original model.
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