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Abstract: This paper reports the obtaining of poly (vinyl alcohol) and ι-carrageenan blend hydrogels
by physical crosslinking (consecutive freeze–thaw cycles). The two polymers were completely miscible
in the weight ratio interval used in this study, as determined by solution viscometry data. Strong
interactions through hydrogen bonding and forming of mixed interpolymer crystalline domains were
observed, which are responsible for the formation of stable drug release-tunable matrices. The release
profiles of three model antibiotic drugs (amoxicillin, tetracycline hydrochloride, and gentamicin
sulfate) were assessed in a pH interval between 3 and 7.3. They were found to be strongly dependent
on the drug chemistry, mesh size of the hydrogels, swelling mechanism, and pH of the release
medium. A decrease of up to 40% in the release rates and up to 10% in the diffusion coefficients of the
model drugs was registered with the increase in ι-carrageenan content.

Keywords: poly (vinyl alcohol); iota-carrageenan; polymer blends; polysaccharide; hydrogels;
swelling; controlled release

1. Introduction

Poly (vinyl alcohol) (PVA) has been widely in used in the formulation of hydrogel matrices
for controlled-release or environmental remediation applications since the early 1960s, due to its
nontoxicity, biocompatibility, and to the availability of an extensive palette of chemical modification
(functionalization) and crosslinking reactions [1,2]. PVA chemical modification and crosslinking
represent one of the two primary tools through which the solubility, porosity, diffusion, swelling,
sorption yield, and hydrophilicity of PVA hydrogels could be tuned to match various applicative
demands from both research and industry [3,4]. The second method to tune the properties of
PVA hydrogels (applied either standalone or in combination with the first) is represented by PVA
compounding with various inorganic or organic compounds [5,6], respectively, blending with synthetic
and/or natural polymers [7,8].

Blending PVA with biopolymers (especially polysaccharides) increases the biocompatibility,
hydrophilicity, and swelling of hydrogels, through the increase in the density of the hydrophilic
groups [9,10]. It also improves the flexibility, hardness, and compression resistance of the PVA-blend
hydrogels through the creation of extended crosslinking points in the polymer matrix [11]. Moreover,
the addition of polysaccharides with ionized or ionizable groups to PVA, for example chitosan,
alginates, carrageenan, pectin, pectinates, or modified cellulose, leads to the formation of hydrogels
with new functional properties (antimicrobial materials [12], sensors [13]). Supplementary, this addition
modulates the release of ionic or polar active principles (antibiotics, nutraceuticals, and other drugs)
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in controlled-release applications, while also extending or improving the performance of the PVA
hydrogel matrix in conjunction with the sorption of potentially harmful species (e.g., dyes [14], heavy
metal cations [15], anions [16], and pesticides [17]) for environmental remediation applications.

Carrageenans represent a class of linear water-soluble sulfated galactan polysaccharides
that are isolated mainly from marine red algae. This class of biopolymers possesses a high
tendency to form thermoreversible gels through extended hydrogen bonding between molecules
adopting a single-helix conformation (λ) or between double-helix molecular associations (κ and ι

carrageenans) [18,19]. Carrageenans form strong interpolymer complexes through hydrogen bonding
with poly (vinyl alcohol), these complexes imparting higher tensile strength and improved water barrier
properties to PVA films in comparison with other biopolymers such as Na-alginate, gelatin, chitosan
or carboxymethylcellulose [20]. Carrageenan (CAR) is entirely miscible with poly (vinyl alcohol) in
the amorphous region, while in the crystalline domain miscibility is only partial, due to differences
in the conformation and molecular weight between the two polymers [21,22]. PVA/CAR hydrogels
crosslinked through the application of β and γ radiation or alternative freeze–thaw cycles (physical
crosslinking) have been found useful for wound dressing [11,23] or cultivation of microalgae [24],
and in the lyophilized (freeze-dried) state, also suitable for tissue engineering applications [25].
Ionic-crosslinked and chemically crosslinked PVA/κ-carrageenan hydrogels and films have been
found to possess excellent in vivo biocompatibility and functionality as drug release vehicles [26,27].
Composite PVA/κ-carrageenan hydrogel matrices obtained through physical crosslinking have also
been applied as sorbents for cationic dyes [28] or as support for photocatalytic oxides [29] and
bacteria [30] in environmental remediation applications.

In this paper, poly (vinyl alcohol) has been blended with ι-carrageenan in different weight ratios
to obtain hydrogels through physical crosslinking (alternative freeze–thaw cycles). The hydrogels were
used as drug release vehicles for three types of antibiotics: tetracycline, amoxicillin and gentamicin
sulfate. To the best of our knowledge, this would be the first report of using ι-carrageenan as a
coblending component to obtain hydrogels through physical crosslinking. The benefit of using this
carrageenan stems from the presence of two sulfate groups per galactan structural unit, which allows
for increased interaction with PVA through hydrogen bonding, and more active binding/release
tuning sites in the hydrogel matrix, compared to κ-carrageenan which presents one sulfate group
per the same structural unit. Additionally, only a few studies have used ι-carrageenan-containing
materials as drug release matrices. This study could serve to enlarge the dynamically expanding
database of biopolymer-synthetic polymers systems description, as well as of hydrogel materials
application possibilities.

2. Experimental

2.1. Materials

Poly (vinyl alcohol) (average Mw of 130,000; 99.4% hydrolysis degree), ι-carrageenan (dynamic
viscosity of 55 mPa·s at 75 ◦C in 1.5 wt % aqueous solution), κ-carrageenan (dynamic viscosity of
15 mPa·s, 0.3% in H2O at 25 ◦C), tetracycline hydrochloride (C22H25ClN2O8, ≥95%, coded with T)
amoxicillin (C16H19N3O5S, potency ≥ 900 µg per mg, coded A), gentamicin sulfate (C19H40N4O10S,
potency: ~600 µg per mg, coded G), and cyclohexane (anhydrous, 99.5%) were purchased from
Sigma-Aldrich (Darmstadt, Germany) and used without further purification.

The reagents used for spectrophotometric determination of the antibiotics (ascorbic acid and
ninhydrin) were purchased from the same company.

2.2. Hydrogels Obtaining

Four types of hydrogels were prepared in this study, corresponding to poly (vinyl alcohol),
ι-carrageenan, respectively, to two PVA and CAR blends, with their composition and sample coding
reflected in Table 1. These ratios were chosen considering our hydrogel recipe optimization trials
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and our previous study on PVA/κ-carrageenan hydrogels [28], which were more dimensionally and
compositionally stable up to a 0.140 κ-carrageenan weight fraction.

Table 1. Composition, thickness, solids, and gel contents of the obtained hydrogels *.

Sample
Code

Polymeric Components Amount

wCAR
mdrug

(g)
δ

(mm)
SC
(%)

GC
(%)

PVA CAR

PVA
Solution

Volume (mL)

PVA
Amount

(g)

CAR
Solution

Volume (mL)

CAR
Amount

(g)

PVA 10 1.000 – – 0 0.250 3.87 9.81 87.21

PC5 8 0.800 2 0.040 0.047 0.210 3.81 8.22 82.78

PC12 6 0.600 4 0.080 0.117 0.170 3.74 5.63 83.31

PC12K 6 0.600 4 0.080 0.117 0.170 ** 3.79 5.43 79.81

CAR – – 10 0.200 1 – 3.62 2.04 0.83

* Maximum relative error: for solids content and gel content: ±1.1%, and for the thickness δ: ±0.1%;
** tetracycline hydrochloride.

The starting 10 wt/vol % poly (vinyl alcohol), respectively, 2 wt/vol % ι-carrageenan aqueous
solutions were prepared through dispersing the required amount of polymer in distilled water, followed
by magnetic stirring of the resultant disperse system at 90 ◦C for 5 h until homogenization, followed by
filtering through a 1 µm stainless steel wire mesh and cooling to room temperature (21 ± 1 ◦C). The PVA
and CAR mixtures were prepared by magnetically stirring the required volume of the two polymer
solutions at 90 ◦C for 30 min. For hydrogels obtaining, 10 mL of PVA, CAR, and PVA:CAR solution
mixtures were cast into borosilicate Petri dishes (60 mm diameter) and submitted to five consecutive
cycles of freezing and thawing. The freezing temperature was –25 ◦C, the freezing duration 12 h, while
the thawing temperature was 22 ◦C, with a corresponding thawing duration of 12 h.

The molecular structure of poly (vinyl alcohol), ι-carrageenan, the work steps involved in the
preparation of the gels, and in the physical crosslinking mechanism is illustrated in Figure 1.
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The antibiotic-loaded hydrogels were prepared through applying the same freeze–thaw procedure
as for the neat hydrogels, adding a specified amount of drug (mdrug) per 10 mL of PVA and respectively,
PVA:CAR solution mixtures, followed by stirring at 35 ◦C to avoid thermal degradation, until complete
dissolution of the antibiotics. The amount of drug added in each of the formulations corresponding
to Table 1 was kept at 250 mg/g of dry polymer(s). Since the carrageenan gel alone did not show
satisfactory stability to water action, an antibiotic-loaded gel was not prepared for this type of material.
The antibiotic-loaded hydrogels coding is preserved from the neat samples, with adding “-T”, “-A”,
and “-G” as a suffix, for tetracycline hydrochloride, amoxicillin, respectively, gentamicin sulfate.

The obtained neat hydrogels were stored in distilled water (in swollen equilibrium state)
before preparing the samples for the structural and morphological analyses detailed in the
following subsections.

For the sake of comparison, κ-carrageenan containing hydrogels were prepared with the
corresponding composition of PC12 (6 mL of 10 wt % PVA solution and 4 mL of 2 wt % κ-carrageenan
solution, wCAR = 0.117), following an identical protocol. These hydrogels were coded with PC12K. The
same blend composition, prepared with κ-carrageenan, was loaded with tetracycline hydrochloride, to
assess the differences between the delivery profiles of the two carrageenans (gel coded with PC12K-T).

2.3. Hydrogels Characterization

2.3.1. Solids Content and Gel Content Determination

The solids content, i.e., the percentual dry weight (SC, %) of the hydrogels was determined as the
percentage ratio between the mass of the oven-dried gels (105 ◦C, 5 h) and the mass of the as-obtained
gels before drying (Table 1). The worksteps for determining the gel content (GC) are described in
detail in our previous research [28]. Three determinations were employed for both the solids content,
respectively. The gel content for each type of material, and the average values were presented in
Table 1.

2.3.2. Swelling Behavior

The swelling behavior was studied by immersing preweighted (initial mass m0) circular disks
(~5 mm diameter) of the PVA, PC5, PC12, and CAR hydrogels in 100 mL of distilled water, respectively,
and 100 mL of aqueous media with different pH values (between 3 and 7.3) at room temperature. The
values of pH were adjusted by the addition of HCl, respectively, NaOH of different concentrations to
maintain a constant ionic strength of the swelling media. The values of pH for assessing the hydrogels
swelling were chosen to be representative for the control release experiments. The cryogel disks were
taken out of the swelling media at determined time intervals, dried at the surface with filter paper, and
weighed (mt), after which they were reimmersed in the same media. These steps were repeated until
the gels reached the swelling equilibrium. The swelling degree (SD, %) for any given swelling period t
until equilibrium reaching was calculated with Equation (1)

SD =
mt −m0

m0
· 100 (%) (1)

The diameter and thickness of the gel samples in the initial state, before swelling (d0, respectively,
δ), as well as the diameter and thickness after 15 min of cumulative immersion in the swelling fluids
(dsw, respectively, δsw) were measured with a micrometer (Insize, Zamudio, Spain). The modification
in volume after 15 min of swelling ∆V15 was calculated taking into account the cylindrical form of
the samples as ∆V15 = π·(dsw − d0)

2
·(δsw − δ)/4. The swelling experiments and the measurement of

thickness and diameter were performed in triplicate for each cryogel, and the average values were
presented and discussed in the paper.

Based on the swelling data in distilled water, the amount of crosslinking in the neat and
drug-loaded cryogels (the latter corresponding to the PC12 formulation) was determined by calculating
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the crosslinking density (ν) (Equation (2)), and the number-average molecular weight between
crosslinking points (Mc) (Equation (3)), according to the Flory–Rehner theory [31].

ν = −
ln(1−Φs) + Φs + χ ·Φ2

s

Φ1/3
s ·V0

(2)

Mc =
dh

ν
(3)

where φs represents the volume fraction corresponding to the polymer in the swollen hydrogel in
the equilibrium state, calculated with Equation (4), dh is the density of the hydrogel in the swollen
equilibrium state (determined with a solids pycnometer, with cyclohexane as pycnometric fluid;
21 ◦C), V0 is the molar volume of water (18.0360 cm3mol−1 at 21 ◦C), and χ is the Flory–Huggins
polymer–solvent interaction parameter, calculated according to Equation (5) [31].

Φs =

[
1 +

dh

dH2O
·

(
mswollen

mdry
− 1

)]−1

(4)

In Equation (4), dH2O is the density of water (dH2O = 0.9893 g/cm3 at 21 ◦C, determined with the
pycnometric method), mswollen is the mass of the hydrogel in equilibrium swollen state and mdry is the
mass of dry gel (xerogel), calculated with the value of the solids content (Table 1, mdry = mgel·SC/100,
where mgel is the mass of the as-obtained hydrogel).

For each type of hydrogel, five different measurements for mswollen, mdry and dh have been
performed, and the average values were used for calculating φs and subsequently Mc.

The Flory–Huggins polymer–solvent interaction parameter (χ) was calculated with
Equation (5) [32]:

χ = −
ln(1−Φs) + Φs

Φ2
s

(5)

Even if the Flory–Rehner approach usually applies for mono-polymer systems, it has also been
used in bipolymer hydrogel systems where there is significant interaction between the polymer
components (i.e., where crosslinking occurs) [32], thus the values presented herein for χ, Mc and ν can
be discussed comparatively, considering a “global” contribution of the polymer phase.

A useful parameter in describing the swelling and drug release from the physically crosslinked
hydrogel networks is the mesh size, ξ. For PVA, which is the majoritarian polymer component in the
hydrogels, the mesh size could be estimated using Equation (6) [33]:

ξ = Φ−1/3
s

[
C∞ ·

(2Mc

Mr

)]1/2
· l (6)

In Equation (6), C∞ represents the Flory characteristic ratio (for PVA, C∞ = 8.4), Mc is the molecular
weight between crosslinks (calculated with Equation (3)), Mr is the molecular mass of the PVA monomer
unit (44.05), and l is the carbon–carbon bond length of the monomer unit (1.54 Å) [33].

2.3.3. Controlled Release and Adsorption

Similar to the approach described in Section 2.3.2, the tetracycline hydrochloride, amoxicillin, and
gentamicin-sulfate-loaded hydrogels corresponding to the formulations depicted in Table 1 were cut
into circular disks, weighed (ml) and immersed into 100 mL of distilled water, respectively, and 100 mL
of aqueous media with different pH values (3; 6.5, and 7.3) at room temperature (21 ◦C) under constant
magnetic stirring (50 rpm), to ensure a constant concentration gradient between the gel and the release
medium. The pH values were chosen to mimic as close as possible the pH of the gastric fluid (1¨C3),
small intestine (6.37–7.04), large intestine (6.63–7.49), and physiological fluid (7.32¨C7.42) [34]. For
pH = 7.3, the drug release profiles were studied at different temperatures: 29 ◦C, 33 ◦C, and 37 ◦C.
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At predetermined release periods, aliquots were extracted from the release media and analyzed
spectrophotometrically (Spekol 11 spectrophotometer, Carl Zeiss, Jena, 0.995 cm glass cuvettes) to
determine the amount of released antibiotic (mrel) at different wavelengths, specific to the determination
method for each type of drug, based on prior-constructed calibration curves and taking into account
the volume of the release medium, i.e., 100 mL. Tetracycline hydrochloride was determined based
on absorbance values measured at λmax = 356 nm [35]. Amoxicillin was determined based on its
colored condensation adduct with ascorbic acid absorbing at λmax = 410 nm, according to the procedure
described by El-Shafie et al. (limit of detection of 6 ± 0.1 µg/mL) [36]. Gentamicin sulfate was
determined according to the method described by Ismail et al., based on the absorbance maximum
λmax = 418 nm of gentamicin: ninhydrin complexes (limit of detection of 16 ± 0.3 µg/mL) [37].

The cumulative fractional drug release (Ft) was calculated as the ratio between the amount of
released antibiotic mrel and the initial amount of drug from the hydrogel (min, according to Equation (7))
at release time t = 0.

min =
ml·CS·0.250

100
(g) (7)

Each controlled-release experiment was performed in triplicate, and the average value is presented
in the article.

2.3.4. Morpho-Structural Characterization

The nature of the interactions between poly (vinyl alcohol) and ι-carrageenan were assessed
performing refraction index (n25

D ) measurements at 25 ◦C (Abbe refractometer three determinations
average) for stock solutions of 1 g polymer/dL of PVA, CAR, respectively, various PVA:CAR mixtures
with a variation in carrageenan weight fraction wCAR (relative to the total amount of polymer in each
system) from 0.01 to 0.023 The wCAR fractions mentioned in Table 1, used to prepare the hydrogels
were also included in the study.

A Cannon-Ubbelohde dilution capillary viscometer (viscosimeter constant of 0.0023 cSt/s) was
used to determine the relative kinematic viscosity ηrel, and the specific viscosity ηsp = (ηrel − 1) of
the pure polymer solutions and polymer solution mixtures with different wCAR fractions at 25 ◦C. To
overcome the typical behavior of polyelectrolyte polymers (increase of the reduced viscosity with
decreasing concentration, due to stronger electrostatic intramolecular repulsions at lower concentration
values), the ι-carrageenan and PVA:CAR mixture solutions were prepared in a sodium phosphate buffer
(pH = 6.7) [38]. The dilutions inside the viscometer were performed with the same buffer solution.

For PVA and PVA:CAR mixtures, dilutions of concentration cv between 0.1 and 0.9 g/dL were
employed, obtained from 1 g/dL stock solutions directly inside the viscometer. For ι-carrageenan, a
0.04¨C0.45 g/dL interval was used for cv. The reduced kinematic viscosity (ηsp/cv) for the polymer
solutions was calculated for each concentration. Five measurements were performed for each viscosity
value and the average values were presented in the paper. The dependence of ηsp/cv = f(cv) was fitted
with the Huggins equation (Equation (8)) [39].

ηsp

cv
= [η] + KH[η]

2
·cv (8)

In Equation (9), [η] represents the intrinsic viscosity (dL/g) of the polymers and polymer mixtures
and KH is the Huggins parameter. For flexible polymer macromolecules, KH value usually lies between
0.2 and 0.8, and favorable polymer–solvent interactions occur. Particularly, if KH > 1, intermolecular
association and entanglement are usually expected [40].

The viscosity interaction parameter b (dL2/g2) is related to the Huggins parameter KH with the
following relation (Equation (9)) [39]:

b = KH·[η]
2 (9)
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A Quanta FEG 250 scanning electron microscope (SEM) was used to obtain the micrographs of the
hydrogels at an acceleration voltage of 20 kV. For SEM analysis, the gels were chemically dehydrated
in ethanol according to the procedure detailed in our previous publication [28], to preserve their pore
structure as much as possible. A polarized light microscope (RXLr-2Pol, Radical, Ambala, India) was
used to visualize the micrographs of the dried gels under cross-polarization conditions.

To supplement the information provided by the SEM micrographs, the pore volume ratio (Pr,
%) was determined based on the cyclohexane uptake of the dried gels, according to the worksteps
described by Jain and Kumar, and our previous research [28,41].

A Fourier transform infrared spectrometer equipped with a total attenuated reflectance device
(ATR-FTIR, Nicolet iS10, Thermo Fisher Scientific, Waltham, MA, USA) was used to attain the IR
spectra of the samples (dried over CaCl2 for seven days before analysis) in the 4000–600 cm−1 domain,
with a 4 cm−1 resolution, with 10 averaged scans per spectrum.

The X-ray diffraction (XRD) spectra of the samples were performed using a Bruker D8 diffractometer
(Billerica, MA, USA, Cu Kα radiation source at 0.1542 nm), at a scanning speed of 0.04◦s−1 and a
2θ = 10–40◦ Bragg angle interval.

The nature of the polymer-drug interactions was studied by electrical conductance measurements
on various PC12: antibiotic aqueous solutions with different pH values. For these measurements,
similar in principle to conductometric titrations, a starting 1 g polymers/dL solution was used,
corresponding to the PC12 formulation, with pH values of 3 and 7.3. Antibiotic solutions of 0.20 g/L
concentration, with the same pH values (3, respectively, 7.3) were added stepwise in aliquots of 100 µL
to 50 mL of the polymer solution. After each addition, the solutions were magnetically stirred at
100 rpm for 10 min, following the measuring of the electrical conductance (Q, mS/cm) with a HI2550
conductometer (Hanna Instruments, Cluj-Napoca, Romania).

The molecular simulations were performed in Materials Studio 7.0 (Accelrys Software Inc.,
San Diego, CA, USA), using the Amorphous Cell module and the COMPASS forcefield. For
modelling ι-carrageenan, 12 repeating (1->3)-β-d-galactopyranose-4-sulfate-(1->4)-3,6-anhydro-
α-d-galactopyranose-2-sulfate- segments were used (2 molecules per cell). The poly (vinyl alcohol)
was built having 10 repeating units/molecule (isotactic, 4 molecules per cell). The obtained structures
were optimized with the same Amorphous Cell module.

3. Results and Discussion

3.1. Hydrogels Swelling

The swelling kinetics of the hydrogels (Figure 2a, for distilled water as swelling medium) consists
of two interdependent steps, namely water diffusion into the crosslinked polymer matrix, respectively,
relaxation-induced swelling. Water diffusion occurs to a great extent until a swelling degree of
~23¨C47%, having as result a large-scale relative segmental motion of the PVA and/or ι-carrageenan
macromolecular chains. After this purely diffusional step threshold, solvent penetration is accompanied
to a large extent by dissipation of the strain induced on the physically crosslinked network (viscoelastic
relaxation-induced swelling regime) [42,43].
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Increasing of the ι-carrageenan amount determines higher equilibrium swelling degrees, due to
an increase in the density of the hydrophilic -OH groups from the polymer network. The carrageenan
hydrogel (wCAR = 1) is not stable in the considered aqueous media, significant mass loss occurring
after ~5–200 min of immersion, due to the low gel content of this type of hydrogel (Table 1).

Even if the sulfate groups of carrageenan are completely ionized at pH values greater than 2.8, a
variation in pH in the 3 ÷ 7.3 domain determines the occurrence of a net osmotic pressure between the
inner and the outer environment of the hydrogel. This difference (more significant at pH values of three
and four) determines molecular restructuration, modifying the free volume accessible to penetrant
water molecules and leading to an increase in swelling (Figure 2b, modification in gel volume) and
implicitly in the equilibrium swelling degree (Figure 2c).

The swelling data is in accordance with the crosslinking density (ν) and the molecular weight
between crosslinks (Mc) presented in Table 2. It can be seen that ι-carrageenan (having a higher
molecular weight compared to PVA) interferes with the freeze–thaw-induced crosslinking mechanism
of PVA, due to the formation of PVA-carrageenan interpolymer complexes, decreasing the crosslinking
density, respectively, increasing the molecular weight between the crosslinks, leading to an increase
in water swelling. Additionally, the PVA–water interaction parameter χ increases in the blends with
the increase in the ι-carrageenan content, implying stronger interpolymer interactions in favor of
polymer-water interactions [44]. These poly (vinyl alcohol) ι-carrageenan interactions are proven by
the structural data presented in Section 3.3.
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Table 2. Parameters related to crosslinking density (ν), molecular weight between crosslinks (Mc), and
mesh size (ξ) for the neat and drug-loaded hydrogels.

Sample Code φs·102 χ ν·104 Mc ζ (nm)

PVA 7.210 0.525 23.700 445.13 13.970

PC5 4.320 0.528 8.091 1295.15 28.270

PC12 2.212 0.530 1.998 5204.83 70.810

PC12K 2.013 0.544 1.274 6378.27 80.312

PC12-A 2.032 0.505 1.650 6729.57 82.980

PC12-T 2.203 0.508 1.980 5630.57 73.770

PC12-G 2.069 0.507 1.730 6439.89 80.601

CAR 1.140 0.504 0.846 11,977.17 –

To quantitatively assess the diffusional mechanism of water into the PVA, CAR, and PVA:CAR
hydrogel matrices, the semiempirical Korsmeyer–Peppas model was applied (Equation (10)) [45].

SDdiff = kD·tn (10)

In Equation (10), SDdiff represents the swelling degree for the first 40% of the swelling kinetic, kD

is the diffusion rate and n is the diffusional exponent, which characterizes the type of diffusion. A
value of n = 0.5 indicates Fickian diffusion, 0.5 < n < 1 indicates anomalous (non-Fickian) diffusion,
n = 1 implies a case II (time-independent) transport, while n > 1 implies a super case II transport.

The portion of the swelling kinetic governed by macromolecular relaxation was fitted with the
Hopfenberg model, for the remaining 60% of the swelling kinetic data, until reaching equilibrium
(Equation (11)) [46,47].

SD(%) = SDdiff + SDrel,∞ ·
[
1− e−κ(t−t0)

]
(11)

In Equation (12), the SDrel,∞ represents the equilibrium swelling degree (maximum swelling
achieved in the relaxation process), κ is the relaxation rate constant, and t0 is the initial time for the
relaxation process.

The effective diffusion coefficients (D) of water into the hydrogel matrix were calculated with
Equation (12) [31,48]:

D = π·

 δ·θ

4·qeq

2

(12)

where δ is the initial thickness of the hydrogel (Table 1), qeq represents the ratio between the mass of
the swollen hydrogel at equilibrium and its initial mass (at the beginning of the swelling process), and
θ is the slope of the swelling kinetic for the first 40% of data.

The data obtained through fitting the swelling kinetic with the Korsmeyer–Peppas and the
Hopfenberg models are presented in Table 3.

The data from Table 3 implies that in the case of all hydrogels and respectively, all of the swelling
media, the water diffusion is non-Fickian (0.5 < n < 1). The relaxation mechanism dominates swelling
of all hydrogels, ι-carrageenan addition decreasing the time (te) allotted to the purely diffusional step.
The prevalence of the relaxation mechanism over the diffusional one has as a consequence a “milder”
antibiotic release profile from the polymer matrix (as it can be observed from Section 3.2), proving of
higher benefit for sustained, controlled delivery devices. Additionally, the interactions between the
poly (vinyl alcohol) and ι-carrageenan are responsible for the decrease in the water uptake rates (κ)
registered for the relaxation swelling step. The water diffusion coefficients increase with the addition of
ι-carrageenan, with up to 17% for the PC12, in comparison with PVA. The water diffusion coefficients
decrease exponentially with the increase of pH, due to intense molecular reorientation occurring at pH
values of three and four.
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Table 3. Parameters related to the swelling kinetic and water diffusion *.

Material Parameter
Swelling Medium

Distilled Water pH = 3 pH = 4 pH = 5 pH = 6.5 pH = 7.3

PVA

kD (min−n) 0.42 (0.990) 0.54 (0.996) 0.50 (0.998) 0.47 (0.993) 0.45 (0.994) 0.46 (0.992)

n 0.92 (0.990) 0.97 (0.996) 0.94 (0.998) 0.95 (0.993) 0.99 (0.994) 0.94 (0.992)

SDdiff (%) 23.09 (0.988) 21.90 (0.981) 22.49 (0.990) 22.67 (0.987) 22.78 (0.991) 22.97 (0.996)

SDrel,∞ (%) 122.53 (0.988) 126.45 (0.981) 125.57 (0.990) 124.73 (0.987) 123.98 (0.991) 122.13 (0.996)

κ × 102 (min−1) 1.66 (0.988) 1.79 (0.981) 1.72 (0.990) 1.71 (0.987) 1.68 (0.991) 1.70 (0.996)

to (min) 88.19 (0.988) 79.12 (0.981) 79.83 (0.990) 83.11 (0.987) 85.01 (0.991) 88.04 (0.996)

D × 105 (cm2/s) 8.64 10.13 10.04 9.58 8.69 8.72

PC5

kD (min−n) 0.55 (0.961) 0.68 (0.994) 0.63 (0.989) 0.59 (0.995) 0.57 (0.998) 0.55 (0.990)

n 0.87 (0.961) 0.94 (0.994) 0.92 (0.989) 0.90 (0.995) 0.89 (0.998) 0.86 (0.990)

SDdiff (%) 46.21 (0.955) 40.34 (0.994) 41.77 (0.997) 43.11 (0.991) 43.52 (0.994) 46.73 (0.992)

SDrel,∞ (%) 137.60 (0.955) 149.56 (0.993) 140.34 (0.997) 139.83 (0.991) 138.84 (0.994) 137.97 (0.992)

κ × 103 (min−1) 5.90 (0.955) 8.31 (0.993) 8.04 (0.997) 7.56 (0.991) 7.00 (0.994) 6.43 (0.992)

to (min) 60.91 (0.955) 39.90 (0.993) 45.58 (0.997) 51.78 (0.991) 55.00 (0.994) 58.72 (0.992)

D × 105 (cm2/s) 8.90 18.34 16.98 12.65 10.19 9.04

PC12

kD (min−n) 1.26 (0.966) 1.42 (0.992) 1.38 (0.995) 1.35 (0.988) 1.30 (0.991) 1.29 (0.997)

n 0.80 (0.966) 0.89 (0.992) 0.87 (0.995) 0.85 (0.988) 0.83 (0.991) 0.83 (0.997)

SDdiff (%) 27.88 (0.949) 20.11 (0.988) 21.98 (0.994) 22.65 (0.989) 24.77 (0.990) 27.10 (0.992)

SDrel,∞ (%) 153.08 (0.949) 160.56 (0.988) 158.77 (0.994) 156.75 (0.989) 155.04 (0.990) 154.07 (0.992)

κ × 103 (min−1) 5.60 (0.949) 7.02 (0.988) 6.72 (0.994) 6.28 (0.989) 5.91 (0.990) 5.67 (0.992)

to (min) 29.37 (0.949) 15.34 (0.988) 18.62 (0.994) 22.86 (0.989) 24.11 (0.990) 28.75 (0.992)

D × 104 (cm2/s) 1.04 5.87 4.33 2.85 2.07 1.13
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Table 3. Cont.

Material Parameter
Swelling Medium

Distilled Water pH = 3 pH = 4 pH = 5 pH = 6.5 pH = 7.3

PC12K

kD (min−n) 1.34 (0.998) 1.53 (0.991) 1.50 (0.990) 1.42 (0.989) 1.38 (0.992) 1.35 (0.997)

n 0.93 (0.998) 0.96 (0.991) 0.95 (0.990) 0.94 (0.989) 0.94 (0.992) 0.93 (0.997)

SDdiff (%) 22.65 (0.994) 19.83 (0.998) 19.97 (0.995) 20.12 (0.0990) 20.21 (0.996) 22.03 (0.992)

SDrel,∞ (%) 172.86 (0.994) 181.49 (0.998) 176.42 (0.995) 173.16 (0.990) 173.04 (0.996) 173.21 (0.992)

κ × 102 (min−1) 2.07 (0.994) 4.09 (0.998) 3.92 (0.995) 3.56 (0.990) 3.28 (0.996) 2.09 (0.992)

to (min) 14.78 (0.994) 7.39 (0.998) 8.12 (0.995) 9.77 (0.990) 12.27 (0.996) 12.85 (0.992)

D × 103 (cm2/s) 4.07 4.88 4.74 4.51 4.16 4.10

CAR

kD (min−n) 2.73 (0.991)

n.a. (gel not stable)

n 0.82 (0.991)

SDdiff (%) 26.85 (0.831)

SDrel,∞ (%) 158.71 (0.831)

κ × 102 (min−1) 2.20 (0.831)

to (min) 11.15 (0.831)

D × 103 (cm2/s) 3.86

* Correlation coefficients indicating the appropriateness of the fitting model are given in parenthesis after the value of each parameter.
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For the hydrogel containing κ-carrageenan (PC12K), in comparison with PC12 (containing
ι-carrageenan) the swelling degrees are 10–15% higher. The increase in swelling rates could be due to a
looser packing of the macromolecular PVA:CAR assembly (κ-carrageenan has only one sulfate group
per repeating unit, thus presenting a lower susceptibility for inter- and intramolecular interactions,
i.e., lower gel contents, coupled with a lower crosslinking density ν and mesh size ξ, as seen in
Tables 1 and 2). On a diffusional level, hydrogels with κ-carrageenan have a higher susceptibility to
molecular relaxation, with both the swelling rates (kD and κ) being 50–75% higher than in the case of
ι-carrageenan. These higher swelling rates are responsible, in principle, for a higher release rate from
the polymer matrix.

3.2. Controlled Release from the Hydrogels

The release of the three antibiotics from the polymer matrix is governed by structural factors
(molecular mass and hydrodynamic radius of the drug, respectively, the mesh size and swelling of the
crosslinked hydrogel matrix), and by the electrostatic interactions between the drug and the ionized
sulfate groups of ι-carrageenan, which are dictated by the pH value [49].

Similar to the swelling degree, the antibiotic release occurs at a higher rate in the diffusion-controlled
timeframe (until te), after which a slow ongoing release occurs in the relaxation domain (Figure 3a).
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Figure 3. Tetracycline hydrochloride-, amoxicillin-, and gentamicin-sulfate-loaded hydrogels release;
(a) release kinetic at pH = 7.3 and 21 ◦C; (b) fraction of released antibiotic at equilibrium for different
pH values at 21 ◦C; (c) fraction of released antibiotic at equilibrium variation with swelling fluid
temperature at pH = 7.3.

The antibiotic release profiles were modeled with the Peppas–Sahlin equation (Equation (13)) [50]:

Ft

Ft,equil
= k1·tn + k2·t2n (13)
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In Equation (13), Ft,equil signifies the fractional drug degree at equilibrium (Figure 3b), k1,
the antibiotic release rate in the diffusional step, k2, is the release rate in the swelling-controlled
relaxational step and n is the diffusional exponent, having the same significance as in Equation (10)
(solvent diffusion).

The diffusion coefficients for the period of diffusional release (Ddiff), respectively, for the
relaxation-controlled release (Drel) were calculated from the slopes of the linear dependencies derived
from Equations (14) (representing Ft/Ft,equil as a function of t1/2) and (15) (representing ln (Ft/Ft,equil) as
a function of t) [32,51]. The obtained values are expressed in Table 4.

Ft

Ft,equil
= 4

√
Ddiff·t
π·δ2 (14)

Ft

Ft,equil
= 1−

( 8
π2

)
exp

[
−π2
·Drel·t

δ2

]
(15)

Increasing the ι-carrageenan to poly (vinyl alcohol) ratio in the hydrogels determines an increase
in the drug release ratio for the first diffusion-controlled step for all three antibiotics (tetracycline
hydrochloride (Mw = 444.4; hydrodynamic radius of 7.98 nm, pKa1 = 3.3, pKa2 = 7.2 at 25 ◦C) [52],
amoxicillin (Mw = 365.4; hydrodynamic radius of 6.507; pKa1 = 2.69; pKa2 = 7.3 at 25 ◦C) [53], and
gentamicin sulfate (Mw = 516.6; hydrodynamic radius of 9.58 nm; pKa1 = 10.18; pKa2 = 12.55 at
25 ◦C) [54], due to the higher solvent penetration rate (kD values, Table 3).

For the PVA hydrogel, which does not contain ionizable groups, the antibiotic release is completely
influenced by swelling, which is pronounced at pH = 3.

For all hydrogels and release media pH, the release rates (k1 and k2) and diffusion coefficients (Ddiff

and Drel) decrease in the order amoxicillin > tetracycline hydrochloride > gentamicin sulfate, with
increasing of the molecular mass and hydrodynamic radius of the antibiotic. For gentamicin sulfate, its
hydrodynamic radius is comparable to the mesh size of PVA (ξ = 13.97 nm, Table 2), which explains the
lowest release rate and diffusion coefficient of this drug for the PVA hydrogel, in comparison with the
PVA/CAR blends. Due to the macromolecular architecture flexibilization and restructuration promoted
by the increase in the release fluid’s temperature, higher cumulative release ratios are registered for the
drug-loaded hydrogels at equilibrium (Figure 3c).

The molecular structure of the model antibiotics, depicting their pKa values, are presented in
Figure 4.
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Table 4. Parameters related to the antibiotics release kinetic profiles and diffusion at 21 ◦C (A: amoxicillin; T: tetracycline hydrochloride and G: gentamicin sulfate) *.

Material Parameter
Swelling Medium

pH = 3 pH = 6.5 pH = 7.3

PVA

Antibiotic A T G A T G A T G

k1 × 102 (min−m) 7.04(0.993) 6.04(0.995) 3.27(0.997) 5.89(0.992) 4.50(0.992) 2.89(0.994) 5.23(0.992) 4.39(0.996) 2.78(0.997)

k2 × 103 (min−2n) 7.98(0.993) 7.26(0.995) 2.82(0.997) 7.84(0.992) 6.22(0.992) 2.34(0.994) 7.36(0.992) 6.12(0.996) 1.10(0.997)

n 0.58(0.993) 0.56(0.995) 0.54(0.997) 0.60(0.992) 0.58(0.992) 0.54(0.994) 0.63(0.992) 0.60(0.996) 0.56(0.997)

Ddiff × 106 (cm2/s) 8.97(0.999) 8.73(0.987) 4.17(0.994) 8.33(0.987) 7.18(0.988) 3.94(0.990) 8.04(0.988) 6.24(0.989) 3.76(0.996)

Drel × 106 (cm2/s) 4.78(0.988) 4.21(0.989) 1.55(0.989) 4.16(0.988) 4.06(0.991) 1.48(0.986) 4.11(0.991) 3.04(0.998) 1.26(0.994)

PC5

k1 × 102 (min−m) 8.12(0.994) 6.85(0.997) 3.94(0.994) 6.05(0.996) 4.82(0.992) 3.67(0.991) 5.68(0.992) 4.77(0.995) 2.92(0.999)

k2 × 103 (min−2n) 9.04(0.994) 7.08(0.997) 2.78(0.994) 7.02(0.996) 5.56(0.992) 2.28(0.991) 6.98(0.992) 4.01(0.995) 1.02(0.999)

n 0.55(0.994) 0.54(0.997) 0.54(0.994) 0.56(0.996) 0.55(0.992) 0.52(0.991) 0.58(0.992) 0.56(0.995) 0.54(0.999)

Ddiff × 106 (cm2/s) 9.31(0.992) 8.89(0.991) 4.28(0.992) 8.87(0.990) 7.24(0.991) 4.08(0.993) 8.12(0.991) 6.79(0.989) 3.83(0.998)

Drel × 106 (cm2/s) 4.82(0.991) 4.12(0.992) 1.31(0.990) 4.06(0.994) 3.51(0.997) 1.24(0.991) 4.02(0.994) 2.97(0.987) 1.13(0.993)

PC12

k1 × 102 (min−m) 8.44(0.998) 6.90(0.992) 3.98(0.996) 6.87(0.998) 5.34(0.994) 3.78(0.998) 5.91(0.994) 4.82(0.991) 2.98(0.988)

k2 × 103 (min−2n) 9.26(0.998) 6.98(0.992) 2.42(0.996) 8.03(0.998) 4.84(0.994) 2.08(0.998) 6.71(0.994) 3.96(0.991) 0.97(0.998)

n 0.53(0.998) 0.53(0.992) 0.53(0.996) 0.54(0.998) 0.53(0.994) 0.53(0.998) 0.56(0.994) 0.55(0.991) 0.52(0.998)

Ddiff × 106 (cm2/s) 9.38(0.994) 8.96(0.993) 4.36(0.994) 8.90(0.987) 6.91(0.990) 4.11(0.988) 8.24(0.990) 6.83(0.992) 3.91(0.996)

Drel × 106 (cm2/s) 4.92(0.990) 4.06(0.991) 1.18(0.987) 3.89(0.986) 3.16(0.991) 1.10(0.990) 2.98(0.988) 2.90(0.986) 1.04(0.998)

PC12K

k1 × 101 (min−m) – 1.02(0.998) – – 0.82(0.992) – – 0.73(0.998) –

k2 × 102 (min−2n) – 3.28(0.998) – – 2.81(0.992) – – 2.46(0.998) –

n – 0.61(0.998) – – 0.60(0.997) – – 0.56(0.998) –

Ddiff × 105 (cm2/s) – 2.18(0.989) – – 2.08(0.994) – – 1.92(0.993) –

Drel × 105 (cm2/s) – 6.82(0.991) – – 6.77(0.996) – – 6.21(0.995) –

* Correlation coefficients indicating the appropriateness of the fitting model are given in parenthesis after the value of each parameter.
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gentamicin sulfate.

At pH = 3, the carboxyl groups of amoxicillin (pKa1 = 2.7) are completely ionized [51], which
accounts for higher release rates and diffusion coefficients at low pH values (electrostatic repulsion
between the –COO– from amoxicillin and the –OSO3

− groups of carrageenan). The higher the
carrageenan content in the hydrogels, the higher the release rate for amoxicillin at pH = 3. At higher
pH values (6.5 and 7.3), increasing of the carrageenan amount has an opposite effect. The amino groups
become ionized in higher numbers, leading to a decrease with up to 40% in the release rates for this
drug at pH = 7.3, compared with pH = 3. For the same pH value, a variation of 15% in the amoxicillin
diffusion rates can be registered between the PC12 blend hydrogel and PVA.

For tetracycline hydrochloride, the conjugated trione system (involving the amide group) is
responsible for pKa1 = 3.3 [52]. The weakly basic conjugated phenolic enone system becomes involved
at pH = 7.3, owing for a 25% decrease in the value of the tetracycline diffusion coefficients, compared
to pH = 3. The amino groups become ionized only at pH > 8, which is well outside the pH thresholds
for the human body.

The κ-carrageenan hydrogels loaded with tetracycline hydrochloride (PC12K) present higher
release rates (with 30–48%) and diffusion coefficients (with 47¨C55%) in comparison with the
corresponding ι-carrageenan gels. These release parameters have a much lower variation for PC12K
with the pH of the release medium (up to 27%) than in PC12 (up to 47%). Even if the sulfate groups in
both carrageenans are completely ionized in the studied pH range, ι-carrageenan seems more sensible
to the modifications in the ionic strength of the release medium. These modifications lead in principle
to the reorientation in the macromolecular structural assembly, which is responsible for creating new
diffusional pathways for the model drug.

The amino and methyl-substituted amino groups of gentamicin become protonated at pH > 7.5
(except for the amino group linked to the third carbon atom from the central streptidinic moiety) [53],
so for this drug, the strong hydrogen bonding with PVA and ι-carrageenan (especially since the mesh
size of the hydrogels is close to this antibiotic’s hydrodynamic radius) could be responsible for its
lower release rates and lower diffusion coefficients, in comparison with the other two antibiotics. The
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combined diffusional-relaxation mechanisms owe for an anomalous type of release of the antibiotics
from the hydrogels (n values range from 0.52 to 0.60 for all experimental instances).

3.3. Gels Structure and Morphology

As it can be seen from Figure 5a, the refraction index variation with ι-carrageenan weight fraction
in the 0.02 ÷ 0.23 interval indicates a linear dependency, which implies good miscibility between the
two polymers in aqueous solution [55]. The same behavior has been reported for other blends of poly
(vinyl alcohol), such as with κ-carrageenan [56] or chitosan [57].
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mixtures at 25 ◦C in distilled water (1 g/dL concentration); (b) reduced viscosity variation at 25 ◦C for
different PVA:CAR mixtures in phosphate buffer solution.

To quantify the miscibility between poly (vinyl alcohol) and ι-carrageenan, the interaction
parameter µwas calculated (Equation (16)), based on the values of the interaction parameters (b) for
the blends, respectively, for the pure components (bCAR, bPVA), and the intrinsic viscosities of PVA
([η]PVA = 0.793 dL/g), respectively, ι-carrageenan ([η]CAR = 3.816 dL/g), obtained from fitting the
dependencies from Figure 5b with the Huggins equation (Equation (9)) [55]:

µ =
b− b

2(wPVA ·wCAR) · ([η]CAR−[η]PVA)
2 (16)

where wCAR and wPVA = 1-wCAR represent the weight fraction of CAR, respectively, PVA in the blend,
and b represents the ideal interaction parameter, calculated according to Krigbaum and Wall with the
following expression (Equation (17)) [57]:

b = w2
PVA · bPVA + w2

CAR · bCAR + 2wPVAwCAR · b (17)

The polymer blend is miscible if µ ≥ 0, and immiscible if µ < 0. The interaction parameter values
for all blends are given in Table 5. The values of R2 correspond to the goodness of the reduced viscosity
dependence on cv being modeled with the Huggins equation (Equation (9)).
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Table 5. Huggins parameters and interaction parameters for PVA:CAR blends *.

Blend Composition (η)
(dL/g)

KH
b

(dL2/g2)
µ R2

wPVA wCAR

1 0 0.793 0.427 0.268 – 0.998

0.990 0.010 1.107 0.214 0.263 −0.02 0.989

0.978 0.021 1.311 1.081 1.860 4.06 0.998

0.953 0.047 1.552 1.090 2.627 2.81 0.999

0.883 0.117 1.846 0.965 3.290 1.44 0.996

0.860 0.140 2.026 0.869 3.574 1.31 0.995

0.834 0.166 2.583 0.444 2.968 0.85 0.981

0.767 0.233 3.032 0.437 4.017 0.63 0.986

0 1 3.816 1.346 19.618 – 0.978

* The composition values presented in boldface correspond to the starting solutions from which PVA, PC5, PC12,
and CAR gels were prepared through five successive freeze–thaw cycles.

For weight ratios of carrageenan higher than 0.01, there is excellent compatibility between the two
polymers (µ > 0). Since ι-carrageenan presents a higher molecular mass than PVA, at sufficiently higher
CAR/PVA ratios, it could act as a pseudotheta solvent for PVA, forming rigid polymer intercomplexes
by entangling around the shorter flexible PVA chains. These intercomplexes disrupt the original rigid
double-helix conformation of ι-carrageenan (KH value of carrageenan is greater than (1) flexibilizing it;
therefore, the PVA macromolecules could function as a pseudoplasticizer for the rigid carrageenan
macromolecules, a role which seems to be confirmed for the lowering of KH values of the blends at
increased carrageenan content. For low carrageenan amounts (wCAR = 0.01), phase separation occurs
(µ < 0) due to a more reduced possibility of chain entanglement. which may lead to miscibility between
the two polymers. The compositions for the two PC5 and PC12 hydrogels correspond to high values of
µ, leaving out the possibility of forming two distinct polymer-rich phases during cryogelation.

A smooth and homogeneous morphology can be observed for the PVA hydrogel, with macropores
ranging from 8 to 15 µm (Figure 6). In contrast, for the ι-carrageenan hydrogel surface, no apparent
porosity was observed, implying a different gelation mechanism for this polymer, in contrast to PVA.
In PVA solutions, freezing induces the formation of two bicontinuous phases: a polymer-rich swollen
phase in which crystallites (i.e., crosslinking points) are formed, and a free freezable water-rich phase,
which shapes the network’s pore morphology [58]. Carrageenan, like other hydrocolloids, forms
freestanding thermoreversible gels above a critical concentration value, when the macromolecules
come in close proximity with one another, forming weakly associated regions (junction zones), which
are responsible for the very low value of the gel content (Table 1) [59]. The critical concentration value
for the ι-carrageenan used in this study could be determined as the inflection (slope-changing) point
in the reduced viscosity variation with concentration [60] from Figure 5b (ccrit = 0.26 g/dL), so the
solutions containing 2 wt/vol % ι-carrageenan will have a high tendency to gel.

The addition of ι-carrageenan to PVA determines a decrease in the pore size and density of the
PC5 and PC12 hydrogels, as also determined from the Pr values from Table 6, calculated from the
cyclohexane uptake values. A more compact surface can be observed with increasing carrageenan
content, probably due to a substantial decrease in the free water content in the gelling systems and to
the stabilization effect of CAR, which interferes with the phase separation process during freezing.
The decrease in pore size with the increasing amount of polysaccharide has also been observed for
PVA/chitosan blend hydrogels above 40 wt % chitosan [61], for PVA/hydroxyethyl starch [62] or
PVA/gelatin [63] hydrogels prepared through cryogelation. Even if the water diffusion coefficients
increase proportionally with the ι-carrageenan content, the equilibrium swelling values do not increase
following the same trendline, because the reduced porosity provides less diffusional pathways for
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water penetration into the hydrogel network, and retards the release of antibiotics from the hydrogel
in the relaxation step.
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Figure 6. SEM micrographs depicting the surface morphologies of the obtained hydrogels.

Table 6. Pore volume ratio (Pr) and structural parameters for the obtained hydrogels.

Sample Code Pr (%) CrXRD (%) D (nm) CrIFTIR EH (kcal)

PVA 8.23 11.03 7.94 0.24 6.12

PC5 6.04 9.94 7.68 0.21 6.22

PC12 5.14 7.27 7.57 0.15 3.96

CAR 0.73 4.05 – – 4.56

ι-carrageenan determines only a slight decrease in the crystallinity (CrXRD) of the hydrogel blends,
as shown in Table 6. The (101) and (201) reflections, corresponding to the monoclinic unit cell of PVA [64]
(Figure 7a) shift to higher 2θ numbers in the PC5 and PC12 blends, implying a reduction in crystallite
sizes (D, Table 6, determined with the Debye–Scherrer equation [28,65]), possibly due to a tighter
packing of the ordered macromolecular segments dictated by increased interaction through hydrogen
bonding between PVA and CAR. This behavior has also been observed for PVA/κ-carrageenan or
PVA/chitosan blends.

Additionally, a weak diffraction hallo could be seen for PC5 (15.3◦), respectively, PC12 (15.2◦),
which is shifted to lower diffraction angle values comparing with the broad reflection centered at 22.6◦

for CAR, accounting for the contributions of the amorphous macromolecular regions. The blue-shifting
of this diffraction contribution could imply the formation of chain entanglements between PVA and
ι-carrageenan in the amorphous macromolecular domains. This behavior has also been documented
for PVA/chitosan [66] and PVA/cellulose [63] hydrogels.
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The FTIR spectra of the PC5 and PC12 blends from Figure 7b indicate that poly (vinyl alcohol) and
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covalent bonding was not observed for this blend.

The crystallites could be associated with aggregates uniformly embedded in the amorphous
macromolecular domains and are visible in the cross-polarization optical micrographs of the hydrogels
(Figures 8 and 9). In the case of ι-carrageenan, these associations have an average diameter of 7 µm
and seem to be in a lower amount than in PVA, according to its low crystallinity value.
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magnification (POL: micrographs acquired under cross-polarization regime).

Increasing the content of ι-carrageenan determines the formation of crystalline regions with higher
dimensions (85 µm average diameter for PC5 and 120 µm for PC12), compared to PVA and CAR.
This behavior seems to confirm the macromolecular entanglement of the two components. Since the
crystalline domains act as junction regions and spacers, basically defining the hydrogels’ network, the
larger the individual junction regions, the higher the water sorption capacity.

The half-wave polarized microscopy images confirm the crystalline nature of the aggregates
observed from Figure 9, where these domains present birefringence. A closer look at these aggregates
reveals parallel-aligned fringes, separated by darker (amorphous) domains.

Interaction through inter- and intramolecular hydrogen bonds could be deducted from the shifting
of the PVA crystallinity band (1129 cm−1 (PC5 and PC12) [67], and of the ι-carrageenan O=S=O sulfate
stretching vibration (1237 cm−1, for PC12) to lower wavenumbers (Figure 7b) [68]. The crystallinity
index of PVA (CrIFTIR), calculated as the ratio between the height of the bands centered at 1128 and
1089 cm−1 [67] is found to be proportional to the crystallinity calculated from the XRD diffractograms
(CrXRD, Table 6), behavior similar to that of PVA/κ-carrageenan system. Another indication of an
enhanced interaction between PVA and CAR is the hydrogen bond energy (EH), which is calculated
according to our previous work [28]. Increased value of hydrogen bond energy for PC5, compared to
the values for PVA or CAR implies a stronger interaction between these components, higher water
stability, and a decrease in the diffusion coefficients of active species from the hydrogel matrix when in
swelling relaxation regime.

In drug delivery, polymer matrix-guest molecule interactions are determinant for the release
profiles. For PVA, diffusion is controlled by the chemistry of the release medium (ionic strength
and nature of the present chemical species (kosmotropes, chaotropes)), which enhances or disrupts
the hydrogen bonding in the hydrogel. Supplementary, by adding ι-carrageenan to PVA additional
electrostatic interactions could be promoted between the completely ionized sulfate groups and the
antibiotics, as a function of the pH of the release medium.

The molecular simulation snapshots of the PVA:CAR system (Figure 10) sustain the discussion
related to the interaction parameters (Table 5). It can be seen from Figure 10a that the lower molecular



Polymers 2020, 12, 1544 21 of 26

weight PVA chains entangle around the ι-carrageenan molecular assemblies, but are not preferentially
intercalated between the ι-carrageenan molecules.
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Figure 10. Energy-minimized molecular simulation snapshots of (a) PVA: CAR; (b) PVA: CAR:
tetracycline hydrochloride; (c) PVA: CAR: gentamicin sulfate; (d) PVA: CAR: amoxicillin (the PVA C-C
chains are colored in purple, and the antibiotic molecules are designated in each case with space-filling
calotte models).

Firstly, all the antibiotics included in the polymer matrix have a “spacer” effect, leading to the
increase in the mesh size of the polymer network (mesh sizes ξ for PC12-A, PC12-T, and PC12-G are
all higher than the corresponding value registered for PC12). This determines higher equilibrium
swelling values for all drug-loaded hydrogels compared to the reference (Figure 11a). This effect is
also registered for the hydrogels containing κ-carrageenan, but shifted to higher swelling equilibrium
values compared to the gels containing ι-carrageenan.
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swelling values from Figure 10a take into account the mass of released antibiotic; T: tetracycline
hydrochloride, A: amoxicillin; G: gentamicin sulfate).
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Tetracycline hydrochloride, through its conjugated trione moiety (δ+), can interact with the
sulfate groups of ι-carrageenan (δ−), practically leading to the highest crosslinking density among
the drug-loaded hydrogels, but slightly higher than PC12. The molecular simulation snapshot from
Figure 10b seems to confirm this statement, as this molecule has the highest intertwining with the
polymer phase. For this hydrogel, the lowest equilibrium swelling values were registered.

Gentamicin sulfate, due to the presence of the -NH2 groups (δ+) determines the second-highest
crosslinking density among the drug-loaded hydrogels (Table 2). Due to its large hydrodynamic radius,
this molecule is less efficiently embedded in the polymer phase than tetracycline hydrochloride, being
distributed mainly in the PVA-rich phase (Figure 10c). Since the mesh size of PVA is comparable to the
hydrodynamic radius of gentamicin sulfate, this could explain the lowest release rate of this drug for
all experimental instances studied in this paper. This molecule could act as a “plug”, reducing water
the water uptake and swelling of the hydrogel. Amoxicillin, due to its lowest hydrodynamic radius
can penetrate more efficiently into the polymer phase (Figure 10d). Due to the ionized (dissociated)
carboxyl groups (δ−), amoxicillin promotes the highest spacer effect, repelling the carrageenan
molecules, determining the lowest crosslinking density, and the highest water uptake at equilibrium
among the drug-loaded hydrogels.

The electrical conductance variation with the amount of added antibiotic (Figure 11b) reveals that
except for amoxicillin at pH = 3 (for which the carboxyl groups are ionized), in all cases a decrease in
the overall conductance of the system is registered, signaling a degree of ionic interaction between
ι-carrageenan and the antibiotic.

The highest drop is registered for tetracycline hydrochloride. Therefore, even if there are
interactions between carrageenan and the model antibiotics, these do not lead to a crosslinking of the
polymer matrix in the traditional sense (linking macromolecular chains and lowering the swelling
degree of the material). Instead, this interaction (possibly coupled with hydrogen bonding) modulates
the drug release patterns and leads in each case to a small “bound” amount of antibiotic embedded in
the matrix (Figure 3b) after the release step.

4. Conclusions

The addition of ι-carrageenan (which possesses two sulfate groups per galactan unit) to poly (vinyl
alcohol) leads to the formation of entirely miscible blends, which were used to obtain hydrogels by
cryogelation (applying five alternate freezing and thawing cycles). Poly (vinyl alcohol) and carrageenan
are entirely compatible in the amorphous domains, and to a limited extent, in the crystalline domains,
forming mixed crystallite associations with lower diameters than in the case of the pure polymers.
These traits, alongside the reasonably high gel contents, are responsible for the hydrogels’ excellent
stability in aqueous environments with pH values between 3 and 7.3.

The swelling of the polymer blend matrix is governed by relaxation, which determines a retarding
in the release of the model antibiotic drugs (amoxicillin, tetracycline hydrochloride, and gentamicin
sulfate) from the polymer matrix with values up to 40%, compared to the poly(vinyl alcohol) reference
hydrogel at different pH values, depending on the chemistry of the drug.

Due to the presence of the completely ionized sulfate groups, ι-carrageenan determines a more
pronounced drug release modulation as a function of pH compared to the reference poly (vinyl alcohol)
hydrogel, trough electrostatic interactions, and/or hydrogen bonding.

This study represents an extension of our previous work on poly (vinyl alcohol) and κ-carrageenan
hydrogels (which were used as sorbent materials for cationic dyes sorption), aiming to enlarge the
database regarding the structure and applicability domains of materials obtained with this type of
sulfated polysaccharide.

Comparing ι-carrageenan with κ-carrageenan at the same weight ratio, the former determines up to
15% lower equilibrium swelling degrees due to a tighter packing of the macromolecular assembly. The
latter determines a faster release of tetracycline hydrochloride (release rates and diffusion coefficients
up to 48% and 55% higher).
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